Charming proofs :: a journey into elegant mathematics /
"Theorems and their proofs lie at the heart of mathematics. In speaking of the purely aesthetic qualities of theorems and proofs, G.H. Hardy wrote that in beautiful proofs 'there is a very high degree of unexpectedness, combined with inevitability and economy'. Charming Proofs present...
Gespeichert in:
1. Verfasser: | |
---|---|
Körperschaft: | |
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, DC :
Mathematical Association of America,
©2010.
|
Schriftenreihe: | Dolciani mathematical expositions ;
no. 42. |
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | "Theorems and their proofs lie at the heart of mathematics. In speaking of the purely aesthetic qualities of theorems and proofs, G.H. Hardy wrote that in beautiful proofs 'there is a very high degree of unexpectedness, combined with inevitability and economy'. Charming Proofs present a collection of remarkable proofs in elementary mathematics that are exceptionally elegant, full of ingenuity, and succinct. By means of a surprising argument or a powerful visual representation, the proofs in this collection will invite readers to enjoy the beauty of mathematics, to share their discoveries with others, and to become involved in the process of creating new proofs. Charming Proofs is organized as follows. Following a short introduction about proofs and the process of creating proofs, the authors present, in twelve chapters, a wide and varied selection of proofs they consider charming, Topics include the integers, selected real numbers, points in the plane, triangles, squares, and other polygons, curves, inequalities, plane tilings, origami, colorful proofs, three-dimensional geometry, etc. At the end of each chapter are some challenges that will draw the reader into the process of creating charming proofs. There are over 130 such challenges. Charming Proofs concludes with solutions to all of the challenges, references, and a complete index. As in the authors' previous books with the MAA (Math Made Visual and When Less Is More), secondary school and college and university teachers may wish to use some of the charming proofs in their classrooms to introduce their students to mathematical elegance. Some may wish to use the book as a supplement in an introductory course on proofs, mathematical reasoning, or problem solving."--Publisher's description. |
Beschreibung: | 1 online resource (xxiv, 295 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 275-287) and index. |
ISBN: | 9781614442011 1614442010 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn796675453 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 120625s2010 dcua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d CUS |d YDXCP |d E7B |d OCLCA |d OCLCF |d CAMBR |d OCLCQ |d JSTOR |d WAU |d OCLCQ |d AZK |d AGLDB |d MOR |d PIFAG |d OCLCQ |d U3W |d STF |d WRM |d VTS |d COCUF |d NRAMU |d VT2 |d OCLCQ |d WYU |d JBG |d ICG |d M8D |d OCLCQ |d AU@ |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL |d OCLCQ |d OCLCL |d OCLCO | ||
016 | 7 | |a 015768700 |2 Uk | |
019 | |a 961548335 |a 962604542 |a 988476215 |a 991924833 |a 1037922277 |a 1038606952 |a 1045480931 |a 1055363757 |a 1059001971 |a 1065926830 |a 1077227480 |a 1081278492 |a 1097102492 | ||
020 | |a 9781614442011 |q (electronic bk.) | ||
020 | |a 1614442010 |q (electronic bk.) | ||
020 | |z 0883853485 | ||
020 | |z 9780883853481 | ||
035 | |a (OCoLC)796675453 |z (OCoLC)961548335 |z (OCoLC)962604542 |z (OCoLC)988476215 |z (OCoLC)991924833 |z (OCoLC)1037922277 |z (OCoLC)1038606952 |z (OCoLC)1045480931 |z (OCoLC)1055363757 |z (OCoLC)1059001971 |z (OCoLC)1065926830 |z (OCoLC)1077227480 |z (OCoLC)1081278492 |z (OCoLC)1097102492 | ||
037 | |a 22573/ctt69txkn |b JSTOR | ||
050 | 4 | |a QA9.54 |b .A57 2010 | |
072 | 7 | |a MAT |x 016000 |2 bisacsh | |
072 | 7 | |a MAT |x 018000 |2 bisacsh | |
072 | 7 | |a MAT000000 |2 bisacsh | |
082 | 7 | |a 511.3/6 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Alsina, Claudi. | |
245 | 1 | 0 | |a Charming proofs : |b a journey into elegant mathematics / |c Claudi Alsina, Roger B. Nelsen. |
260 | |a Washington, DC : |b Mathematical Association of America, |c ©2010. | ||
300 | |a 1 online resource (xxiv, 295 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
490 | 1 | |a Dolciani mathematical expositions ; |v no. 42 | |
504 | |a Includes bibliographical references (pages 275-287) and index. | ||
505 | 0 | |a A garden of integers -- Distinguished numbers -- Points in the plane -- The polygonal playground -- A treasury of triangle theorems -- The enchantment of the equilateral triangle -- The quadrilaterals' corner -- Squares everywhere -- Curves ahead -- Adventures in tiling and coloring -- Geometry in three dimensions -- Additional theorems, problems, and proofs. | |
520 | |a "Theorems and their proofs lie at the heart of mathematics. In speaking of the purely aesthetic qualities of theorems and proofs, G.H. Hardy wrote that in beautiful proofs 'there is a very high degree of unexpectedness, combined with inevitability and economy'. Charming Proofs present a collection of remarkable proofs in elementary mathematics that are exceptionally elegant, full of ingenuity, and succinct. By means of a surprising argument or a powerful visual representation, the proofs in this collection will invite readers to enjoy the beauty of mathematics, to share their discoveries with others, and to become involved in the process of creating new proofs. Charming Proofs is organized as follows. Following a short introduction about proofs and the process of creating proofs, the authors present, in twelve chapters, a wide and varied selection of proofs they consider charming, Topics include the integers, selected real numbers, points in the plane, triangles, squares, and other polygons, curves, inequalities, plane tilings, origami, colorful proofs, three-dimensional geometry, etc. At the end of each chapter are some challenges that will draw the reader into the process of creating charming proofs. There are over 130 such challenges. Charming Proofs concludes with solutions to all of the challenges, references, and a complete index. As in the authors' previous books with the MAA (Math Made Visual and When Less Is More), secondary school and college and university teachers may wish to use some of the charming proofs in their classrooms to introduce their students to mathematical elegance. Some may wish to use the book as a supplement in an introductory course on proofs, mathematical reasoning, or problem solving."--Publisher's description. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Proof theory. |0 http://id.loc.gov/authorities/subjects/sh85107437 | |
650 | 6 | |a Théorie de la preuve. | |
650 | 7 | |a MATHEMATICS |x Infinity. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Logic. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x General. |2 bisacsh | |
650 | 7 | |a Proof theory |2 fast | |
700 | 1 | |a Nelsen, Roger B. | |
710 | 2 | |a Mathematical Association of America. |1 https://id.oclc.org/worldcat/entity/E39QH7JmqDJBjgC33TY3XfhMJt |0 http://id.loc.gov/authorities/names/n79105844 | |
776 | 0 | 8 | |i Print version: |a Alsina, Claudi. |t Charming proofs. |d Washington, DC : Mathematical Association of America, ©2010 |z 0883853485 |w (DLC) 2010927263 |w (OCoLC)653403625 |
830 | 0 | |a Dolciani mathematical expositions ; |v no. 42. |0 http://id.loc.gov/authorities/names/n42009859 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450277 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450277 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10728518 | ||
938 | |a EBSCOhost |b EBSC |n 450277 | ||
938 | |a YBP Library Services |b YANK |n 7292865 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn796675453 |
---|---|
_version_ | 1829094729447374848 |
adam_text | |
any_adam_object | |
author | Alsina, Claudi |
author2 | Nelsen, Roger B. |
author2_role | |
author2_variant | r b n rb rbn |
author_corporate | Mathematical Association of America |
author_corporate_role | |
author_facet | Alsina, Claudi Nelsen, Roger B. Mathematical Association of America |
author_role | |
author_sort | Alsina, Claudi |
author_variant | c a ca |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA9 |
callnumber-raw | QA9.54 .A57 2010 |
callnumber-search | QA9.54 .A57 2010 |
callnumber-sort | QA 19.54 A57 42010 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | A garden of integers -- Distinguished numbers -- Points in the plane -- The polygonal playground -- A treasury of triangle theorems -- The enchantment of the equilateral triangle -- The quadrilaterals' corner -- Squares everywhere -- Curves ahead -- Adventures in tiling and coloring -- Geometry in three dimensions -- Additional theorems, problems, and proofs. |
ctrlnum | (OCoLC)796675453 |
dewey-full | 511.3/6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/6 |
dewey-search | 511.3/6 |
dewey-sort | 3511.3 16 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05159cam a2200613 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn796675453</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">120625s2010 dcua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CUS</subfield><subfield code="d">YDXCP</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCF</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JSTOR</subfield><subfield code="d">WAU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">COCUF</subfield><subfield code="d">NRAMU</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">JBG</subfield><subfield code="d">ICG</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">015768700</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">961548335</subfield><subfield code="a">962604542</subfield><subfield code="a">988476215</subfield><subfield code="a">991924833</subfield><subfield code="a">1037922277</subfield><subfield code="a">1038606952</subfield><subfield code="a">1045480931</subfield><subfield code="a">1055363757</subfield><subfield code="a">1059001971</subfield><subfield code="a">1065926830</subfield><subfield code="a">1077227480</subfield><subfield code="a">1081278492</subfield><subfield code="a">1097102492</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781614442011</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1614442010</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0883853485</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780883853481</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)796675453</subfield><subfield code="z">(OCoLC)961548335</subfield><subfield code="z">(OCoLC)962604542</subfield><subfield code="z">(OCoLC)988476215</subfield><subfield code="z">(OCoLC)991924833</subfield><subfield code="z">(OCoLC)1037922277</subfield><subfield code="z">(OCoLC)1038606952</subfield><subfield code="z">(OCoLC)1045480931</subfield><subfield code="z">(OCoLC)1055363757</subfield><subfield code="z">(OCoLC)1059001971</subfield><subfield code="z">(OCoLC)1065926830</subfield><subfield code="z">(OCoLC)1077227480</subfield><subfield code="z">(OCoLC)1081278492</subfield><subfield code="z">(OCoLC)1097102492</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/ctt69txkn</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA9.54</subfield><subfield code="b">.A57 2010</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">016000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">018000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.3/6</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alsina, Claudi.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Charming proofs :</subfield><subfield code="b">a journey into elegant mathematics /</subfield><subfield code="c">Claudi Alsina, Roger B. Nelsen.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Washington, DC :</subfield><subfield code="b">Mathematical Association of America,</subfield><subfield code="c">©2010.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxiv, 295 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Dolciani mathematical expositions ;</subfield><subfield code="v">no. 42</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 275-287) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">A garden of integers -- Distinguished numbers -- Points in the plane -- The polygonal playground -- A treasury of triangle theorems -- The enchantment of the equilateral triangle -- The quadrilaterals' corner -- Squares everywhere -- Curves ahead -- Adventures in tiling and coloring -- Geometry in three dimensions -- Additional theorems, problems, and proofs.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Theorems and their proofs lie at the heart of mathematics. In speaking of the purely aesthetic qualities of theorems and proofs, G.H. Hardy wrote that in beautiful proofs 'there is a very high degree of unexpectedness, combined with inevitability and economy'. Charming Proofs present a collection of remarkable proofs in elementary mathematics that are exceptionally elegant, full of ingenuity, and succinct. By means of a surprising argument or a powerful visual representation, the proofs in this collection will invite readers to enjoy the beauty of mathematics, to share their discoveries with others, and to become involved in the process of creating new proofs. Charming Proofs is organized as follows. Following a short introduction about proofs and the process of creating proofs, the authors present, in twelve chapters, a wide and varied selection of proofs they consider charming, Topics include the integers, selected real numbers, points in the plane, triangles, squares, and other polygons, curves, inequalities, plane tilings, origami, colorful proofs, three-dimensional geometry, etc. At the end of each chapter are some challenges that will draw the reader into the process of creating charming proofs. There are over 130 such challenges. Charming Proofs concludes with solutions to all of the challenges, references, and a complete index. As in the authors' previous books with the MAA (Math Made Visual and When Less Is More), secondary school and college and university teachers may wish to use some of the charming proofs in their classrooms to introduce their students to mathematical elegance. Some may wish to use the book as a supplement in an introductory course on proofs, mathematical reasoning, or problem solving."--Publisher's description.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Proof theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85107437</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie de la preuve.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Infinity.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Logic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Proof theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nelsen, Roger B.</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Mathematical Association of America.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39QH7JmqDJBjgC33TY3XfhMJt</subfield><subfield code="0">http://id.loc.gov/authorities/names/n79105844</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Alsina, Claudi.</subfield><subfield code="t">Charming proofs.</subfield><subfield code="d">Washington, DC : Mathematical Association of America, ©2010</subfield><subfield code="z">0883853485</subfield><subfield code="w">(DLC) 2010927263</subfield><subfield code="w">(OCoLC)653403625</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Dolciani mathematical expositions ;</subfield><subfield code="v">no. 42.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42009859</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450277</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450277</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10728518</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">450277</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7292865</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn796675453 |
illustrated | Illustrated |
indexdate | 2025-04-11T08:37:45Z |
institution | BVB |
institution_GND | http://id.loc.gov/authorities/names/n79105844 |
isbn | 9781614442011 1614442010 |
language | English |
oclc_num | 796675453 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (xxiv, 295 pages) : illustrations |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Mathematical Association of America, |
record_format | marc |
series | Dolciani mathematical expositions ; |
series2 | Dolciani mathematical expositions ; |
spelling | Alsina, Claudi. Charming proofs : a journey into elegant mathematics / Claudi Alsina, Roger B. Nelsen. Washington, DC : Mathematical Association of America, ©2010. 1 online resource (xxiv, 295 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda Dolciani mathematical expositions ; no. 42 Includes bibliographical references (pages 275-287) and index. A garden of integers -- Distinguished numbers -- Points in the plane -- The polygonal playground -- A treasury of triangle theorems -- The enchantment of the equilateral triangle -- The quadrilaterals' corner -- Squares everywhere -- Curves ahead -- Adventures in tiling and coloring -- Geometry in three dimensions -- Additional theorems, problems, and proofs. "Theorems and their proofs lie at the heart of mathematics. In speaking of the purely aesthetic qualities of theorems and proofs, G.H. Hardy wrote that in beautiful proofs 'there is a very high degree of unexpectedness, combined with inevitability and economy'. Charming Proofs present a collection of remarkable proofs in elementary mathematics that are exceptionally elegant, full of ingenuity, and succinct. By means of a surprising argument or a powerful visual representation, the proofs in this collection will invite readers to enjoy the beauty of mathematics, to share their discoveries with others, and to become involved in the process of creating new proofs. Charming Proofs is organized as follows. Following a short introduction about proofs and the process of creating proofs, the authors present, in twelve chapters, a wide and varied selection of proofs they consider charming, Topics include the integers, selected real numbers, points in the plane, triangles, squares, and other polygons, curves, inequalities, plane tilings, origami, colorful proofs, three-dimensional geometry, etc. At the end of each chapter are some challenges that will draw the reader into the process of creating charming proofs. There are over 130 such challenges. Charming Proofs concludes with solutions to all of the challenges, references, and a complete index. As in the authors' previous books with the MAA (Math Made Visual and When Less Is More), secondary school and college and university teachers may wish to use some of the charming proofs in their classrooms to introduce their students to mathematical elegance. Some may wish to use the book as a supplement in an introductory course on proofs, mathematical reasoning, or problem solving."--Publisher's description. Print version record. Proof theory. http://id.loc.gov/authorities/subjects/sh85107437 Théorie de la preuve. MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh MATHEMATICS General. bisacsh Proof theory fast Nelsen, Roger B. Mathematical Association of America. https://id.oclc.org/worldcat/entity/E39QH7JmqDJBjgC33TY3XfhMJt http://id.loc.gov/authorities/names/n79105844 Print version: Alsina, Claudi. Charming proofs. Washington, DC : Mathematical Association of America, ©2010 0883853485 (DLC) 2010927263 (OCoLC)653403625 Dolciani mathematical expositions ; no. 42. http://id.loc.gov/authorities/names/n42009859 |
spellingShingle | Alsina, Claudi Charming proofs : a journey into elegant mathematics / Dolciani mathematical expositions ; A garden of integers -- Distinguished numbers -- Points in the plane -- The polygonal playground -- A treasury of triangle theorems -- The enchantment of the equilateral triangle -- The quadrilaterals' corner -- Squares everywhere -- Curves ahead -- Adventures in tiling and coloring -- Geometry in three dimensions -- Additional theorems, problems, and proofs. Proof theory. http://id.loc.gov/authorities/subjects/sh85107437 Théorie de la preuve. MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh MATHEMATICS General. bisacsh Proof theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85107437 |
title | Charming proofs : a journey into elegant mathematics / |
title_auth | Charming proofs : a journey into elegant mathematics / |
title_exact_search | Charming proofs : a journey into elegant mathematics / |
title_full | Charming proofs : a journey into elegant mathematics / Claudi Alsina, Roger B. Nelsen. |
title_fullStr | Charming proofs : a journey into elegant mathematics / Claudi Alsina, Roger B. Nelsen. |
title_full_unstemmed | Charming proofs : a journey into elegant mathematics / Claudi Alsina, Roger B. Nelsen. |
title_short | Charming proofs : |
title_sort | charming proofs a journey into elegant mathematics |
title_sub | a journey into elegant mathematics / |
topic | Proof theory. http://id.loc.gov/authorities/subjects/sh85107437 Théorie de la preuve. MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh MATHEMATICS General. bisacsh Proof theory fast |
topic_facet | Proof theory. Théorie de la preuve. MATHEMATICS Infinity. MATHEMATICS Logic. MATHEMATICS General. Proof theory |
work_keys_str_mv | AT alsinaclaudi charmingproofsajourneyintoelegantmathematics AT nelsenrogerb charmingproofsajourneyintoelegantmathematics AT mathematicalassociationofamerica charmingproofsajourneyintoelegantmathematics |