Topological Analysis :: From the Basics to the Triple Degree for Nonlinear Fredholm Inclusions.
This monograph is an introduction to some special aspects of topology, functional analysis, and analysis for the advanced reader. It also wants to develop a degree theory for function triples which unifies and extends most known degree theories. The book aims to be self-contained and many chapters c...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin :
De Gruyter,
2012.
|
Schriftenreihe: | De Gruyter series in nonlinear analysis and applications.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This monograph is an introduction to some special aspects of topology, functional analysis, and analysis for the advanced reader. It also wants to develop a degree theory for function triples which unifies and extends most known degree theories. The book aims to be self-contained and many chapters could even serve as a basis of a course on the covered topics. Only knowledge in basic calculus and of linear algebra is assumed. |
Beschreibung: | 1 online resource (500 pages) |
Bibliographie: | Includes bibliographical references and indexes. |
ISBN: | 9783110277340 3110277344 9783110277333 3110277336 1283857944 9781283857949 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn796384299 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 120625s2012 gw ob 001 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d OCLCO |d DEBSZ |d MBB |d OCLCO |d OCLCQ |d OCLCO |d OCLCF |d YDXCP |d E7B |d CDX |d N$T |d IDEBK |d HEBIS |d S3O |d OCLCQ |d AGLDB |d MOR |d PIFAG |d VGM |d ZCU |d OCLCQ |d MERUC |d OCLCQ |d DEGRU |d U3W |d COCUF |d STF |d OCLCQ |d VTS |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d OCLCO |d TKN |d OCLCQ |d LEAUB |d DKC |d OCLCQ |d AU@ |d M8D |d UKAHL |d OCLCQ |d K6U |d UKCRE |d U9X |d AUD |d OCLCQ |d QGK |d OCLCO |d OCLCQ |d OCLCO |d SFB |d OCLCL | ||
016 | 7 | |a 016102265 |2 Uk | |
019 | |a 804049067 |a 961580747 |a 962717661 |a 988500875 |a 992003766 |a 1037705760 |a 1038599521 |a 1055332966 |a 1059006151 |a 1065702693 |a 1081241829 |a 1086900516 |a 1097120333 |a 1152980028 |a 1153518515 |a 1228561537 |a 1259099121 |a 1264899662 | ||
020 | |a 9783110277340 | ||
020 | |a 3110277344 | ||
020 | |a 9783110277333 | ||
020 | |a 3110277336 | ||
020 | |a 1283857944 | ||
020 | |a 9781283857949 | ||
020 | |z 9783110277227 |q (hardcover ; |q alk. paper) | ||
020 | |z 3110277220 |q (hardcover ; |q alk. paper) | ||
024 | 7 | |a 10.1515/9783110277333 |2 doi | |
035 | |a (OCoLC)796384299 |z (OCoLC)804049067 |z (OCoLC)961580747 |z (OCoLC)962717661 |z (OCoLC)988500875 |z (OCoLC)992003766 |z (OCoLC)1037705760 |z (OCoLC)1038599521 |z (OCoLC)1055332966 |z (OCoLC)1059006151 |z (OCoLC)1065702693 |z (OCoLC)1081241829 |z (OCoLC)1086900516 |z (OCoLC)1097120333 |z (OCoLC)1152980028 |z (OCoLC)1153518515 |z (OCoLC)1228561537 |z (OCoLC)1259099121 |z (OCoLC)1264899662 | ||
050 | 4 | |a QA612 .V38 2012 | |
072 | 7 | |a QA |2 lcco | |
072 | 7 | |a MAT |x 037000 |2 bisacsh | |
082 | 7 | |a 515.724 |a 515/.724 | |
084 | |a SK 280 |2 rvk | ||
084 | |a SK 620 |2 rvk |0 (DE-625)rvk/143249: | ||
049 | |a MAIN | ||
100 | 1 | |a Väth, Martin. | |
245 | 1 | 0 | |a Topological Analysis : |b From the Basics to the Triple Degree for Nonlinear Fredholm Inclusions. |
260 | |a Berlin : |b De Gruyter, |c 2012. | ||
300 | |a 1 online resource (500 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter Series in Nonlinear Analysis and Applications ; |v v. 16 | |
588 | 0 | |a Print version record. | |
505 | 0 | |a Preface; 1 Introduction; I Topology and Multivalued Maps; 2 Multivalued Maps; 2.1 Notations for Multivalued Maps and Axioms; 2.1.1 Notations; 2.1.2 Axioms; 2.2 Topological Notations and Basic Results; 2.3 Separation Axioms; 2.4 Upper Semicontinuous Multivalued Maps; 2.5 Closed and Proper Maps; 2.6 Coincidence Point Sets and Closed Graphs; 3 Metric Spaces; 3.1 Notations and Basic Results for Metric Spaces; 3.2 Three Measures of Noncompactness; 3.3 Condensing Maps; 3.4 Convexity; 3.5 Two Embedding Theorems for Metric Spaces; 3.6 Some Old and New Extension Theorems for Metric Spaces. | |
505 | 8 | |a 4 Spaces Defined by Extensions, Retractions, or Homotopies4.1 AE and ANE Spaces; 4.2 ANR and AR Spaces; 4.3 Extension of Compact Maps and of Homotopies; 4.4 UV8 and Rd Spaces and Homotopic Characterizations; 5 Advanced Topological Tools; 5.1 Some Covering Space Theory; 5.2 A Glimpse on Dimension Theory; 5.3 Vietoris Maps; II Coincidence Degree for Fredholm Maps; 6 Some Functional Analysis; 6.1 Bounded Linear Operators and Projections; 6.2 Linear Fredholm Operators; 7 Orientation of Families of Linear Fredholm Operators; 7.1 Orientation of a Linear Fredholm Operator. | |
505 | 8 | |a 7.2 Orientation of a Continuous Family7.3 Orientation of a Family in Banach Bundles; 8 Some Nonlinear Analysis; 8.1 The Pointwise Inverse and Implicit Function Theorems; 8.2 Oriented Nonlinear Fredholm Maps; 8.3 Oriented Fredholm Maps in Banach Manifolds; 8.4 A Partial Implicit Function Theorem in Banach Manifolds; 8.5 Transversal Submanifolds; 8.6 Parameter-Dependent Transversality and Partial Submanifolds; 8.7 Orientation on Submanifolds and on Partial Submanifolds; 8.8 Existence of Transversal Submanifolds; 8.9 Properness of Fredholm Maps; 9 The Brouwer Degree. | |
505 | 8 | |a 9.1 Finite-Dimensional Manifolds9.2 Orientation of Continuous Maps and of Manifolds; 9.3 The Cr Brouwer Degree; 9.4 Uniqueness of the Brouwer Degree; 9.5 Existence of the Brouwer Degree; 9.6 Some Classical Applications of the Brouwer Degree; 10 The Benevieri-Furi Degrees; 10.1 Further Properties of the Brouwer Degree; 10.2 The Benevieri-Furi C1 Degree; 10.3 The Benevieri-Furi Coincidence Degree; III Degree Theory for Function Triples; 11 Function Triples; 11.1 Function Triples and Their Equivalences; 11.2 The Simplifier Property; 11.3 Homotopies of Triples; 11.4 Locally Normal Triples. | |
505 | 8 | |a 12 The Degree for Finite-Dimensional Fredholm Triples12.1 The Triple Variant of the Brouwer Degree; 12.2 The Triple Variant of the Benevieri-Furi Degree; 13 The Degree for Compact Fredholm Triples; 13.1 The Leray-Schauder Triple Degree; 13.2 The Leray-Schauder Coincidence Degree; 13.3 Classical Applications of the Leray-Schauder Degree; 14 The Degree for Noncompact Fredholm Triples; 14.1 The Degree for Fredholm Triples with Fundamental Sets; 14.2 Homotopic Tests for Fundamental Sets; 14.3 The Degree for Fredholm Triples with Convex-fundamental Sets; 14.4 Countably Condensing Triples. | |
520 | |a This monograph is an introduction to some special aspects of topology, functional analysis, and analysis for the advanced reader. It also wants to develop a degree theory for function triples which unifies and extends most known degree theories. The book aims to be self-contained and many chapters could even serve as a basis of a course on the covered topics. Only knowledge in basic calculus and of linear algebra is assumed. | ||
504 | |a Includes bibliographical references and indexes. | ||
546 | |a English. | ||
650 | 0 | |a Topological degree. |0 http://id.loc.gov/authorities/subjects/sh85036478 | |
650 | 0 | |a Topological spaces. |0 http://id.loc.gov/authorities/subjects/sh85136087 | |
650 | 0 | |a Fredholm operators. |0 http://id.loc.gov/authorities/subjects/sh85051649 | |
650 | 0 | |a Algebraic topology. |0 http://id.loc.gov/authorities/subjects/sh85003438 | |
650 | 6 | |a Degré topologique. | |
650 | 6 | |a Espaces topologiques. | |
650 | 6 | |a Opérateurs de Fredholm. | |
650 | 6 | |a Topologie algébrique. | |
650 | 7 | |a MATHEMATICS |x Functional Analysis. |2 bisacsh | |
650 | 7 | |a Algebraic topology |2 fast | |
650 | 7 | |a Fredholm operators |2 fast | |
650 | 7 | |a Topological degree |2 fast | |
650 | 7 | |a Topological spaces |2 fast | |
650 | 7 | |a Analysis |2 gnd |0 http://d-nb.info/gnd/4001865-9 | |
650 | 7 | |a Topologische Methode |2 gnd |0 http://d-nb.info/gnd/4312758-7 | |
653 | |a Analysis. | ||
653 | |a Banach Manifold. | ||
653 | |a Fredholm. | ||
653 | |a Hahn-Banach Theorem. | ||
653 | |a Implicit Function Theorem. | ||
653 | |a Inverse Function Theorem. | ||
653 | |a Linear Functional Analysis. | ||
653 | |a Multivalued Map. | ||
653 | |a Nonlinear Functional Analysis. | ||
653 | |a Nonlinear Inclusion. | ||
653 | |a Separation Axiom. | ||
653 | |a Topology. | ||
653 | |a Triple Degree. | ||
758 | |i has work: |a Topological analysis (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFyRtqfKDqXYqXxvjyrxrC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Väth, Martin. |t Topological Analysis : From the Basics to the Triple Degree for Nonlinear Fredholm Inclusions. |d Berlin : De Gruyter, ©2012 |z 9783110277227 |
830 | 0 | |a De Gruyter series in nonlinear analysis and applications. |0 http://id.loc.gov/authorities/names/n92047842 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=471031 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH25312359 | ||
938 | |a Coutts Information Services |b COUT |n 24364364 |c 168.00 USD | ||
938 | |a De Gruyter |b DEGR |n 9783110277333 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL893992 | ||
938 | |a ebrary |b EBRY |n ebr10582196 | ||
938 | |a EBSCOhost |b EBSC |n 471031 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis24364364 | ||
938 | |a YBP Library Services |b YANK |n 7624799 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn796384299 |
---|---|
_version_ | 1816881800250654720 |
adam_text | |
any_adam_object | |
author | Väth, Martin |
author_facet | Väth, Martin |
author_role | |
author_sort | Väth, Martin |
author_variant | m v mv |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA612 |
callnumber-raw | QA612 .V38 2012 |
callnumber-search | QA612 .V38 2012 |
callnumber-sort | QA 3612 V38 42012 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 280 SK 620 |
collection | ZDB-4-EBA |
contents | Preface; 1 Introduction; I Topology and Multivalued Maps; 2 Multivalued Maps; 2.1 Notations for Multivalued Maps and Axioms; 2.1.1 Notations; 2.1.2 Axioms; 2.2 Topological Notations and Basic Results; 2.3 Separation Axioms; 2.4 Upper Semicontinuous Multivalued Maps; 2.5 Closed and Proper Maps; 2.6 Coincidence Point Sets and Closed Graphs; 3 Metric Spaces; 3.1 Notations and Basic Results for Metric Spaces; 3.2 Three Measures of Noncompactness; 3.3 Condensing Maps; 3.4 Convexity; 3.5 Two Embedding Theorems for Metric Spaces; 3.6 Some Old and New Extension Theorems for Metric Spaces. 4 Spaces Defined by Extensions, Retractions, or Homotopies4.1 AE and ANE Spaces; 4.2 ANR and AR Spaces; 4.3 Extension of Compact Maps and of Homotopies; 4.4 UV8 and Rd Spaces and Homotopic Characterizations; 5 Advanced Topological Tools; 5.1 Some Covering Space Theory; 5.2 A Glimpse on Dimension Theory; 5.3 Vietoris Maps; II Coincidence Degree for Fredholm Maps; 6 Some Functional Analysis; 6.1 Bounded Linear Operators and Projections; 6.2 Linear Fredholm Operators; 7 Orientation of Families of Linear Fredholm Operators; 7.1 Orientation of a Linear Fredholm Operator. 7.2 Orientation of a Continuous Family7.3 Orientation of a Family in Banach Bundles; 8 Some Nonlinear Analysis; 8.1 The Pointwise Inverse and Implicit Function Theorems; 8.2 Oriented Nonlinear Fredholm Maps; 8.3 Oriented Fredholm Maps in Banach Manifolds; 8.4 A Partial Implicit Function Theorem in Banach Manifolds; 8.5 Transversal Submanifolds; 8.6 Parameter-Dependent Transversality and Partial Submanifolds; 8.7 Orientation on Submanifolds and on Partial Submanifolds; 8.8 Existence of Transversal Submanifolds; 8.9 Properness of Fredholm Maps; 9 The Brouwer Degree. 9.1 Finite-Dimensional Manifolds9.2 Orientation of Continuous Maps and of Manifolds; 9.3 The Cr Brouwer Degree; 9.4 Uniqueness of the Brouwer Degree; 9.5 Existence of the Brouwer Degree; 9.6 Some Classical Applications of the Brouwer Degree; 10 The Benevieri-Furi Degrees; 10.1 Further Properties of the Brouwer Degree; 10.2 The Benevieri-Furi C1 Degree; 10.3 The Benevieri-Furi Coincidence Degree; III Degree Theory for Function Triples; 11 Function Triples; 11.1 Function Triples and Their Equivalences; 11.2 The Simplifier Property; 11.3 Homotopies of Triples; 11.4 Locally Normal Triples. 12 The Degree for Finite-Dimensional Fredholm Triples12.1 The Triple Variant of the Brouwer Degree; 12.2 The Triple Variant of the Benevieri-Furi Degree; 13 The Degree for Compact Fredholm Triples; 13.1 The Leray-Schauder Triple Degree; 13.2 The Leray-Schauder Coincidence Degree; 13.3 Classical Applications of the Leray-Schauder Degree; 14 The Degree for Noncompact Fredholm Triples; 14.1 The Degree for Fredholm Triples with Fundamental Sets; 14.2 Homotopic Tests for Fundamental Sets; 14.3 The Degree for Fredholm Triples with Convex-fundamental Sets; 14.4 Countably Condensing Triples. |
ctrlnum | (OCoLC)796384299 |
dewey-full | 515.724 515/.724 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.724 515/.724 |
dewey-search | 515.724 515/.724 |
dewey-sort | 3515.724 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08177cam a2201045 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn796384299</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">120625s2012 gw ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">MBB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">E7B</subfield><subfield code="d">CDX</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">HEBIS</subfield><subfield code="d">S3O</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">VGM</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEGRU</subfield><subfield code="d">U3W</subfield><subfield code="d">COCUF</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">UKCRE</subfield><subfield code="d">U9X</subfield><subfield code="d">AUD</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">016102265</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">804049067</subfield><subfield code="a">961580747</subfield><subfield code="a">962717661</subfield><subfield code="a">988500875</subfield><subfield code="a">992003766</subfield><subfield code="a">1037705760</subfield><subfield code="a">1038599521</subfield><subfield code="a">1055332966</subfield><subfield code="a">1059006151</subfield><subfield code="a">1065702693</subfield><subfield code="a">1081241829</subfield><subfield code="a">1086900516</subfield><subfield code="a">1097120333</subfield><subfield code="a">1152980028</subfield><subfield code="a">1153518515</subfield><subfield code="a">1228561537</subfield><subfield code="a">1259099121</subfield><subfield code="a">1264899662</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110277340</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110277344</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110277333</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110277336</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283857944</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283857949</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110277227</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110277220</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110277333</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)796384299</subfield><subfield code="z">(OCoLC)804049067</subfield><subfield code="z">(OCoLC)961580747</subfield><subfield code="z">(OCoLC)962717661</subfield><subfield code="z">(OCoLC)988500875</subfield><subfield code="z">(OCoLC)992003766</subfield><subfield code="z">(OCoLC)1037705760</subfield><subfield code="z">(OCoLC)1038599521</subfield><subfield code="z">(OCoLC)1055332966</subfield><subfield code="z">(OCoLC)1059006151</subfield><subfield code="z">(OCoLC)1065702693</subfield><subfield code="z">(OCoLC)1081241829</subfield><subfield code="z">(OCoLC)1086900516</subfield><subfield code="z">(OCoLC)1097120333</subfield><subfield code="z">(OCoLC)1152980028</subfield><subfield code="z">(OCoLC)1153518515</subfield><subfield code="z">(OCoLC)1228561537</subfield><subfield code="z">(OCoLC)1259099121</subfield><subfield code="z">(OCoLC)1264899662</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA612 .V38 2012</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">QA</subfield><subfield code="2">lcco</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">037000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.724</subfield><subfield code="a">515/.724</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 280</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="2">rvk</subfield><subfield code="0">(DE-625)rvk/143249:</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Väth, Martin.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topological Analysis :</subfield><subfield code="b">From the Basics to the Triple Degree for Nonlinear Fredholm Inclusions.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (500 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter Series in Nonlinear Analysis and Applications ;</subfield><subfield code="v">v. 16</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface; 1 Introduction; I Topology and Multivalued Maps; 2 Multivalued Maps; 2.1 Notations for Multivalued Maps and Axioms; 2.1.1 Notations; 2.1.2 Axioms; 2.2 Topological Notations and Basic Results; 2.3 Separation Axioms; 2.4 Upper Semicontinuous Multivalued Maps; 2.5 Closed and Proper Maps; 2.6 Coincidence Point Sets and Closed Graphs; 3 Metric Spaces; 3.1 Notations and Basic Results for Metric Spaces; 3.2 Three Measures of Noncompactness; 3.3 Condensing Maps; 3.4 Convexity; 3.5 Two Embedding Theorems for Metric Spaces; 3.6 Some Old and New Extension Theorems for Metric Spaces.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4 Spaces Defined by Extensions, Retractions, or Homotopies4.1 AE and ANE Spaces; 4.2 ANR and AR Spaces; 4.3 Extension of Compact Maps and of Homotopies; 4.4 UV8 and Rd Spaces and Homotopic Characterizations; 5 Advanced Topological Tools; 5.1 Some Covering Space Theory; 5.2 A Glimpse on Dimension Theory; 5.3 Vietoris Maps; II Coincidence Degree for Fredholm Maps; 6 Some Functional Analysis; 6.1 Bounded Linear Operators and Projections; 6.2 Linear Fredholm Operators; 7 Orientation of Families of Linear Fredholm Operators; 7.1 Orientation of a Linear Fredholm Operator.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.2 Orientation of a Continuous Family7.3 Orientation of a Family in Banach Bundles; 8 Some Nonlinear Analysis; 8.1 The Pointwise Inverse and Implicit Function Theorems; 8.2 Oriented Nonlinear Fredholm Maps; 8.3 Oriented Fredholm Maps in Banach Manifolds; 8.4 A Partial Implicit Function Theorem in Banach Manifolds; 8.5 Transversal Submanifolds; 8.6 Parameter-Dependent Transversality and Partial Submanifolds; 8.7 Orientation on Submanifolds and on Partial Submanifolds; 8.8 Existence of Transversal Submanifolds; 8.9 Properness of Fredholm Maps; 9 The Brouwer Degree.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.1 Finite-Dimensional Manifolds9.2 Orientation of Continuous Maps and of Manifolds; 9.3 The Cr Brouwer Degree; 9.4 Uniqueness of the Brouwer Degree; 9.5 Existence of the Brouwer Degree; 9.6 Some Classical Applications of the Brouwer Degree; 10 The Benevieri-Furi Degrees; 10.1 Further Properties of the Brouwer Degree; 10.2 The Benevieri-Furi C1 Degree; 10.3 The Benevieri-Furi Coincidence Degree; III Degree Theory for Function Triples; 11 Function Triples; 11.1 Function Triples and Their Equivalences; 11.2 The Simplifier Property; 11.3 Homotopies of Triples; 11.4 Locally Normal Triples.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12 The Degree for Finite-Dimensional Fredholm Triples12.1 The Triple Variant of the Brouwer Degree; 12.2 The Triple Variant of the Benevieri-Furi Degree; 13 The Degree for Compact Fredholm Triples; 13.1 The Leray-Schauder Triple Degree; 13.2 The Leray-Schauder Coincidence Degree; 13.3 Classical Applications of the Leray-Schauder Degree; 14 The Degree for Noncompact Fredholm Triples; 14.1 The Degree for Fredholm Triples with Fundamental Sets; 14.2 Homotopic Tests for Fundamental Sets; 14.3 The Degree for Fredholm Triples with Convex-fundamental Sets; 14.4 Countably Condensing Triples.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This monograph is an introduction to some special aspects of topology, functional analysis, and analysis for the advanced reader. It also wants to develop a degree theory for function triples which unifies and extends most known degree theories. The book aims to be self-contained and many chapters could even serve as a basis of a course on the covered topics. Only knowledge in basic calculus and of linear algebra is assumed.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Topological degree.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85036478</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Topological spaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85136087</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fredholm operators.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85051649</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algebraic topology.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85003438</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Degré topologique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces topologiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Opérateurs de Fredholm.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Topologie algébrique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Functional Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraic topology</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fredholm operators</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topological degree</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topological spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analysis</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4001865-9</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topologische Methode</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4312758-7</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Analysis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Banach Manifold.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fredholm.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hahn-Banach Theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Implicit Function Theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Inverse Function Theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Linear Functional Analysis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Multivalued Map.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Nonlinear Functional Analysis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Nonlinear Inclusion.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Separation Axiom.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Topology.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Triple Degree.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Topological analysis (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFyRtqfKDqXYqXxvjyrxrC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Väth, Martin.</subfield><subfield code="t">Topological Analysis : From the Basics to the Triple Degree for Nonlinear Fredholm Inclusions.</subfield><subfield code="d">Berlin : De Gruyter, ©2012</subfield><subfield code="z">9783110277227</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter series in nonlinear analysis and applications.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n92047842</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=471031</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25312359</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">24364364</subfield><subfield code="c">168.00 USD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110277333</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL893992</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10582196</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">471031</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis24364364</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7624799</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn796384299 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:18:27Z |
institution | BVB |
isbn | 9783110277340 3110277344 9783110277333 3110277336 1283857944 9781283857949 |
language | English |
oclc_num | 796384299 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (500 pages) |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | De Gruyter, |
record_format | marc |
series | De Gruyter series in nonlinear analysis and applications. |
series2 | De Gruyter Series in Nonlinear Analysis and Applications ; |
spelling | Väth, Martin. Topological Analysis : From the Basics to the Triple Degree for Nonlinear Fredholm Inclusions. Berlin : De Gruyter, 2012. 1 online resource (500 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier De Gruyter Series in Nonlinear Analysis and Applications ; v. 16 Print version record. Preface; 1 Introduction; I Topology and Multivalued Maps; 2 Multivalued Maps; 2.1 Notations for Multivalued Maps and Axioms; 2.1.1 Notations; 2.1.2 Axioms; 2.2 Topological Notations and Basic Results; 2.3 Separation Axioms; 2.4 Upper Semicontinuous Multivalued Maps; 2.5 Closed and Proper Maps; 2.6 Coincidence Point Sets and Closed Graphs; 3 Metric Spaces; 3.1 Notations and Basic Results for Metric Spaces; 3.2 Three Measures of Noncompactness; 3.3 Condensing Maps; 3.4 Convexity; 3.5 Two Embedding Theorems for Metric Spaces; 3.6 Some Old and New Extension Theorems for Metric Spaces. 4 Spaces Defined by Extensions, Retractions, or Homotopies4.1 AE and ANE Spaces; 4.2 ANR and AR Spaces; 4.3 Extension of Compact Maps and of Homotopies; 4.4 UV8 and Rd Spaces and Homotopic Characterizations; 5 Advanced Topological Tools; 5.1 Some Covering Space Theory; 5.2 A Glimpse on Dimension Theory; 5.3 Vietoris Maps; II Coincidence Degree for Fredholm Maps; 6 Some Functional Analysis; 6.1 Bounded Linear Operators and Projections; 6.2 Linear Fredholm Operators; 7 Orientation of Families of Linear Fredholm Operators; 7.1 Orientation of a Linear Fredholm Operator. 7.2 Orientation of a Continuous Family7.3 Orientation of a Family in Banach Bundles; 8 Some Nonlinear Analysis; 8.1 The Pointwise Inverse and Implicit Function Theorems; 8.2 Oriented Nonlinear Fredholm Maps; 8.3 Oriented Fredholm Maps in Banach Manifolds; 8.4 A Partial Implicit Function Theorem in Banach Manifolds; 8.5 Transversal Submanifolds; 8.6 Parameter-Dependent Transversality and Partial Submanifolds; 8.7 Orientation on Submanifolds and on Partial Submanifolds; 8.8 Existence of Transversal Submanifolds; 8.9 Properness of Fredholm Maps; 9 The Brouwer Degree. 9.1 Finite-Dimensional Manifolds9.2 Orientation of Continuous Maps and of Manifolds; 9.3 The Cr Brouwer Degree; 9.4 Uniqueness of the Brouwer Degree; 9.5 Existence of the Brouwer Degree; 9.6 Some Classical Applications of the Brouwer Degree; 10 The Benevieri-Furi Degrees; 10.1 Further Properties of the Brouwer Degree; 10.2 The Benevieri-Furi C1 Degree; 10.3 The Benevieri-Furi Coincidence Degree; III Degree Theory for Function Triples; 11 Function Triples; 11.1 Function Triples and Their Equivalences; 11.2 The Simplifier Property; 11.3 Homotopies of Triples; 11.4 Locally Normal Triples. 12 The Degree for Finite-Dimensional Fredholm Triples12.1 The Triple Variant of the Brouwer Degree; 12.2 The Triple Variant of the Benevieri-Furi Degree; 13 The Degree for Compact Fredholm Triples; 13.1 The Leray-Schauder Triple Degree; 13.2 The Leray-Schauder Coincidence Degree; 13.3 Classical Applications of the Leray-Schauder Degree; 14 The Degree for Noncompact Fredholm Triples; 14.1 The Degree for Fredholm Triples with Fundamental Sets; 14.2 Homotopic Tests for Fundamental Sets; 14.3 The Degree for Fredholm Triples with Convex-fundamental Sets; 14.4 Countably Condensing Triples. This monograph is an introduction to some special aspects of topology, functional analysis, and analysis for the advanced reader. It also wants to develop a degree theory for function triples which unifies and extends most known degree theories. The book aims to be self-contained and many chapters could even serve as a basis of a course on the covered topics. Only knowledge in basic calculus and of linear algebra is assumed. Includes bibliographical references and indexes. English. Topological degree. http://id.loc.gov/authorities/subjects/sh85036478 Topological spaces. http://id.loc.gov/authorities/subjects/sh85136087 Fredholm operators. http://id.loc.gov/authorities/subjects/sh85051649 Algebraic topology. http://id.loc.gov/authorities/subjects/sh85003438 Degré topologique. Espaces topologiques. Opérateurs de Fredholm. Topologie algébrique. MATHEMATICS Functional Analysis. bisacsh Algebraic topology fast Fredholm operators fast Topological degree fast Topological spaces fast Analysis gnd http://d-nb.info/gnd/4001865-9 Topologische Methode gnd http://d-nb.info/gnd/4312758-7 Analysis. Banach Manifold. Fredholm. Hahn-Banach Theorem. Implicit Function Theorem. Inverse Function Theorem. Linear Functional Analysis. Multivalued Map. Nonlinear Functional Analysis. Nonlinear Inclusion. Separation Axiom. Topology. Triple Degree. has work: Topological analysis (Text) https://id.oclc.org/worldcat/entity/E39PCFyRtqfKDqXYqXxvjyrxrC https://id.oclc.org/worldcat/ontology/hasWork Print version: Väth, Martin. Topological Analysis : From the Basics to the Triple Degree for Nonlinear Fredholm Inclusions. Berlin : De Gruyter, ©2012 9783110277227 De Gruyter series in nonlinear analysis and applications. http://id.loc.gov/authorities/names/n92047842 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=471031 Volltext |
spellingShingle | Väth, Martin Topological Analysis : From the Basics to the Triple Degree for Nonlinear Fredholm Inclusions. De Gruyter series in nonlinear analysis and applications. Preface; 1 Introduction; I Topology and Multivalued Maps; 2 Multivalued Maps; 2.1 Notations for Multivalued Maps and Axioms; 2.1.1 Notations; 2.1.2 Axioms; 2.2 Topological Notations and Basic Results; 2.3 Separation Axioms; 2.4 Upper Semicontinuous Multivalued Maps; 2.5 Closed and Proper Maps; 2.6 Coincidence Point Sets and Closed Graphs; 3 Metric Spaces; 3.1 Notations and Basic Results for Metric Spaces; 3.2 Three Measures of Noncompactness; 3.3 Condensing Maps; 3.4 Convexity; 3.5 Two Embedding Theorems for Metric Spaces; 3.6 Some Old and New Extension Theorems for Metric Spaces. 4 Spaces Defined by Extensions, Retractions, or Homotopies4.1 AE and ANE Spaces; 4.2 ANR and AR Spaces; 4.3 Extension of Compact Maps and of Homotopies; 4.4 UV8 and Rd Spaces and Homotopic Characterizations; 5 Advanced Topological Tools; 5.1 Some Covering Space Theory; 5.2 A Glimpse on Dimension Theory; 5.3 Vietoris Maps; II Coincidence Degree for Fredholm Maps; 6 Some Functional Analysis; 6.1 Bounded Linear Operators and Projections; 6.2 Linear Fredholm Operators; 7 Orientation of Families of Linear Fredholm Operators; 7.1 Orientation of a Linear Fredholm Operator. 7.2 Orientation of a Continuous Family7.3 Orientation of a Family in Banach Bundles; 8 Some Nonlinear Analysis; 8.1 The Pointwise Inverse and Implicit Function Theorems; 8.2 Oriented Nonlinear Fredholm Maps; 8.3 Oriented Fredholm Maps in Banach Manifolds; 8.4 A Partial Implicit Function Theorem in Banach Manifolds; 8.5 Transversal Submanifolds; 8.6 Parameter-Dependent Transversality and Partial Submanifolds; 8.7 Orientation on Submanifolds and on Partial Submanifolds; 8.8 Existence of Transversal Submanifolds; 8.9 Properness of Fredholm Maps; 9 The Brouwer Degree. 9.1 Finite-Dimensional Manifolds9.2 Orientation of Continuous Maps and of Manifolds; 9.3 The Cr Brouwer Degree; 9.4 Uniqueness of the Brouwer Degree; 9.5 Existence of the Brouwer Degree; 9.6 Some Classical Applications of the Brouwer Degree; 10 The Benevieri-Furi Degrees; 10.1 Further Properties of the Brouwer Degree; 10.2 The Benevieri-Furi C1 Degree; 10.3 The Benevieri-Furi Coincidence Degree; III Degree Theory for Function Triples; 11 Function Triples; 11.1 Function Triples and Their Equivalences; 11.2 The Simplifier Property; 11.3 Homotopies of Triples; 11.4 Locally Normal Triples. 12 The Degree for Finite-Dimensional Fredholm Triples12.1 The Triple Variant of the Brouwer Degree; 12.2 The Triple Variant of the Benevieri-Furi Degree; 13 The Degree for Compact Fredholm Triples; 13.1 The Leray-Schauder Triple Degree; 13.2 The Leray-Schauder Coincidence Degree; 13.3 Classical Applications of the Leray-Schauder Degree; 14 The Degree for Noncompact Fredholm Triples; 14.1 The Degree for Fredholm Triples with Fundamental Sets; 14.2 Homotopic Tests for Fundamental Sets; 14.3 The Degree for Fredholm Triples with Convex-fundamental Sets; 14.4 Countably Condensing Triples. Topological degree. http://id.loc.gov/authorities/subjects/sh85036478 Topological spaces. http://id.loc.gov/authorities/subjects/sh85136087 Fredholm operators. http://id.loc.gov/authorities/subjects/sh85051649 Algebraic topology. http://id.loc.gov/authorities/subjects/sh85003438 Degré topologique. Espaces topologiques. Opérateurs de Fredholm. Topologie algébrique. MATHEMATICS Functional Analysis. bisacsh Algebraic topology fast Fredholm operators fast Topological degree fast Topological spaces fast Analysis gnd http://d-nb.info/gnd/4001865-9 Topologische Methode gnd http://d-nb.info/gnd/4312758-7 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85036478 http://id.loc.gov/authorities/subjects/sh85136087 http://id.loc.gov/authorities/subjects/sh85051649 http://id.loc.gov/authorities/subjects/sh85003438 http://d-nb.info/gnd/4001865-9 http://d-nb.info/gnd/4312758-7 |
title | Topological Analysis : From the Basics to the Triple Degree for Nonlinear Fredholm Inclusions. |
title_auth | Topological Analysis : From the Basics to the Triple Degree for Nonlinear Fredholm Inclusions. |
title_exact_search | Topological Analysis : From the Basics to the Triple Degree for Nonlinear Fredholm Inclusions. |
title_full | Topological Analysis : From the Basics to the Triple Degree for Nonlinear Fredholm Inclusions. |
title_fullStr | Topological Analysis : From the Basics to the Triple Degree for Nonlinear Fredholm Inclusions. |
title_full_unstemmed | Topological Analysis : From the Basics to the Triple Degree for Nonlinear Fredholm Inclusions. |
title_short | Topological Analysis : |
title_sort | topological analysis from the basics to the triple degree for nonlinear fredholm inclusions |
title_sub | From the Basics to the Triple Degree for Nonlinear Fredholm Inclusions. |
topic | Topological degree. http://id.loc.gov/authorities/subjects/sh85036478 Topological spaces. http://id.loc.gov/authorities/subjects/sh85136087 Fredholm operators. http://id.loc.gov/authorities/subjects/sh85051649 Algebraic topology. http://id.loc.gov/authorities/subjects/sh85003438 Degré topologique. Espaces topologiques. Opérateurs de Fredholm. Topologie algébrique. MATHEMATICS Functional Analysis. bisacsh Algebraic topology fast Fredholm operators fast Topological degree fast Topological spaces fast Analysis gnd http://d-nb.info/gnd/4001865-9 Topologische Methode gnd http://d-nb.info/gnd/4312758-7 |
topic_facet | Topological degree. Topological spaces. Fredholm operators. Algebraic topology. Degré topologique. Espaces topologiques. Opérateurs de Fredholm. Topologie algébrique. MATHEMATICS Functional Analysis. Algebraic topology Fredholm operators Topological degree Topological spaces Analysis Topologische Methode |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=471031 |
work_keys_str_mv | AT vathmartin topologicalanalysisfromthebasicstothetripledegreefornonlinearfredholminclusions |