Geometric transformations.: IV, Circular transformations /
The familiar plane geometry of high school - figures composed of lines and circles - takes on a new life when viewed as the study of properties that are preserved by special groups of transformations. No longer is there a single, universal geometry: different sets of transformations of the plane cor...
Gespeichert in:
1. Verfasser: | |
---|---|
Körperschaft: | |
Format: | Elektronisch E-Book |
Sprache: | English Russian |
Veröffentlicht: |
[Washington, D.C.] :
Mathematical Association of America,
©2009.
|
Schriftenreihe: | Anneli Lax new mathematical library ;
v. 44. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The familiar plane geometry of high school - figures composed of lines and circles - takes on a new life when viewed as the study of properties that are preserved by special groups of transformations. No longer is there a single, universal geometry: different sets of transformations of the plane correspond to intriguing, disparate geometries. This book is the concluding Part IV of Geometric Transformations, but it can be studied independently of Parts I, II, and III, which appeared in this series as Volumes 8, 21, and 24. Part I treats the geometry of rigid motions of the plane (isometries); Part II treats the geometry of shape-preserving transformations of the plane (similarities); Part III treats the geometry of transformations of the plane that map lines to lines (affine and projective transformations) and introduces the Klein model of non-Euclidean geometry. The present Part IV develops the geometry of transformations of the plane that map circles to circles (conformal or anallagmatic geometry). The notion of inversion, or reflection in a circle, is the key tool employed. Applications include ruler-and-compass constructions and the Poincaré model of hyperbolic geometry. The straightforward, direct presentation assumes only some background in high-school geometry and trigonometry. Numerous exercises lead the reader to a mastery of the methods and concepts. The second half of the book contains detailed solutions of all the problems. |
Beschreibung: | 1 online resource (viii, 285 pages) : illustrations |
ISBN: | 9780883859582 0883859580 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn796676521 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 120625s2009 dcua o 000 0 eng d | ||
010 | |z 2009933072 | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d E7B |d OCLCA |d OCLCF |d CAMBR |d OCLCQ |d COO |d OCLCQ |d JSTOR |d OCLCQ |d AZK |d AGLDB |d MOR |d PIFAG |d OCLCQ |d U3W |d STF |d WRM |d JBG |d VTS |d COCUF |d VT2 |d OCLCQ |d WYU |d TKN |d M8D |d OCLCQ |d HS0 |d ADU |d UKCRE |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL | ||
019 | |a 961604291 |a 962578176 |a 988477915 |a 991917749 |a 1037907981 |a 1038695454 |a 1055337769 |a 1066652264 |a 1113446583 |a 1153486412 | ||
020 | |a 9780883859582 |q (electronic bk.) | ||
020 | |a 0883859580 |q (electronic bk.) | ||
020 | |z 9780883856482 | ||
020 | |z 0883856484 | ||
035 | |a (OCoLC)796676521 |z (OCoLC)961604291 |z (OCoLC)962578176 |z (OCoLC)988477915 |z (OCoLC)991917749 |z (OCoLC)1037907981 |z (OCoLC)1038695454 |z (OCoLC)1055337769 |z (OCoLC)1066652264 |z (OCoLC)1113446583 |z (OCoLC)1153486412 | ||
037 | |a 22573/ctt19b9x3f |b JSTOR | ||
041 | 1 | |a eng |h rus | |
050 | 4 | |a QA473 |b .I24 2009 | |
072 | 7 | |a MAT |x 016000 |2 bisacsh | |
072 | 7 | |a MAT |x 018000 |2 bisacsh | |
072 | 7 | |a MAT012000 |2 bisacsh | |
082 | 7 | |a 511.3/3 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a I︠A︡glom, I. M. |q (Isaak Moiseevich), |d 1921-1988. |0 http://id.loc.gov/authorities/names/n80067373 | |
245 | 1 | 0 | |a Geometric transformations. |n IV, |p Circular transformations / |c I.M. Yaglom ; translated by A. Shenitzer. |
246 | 3 | 0 | |a Circular transformations |
260 | |a [Washington, D.C.] : |b Mathematical Association of America, |c ©2009. | ||
300 | |a 1 online resource (viii, 285 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Anneli Lax new mathematical library ; |v 44 | |
505 | 0 | |a Reflections in a circle (inversion) -- Application of inversions to the solution of constructions -- Pencils of circles. The radical axis of two circles -- Inversion (concluding section) -- Axial circular transformations -- Non-Euclidean geometry of Lobachevskiĭ-Bolyai, or hyperbolic geometry -- Solutions. | |
588 | 0 | |a Print version record. | |
520 | |a The familiar plane geometry of high school - figures composed of lines and circles - takes on a new life when viewed as the study of properties that are preserved by special groups of transformations. No longer is there a single, universal geometry: different sets of transformations of the plane correspond to intriguing, disparate geometries. This book is the concluding Part IV of Geometric Transformations, but it can be studied independently of Parts I, II, and III, which appeared in this series as Volumes 8, 21, and 24. Part I treats the geometry of rigid motions of the plane (isometries); Part II treats the geometry of shape-preserving transformations of the plane (similarities); Part III treats the geometry of transformations of the plane that map lines to lines (affine and projective transformations) and introduces the Klein model of non-Euclidean geometry. The present Part IV develops the geometry of transformations of the plane that map circles to circles (conformal or anallagmatic geometry). The notion of inversion, or reflection in a circle, is the key tool employed. Applications include ruler-and-compass constructions and the Poincaré model of hyperbolic geometry. The straightforward, direct presentation assumes only some background in high-school geometry and trigonometry. Numerous exercises lead the reader to a mastery of the methods and concepts. The second half of the book contains detailed solutions of all the problems. | ||
650 | 0 | |a Inversions (Geometry) |0 http://id.loc.gov/authorities/subjects/sh85067688 | |
650 | 6 | |a Inversions (Géométrie) | |
650 | 7 | |a MATHEMATICS |x Infinity. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Logic. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Geometry |x General. |2 bisacsh | |
650 | 7 | |a Inversions (Geometry) |2 fast | |
710 | 2 | |a Mathematical Association of America. |0 http://id.loc.gov/authorities/names/n79105844 | |
758 | |i has work: |a Geometric transformations IV Circular transformations (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFT4gdXXjPMXtT6GGXwtDm |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a I︠A︡glom, I.M. (Isaak Moiseevich), 1921-1988. |t Geometric transformations. IV, Circular transformations. |d [Washington, D.C.] : Mathematical Association of America, ©2009 |z 9780883856482 |w (DLC) 2009933072 |w (OCoLC)437300086 |
830 | 0 | |a Anneli Lax new mathematical library ; |v v. 44. |0 http://id.loc.gov/authorities/names/n2002012009 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450509 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10729385 | ||
938 | |a EBSCOhost |b EBSC |n 450509 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn796676521 |
---|---|
_version_ | 1816881799674986496 |
adam_text | |
any_adam_object | |
author | I︠A︡glom, I. M. (Isaak Moiseevich), 1921-1988 |
author_GND | http://id.loc.gov/authorities/names/n80067373 |
author_corporate | Mathematical Association of America |
author_corporate_role | |
author_facet | I︠A︡glom, I. M. (Isaak Moiseevich), 1921-1988 Mathematical Association of America |
author_role | |
author_sort | I︠A︡glom, I. M. 1921-1988 |
author_variant | i m i im imi |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA473 |
callnumber-raw | QA473 .I24 2009 |
callnumber-search | QA473 .I24 2009 |
callnumber-sort | QA 3473 I24 42009 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Reflections in a circle (inversion) -- Application of inversions to the solution of constructions -- Pencils of circles. The radical axis of two circles -- Inversion (concluding section) -- Axial circular transformations -- Non-Euclidean geometry of Lobachevskiĭ-Bolyai, or hyperbolic geometry -- Solutions. |
ctrlnum | (OCoLC)796676521 |
dewey-full | 511.3/3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/3 |
dewey-search | 511.3/3 |
dewey-sort | 3511.3 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04900cam a2200601 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn796676521</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">120625s2009 dcua o 000 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2009933072</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCF</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">JBG</subfield><subfield code="d">VTS</subfield><subfield code="d">COCUF</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HS0</subfield><subfield code="d">ADU</subfield><subfield code="d">UKCRE</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">961604291</subfield><subfield code="a">962578176</subfield><subfield code="a">988477915</subfield><subfield code="a">991917749</subfield><subfield code="a">1037907981</subfield><subfield code="a">1038695454</subfield><subfield code="a">1055337769</subfield><subfield code="a">1066652264</subfield><subfield code="a">1113446583</subfield><subfield code="a">1153486412</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780883859582</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0883859580</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780883856482</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0883856484</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)796676521</subfield><subfield code="z">(OCoLC)961604291</subfield><subfield code="z">(OCoLC)962578176</subfield><subfield code="z">(OCoLC)988477915</subfield><subfield code="z">(OCoLC)991917749</subfield><subfield code="z">(OCoLC)1037907981</subfield><subfield code="z">(OCoLC)1038695454</subfield><subfield code="z">(OCoLC)1055337769</subfield><subfield code="z">(OCoLC)1066652264</subfield><subfield code="z">(OCoLC)1113446583</subfield><subfield code="z">(OCoLC)1153486412</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/ctt19b9x3f</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">rus</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA473</subfield><subfield code="b">.I24 2009</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">016000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">018000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT012000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.3/3</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">I︠A︡glom, I. M.</subfield><subfield code="q">(Isaak Moiseevich),</subfield><subfield code="d">1921-1988.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n80067373</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric transformations.</subfield><subfield code="n">IV,</subfield><subfield code="p">Circular transformations /</subfield><subfield code="c">I.M. Yaglom ; translated by A. Shenitzer.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Circular transformations</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">[Washington, D.C.] :</subfield><subfield code="b">Mathematical Association of America,</subfield><subfield code="c">©2009.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 285 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Anneli Lax new mathematical library ;</subfield><subfield code="v">44</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Reflections in a circle (inversion) -- Application of inversions to the solution of constructions -- Pencils of circles. The radical axis of two circles -- Inversion (concluding section) -- Axial circular transformations -- Non-Euclidean geometry of Lobachevskiĭ-Bolyai, or hyperbolic geometry -- Solutions.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The familiar plane geometry of high school - figures composed of lines and circles - takes on a new life when viewed as the study of properties that are preserved by special groups of transformations. No longer is there a single, universal geometry: different sets of transformations of the plane correspond to intriguing, disparate geometries. This book is the concluding Part IV of Geometric Transformations, but it can be studied independently of Parts I, II, and III, which appeared in this series as Volumes 8, 21, and 24. Part I treats the geometry of rigid motions of the plane (isometries); Part II treats the geometry of shape-preserving transformations of the plane (similarities); Part III treats the geometry of transformations of the plane that map lines to lines (affine and projective transformations) and introduces the Klein model of non-Euclidean geometry. The present Part IV develops the geometry of transformations of the plane that map circles to circles (conformal or anallagmatic geometry). The notion of inversion, or reflection in a circle, is the key tool employed. Applications include ruler-and-compass constructions and the Poincaré model of hyperbolic geometry. The straightforward, direct presentation assumes only some background in high-school geometry and trigonometry. Numerous exercises lead the reader to a mastery of the methods and concepts. The second half of the book contains detailed solutions of all the problems.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Inversions (Geometry)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85067688</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Inversions (Géométrie)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Infinity.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Logic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inversions (Geometry)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Mathematical Association of America.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n79105844</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Geometric transformations IV Circular transformations (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFT4gdXXjPMXtT6GGXwtDm</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">I︠A︡glom, I.M. (Isaak Moiseevich), 1921-1988.</subfield><subfield code="t">Geometric transformations. IV, Circular transformations.</subfield><subfield code="d">[Washington, D.C.] : Mathematical Association of America, ©2009</subfield><subfield code="z">9780883856482</subfield><subfield code="w">(DLC) 2009933072</subfield><subfield code="w">(OCoLC)437300086</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Anneli Lax new mathematical library ;</subfield><subfield code="v">v. 44.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2002012009</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450509</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10729385</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">450509</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn796676521 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:18:27Z |
institution | BVB |
institution_GND | http://id.loc.gov/authorities/names/n79105844 |
isbn | 9780883859582 0883859580 |
language | English Russian |
oclc_num | 796676521 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (viii, 285 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Mathematical Association of America, |
record_format | marc |
series | Anneli Lax new mathematical library ; |
series2 | Anneli Lax new mathematical library ; |
spelling | I︠A︡glom, I. M. (Isaak Moiseevich), 1921-1988. http://id.loc.gov/authorities/names/n80067373 Geometric transformations. IV, Circular transformations / I.M. Yaglom ; translated by A. Shenitzer. Circular transformations [Washington, D.C.] : Mathematical Association of America, ©2009. 1 online resource (viii, 285 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Anneli Lax new mathematical library ; 44 Reflections in a circle (inversion) -- Application of inversions to the solution of constructions -- Pencils of circles. The radical axis of two circles -- Inversion (concluding section) -- Axial circular transformations -- Non-Euclidean geometry of Lobachevskiĭ-Bolyai, or hyperbolic geometry -- Solutions. Print version record. The familiar plane geometry of high school - figures composed of lines and circles - takes on a new life when viewed as the study of properties that are preserved by special groups of transformations. No longer is there a single, universal geometry: different sets of transformations of the plane correspond to intriguing, disparate geometries. This book is the concluding Part IV of Geometric Transformations, but it can be studied independently of Parts I, II, and III, which appeared in this series as Volumes 8, 21, and 24. Part I treats the geometry of rigid motions of the plane (isometries); Part II treats the geometry of shape-preserving transformations of the plane (similarities); Part III treats the geometry of transformations of the plane that map lines to lines (affine and projective transformations) and introduces the Klein model of non-Euclidean geometry. The present Part IV develops the geometry of transformations of the plane that map circles to circles (conformal or anallagmatic geometry). The notion of inversion, or reflection in a circle, is the key tool employed. Applications include ruler-and-compass constructions and the Poincaré model of hyperbolic geometry. The straightforward, direct presentation assumes only some background in high-school geometry and trigonometry. Numerous exercises lead the reader to a mastery of the methods and concepts. The second half of the book contains detailed solutions of all the problems. Inversions (Geometry) http://id.loc.gov/authorities/subjects/sh85067688 Inversions (Géométrie) MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh MATHEMATICS Geometry General. bisacsh Inversions (Geometry) fast Mathematical Association of America. http://id.loc.gov/authorities/names/n79105844 has work: Geometric transformations IV Circular transformations (Text) https://id.oclc.org/worldcat/entity/E39PCFT4gdXXjPMXtT6GGXwtDm https://id.oclc.org/worldcat/ontology/hasWork Print version: I︠A︡glom, I.M. (Isaak Moiseevich), 1921-1988. Geometric transformations. IV, Circular transformations. [Washington, D.C.] : Mathematical Association of America, ©2009 9780883856482 (DLC) 2009933072 (OCoLC)437300086 Anneli Lax new mathematical library ; v. 44. http://id.loc.gov/authorities/names/n2002012009 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450509 Volltext |
spellingShingle | I︠A︡glom, I. M. (Isaak Moiseevich), 1921-1988 Geometric transformations. Anneli Lax new mathematical library ; Reflections in a circle (inversion) -- Application of inversions to the solution of constructions -- Pencils of circles. The radical axis of two circles -- Inversion (concluding section) -- Axial circular transformations -- Non-Euclidean geometry of Lobachevskiĭ-Bolyai, or hyperbolic geometry -- Solutions. Inversions (Geometry) http://id.loc.gov/authorities/subjects/sh85067688 Inversions (Géométrie) MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh MATHEMATICS Geometry General. bisacsh Inversions (Geometry) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85067688 |
title | Geometric transformations. |
title_alt | Circular transformations |
title_auth | Geometric transformations. |
title_exact_search | Geometric transformations. |
title_full | Geometric transformations. IV, Circular transformations / I.M. Yaglom ; translated by A. Shenitzer. |
title_fullStr | Geometric transformations. IV, Circular transformations / I.M. Yaglom ; translated by A. Shenitzer. |
title_full_unstemmed | Geometric transformations. IV, Circular transformations / I.M. Yaglom ; translated by A. Shenitzer. |
title_short | Geometric transformations. |
title_sort | geometric transformations circular transformations |
topic | Inversions (Geometry) http://id.loc.gov/authorities/subjects/sh85067688 Inversions (Géométrie) MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh MATHEMATICS Geometry General. bisacsh Inversions (Geometry) fast |
topic_facet | Inversions (Geometry) Inversions (Géométrie) MATHEMATICS Infinity. MATHEMATICS Logic. MATHEMATICS Geometry General. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450509 |
work_keys_str_mv | AT iaglomim geometrictransformationsiv AT mathematicalassociationofamerica geometrictransformationsiv AT iaglomim circulartransformations AT mathematicalassociationofamerica circulartransformations |