Nonlinear Perron-Frobenius theory /:
In the past several decades the classical Perron-Frobenius theory for nonnegative matrices has been extended to obtain remarkably precise and beautiful results for classes of nonlinear maps. This nonlinear Perron-Frobenius theory has found significant uses in computer science, mathematical biology,...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2012.
|
Schriftenreihe: | Cambridge tracts in mathematics ;
189. |
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | In the past several decades the classical Perron-Frobenius theory for nonnegative matrices has been extended to obtain remarkably precise and beautiful results for classes of nonlinear maps. This nonlinear Perron-Frobenius theory has found significant uses in computer science, mathematical biology, game theory and the study of dynamical systems. This is the first comprehensive and unified introduction to nonlinear Perron-Frobenius theory suitable for graduate students and researchers entering the field for the first time. It acquaints the reader with recent developments and provides a guide to challenging open problems. To enhance accessibility, the focus is on finite dimensional nonlinear Perron-Frobenius theory, but pointers are provided to infinite dimensional results. Prerequisites are little more than basic real analysis and topology. |
Beschreibung: | Title from publishers bibliographic system (viewed 09 May 2012). |
Beschreibung: | 1 online resource (xii, 323 pages) : illustrations, tables |
Bibliographie: | Includes chapter notes and comments, bibliographical references (pages 307-318), list of symbols, and index. |
ISBN: | 9781139026079 1139026070 9780521898812 0521898811 1280877952 9781280877957 9781139376822 1139376829 9781139379687 1139379682 9781139375399 1139375393 1107226341 9781107226340 9786613719263 6613719269 1139378252 9781139378253 1139371401 9781139371407 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn794731490 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 110218s2012 enka ob 001 0 eng d | ||
040 | |a UkCbUP |b eng |e pn |c AUD |d EBLCP |d MHW |d AZU |d OCLCO |d MERUC |d CDX |d IDEBK |d ORU |d OCLCQ |d DEBSZ |d OCLCQ |d OCLCF |d YDXCP |d N$T |d E7B |d OSU |d OCLCQ |d NJR |d OCLCQ |d UAB |d OCLCQ |d COCUF |d STF |d LOA |d CUY |d ZCU |d ICG |d INT |d K6U |d VT2 |d U3W |d AU@ |d DEBBG |d OCLCQ |d WYU |d LVT |d TKN |d OCLCQ |d TXI |d DKC |d OCLCQ |d A6Q |d G3B |d OCLCQ |d VLY |d UKAHL |d LUN |d AJS |d OCLCQ |d OCLCO |d OCLCQ |d S9M |d OCLCL |d OCLCQ | ||
066 | |c (S | ||
019 | |a 798613255 |a 798795326 |a 801405882 |a 801926502 |a 817095858 |a 1055393161 |a 1058734737 |a 1066441973 |a 1081205956 |a 1096215940 |a 1162465998 |a 1167504271 |a 1228577630 |a 1241863053 |a 1259172929 | ||
020 | |a 9781139026079 |q (ebook) | ||
020 | |a 1139026070 |q (ebook) | ||
020 | |a 9780521898812 |q (hardback) | ||
020 | |a 0521898811 |q (hardback) | ||
020 | |a 1280877952 | ||
020 | |a 9781280877957 | ||
020 | |a 9781139376822 | ||
020 | |a 1139376829 | ||
020 | |a 9781139379687 |q (electronic bk.) | ||
020 | |a 1139379682 |q (electronic bk.) | ||
020 | |a 9781139375399 | ||
020 | |a 1139375393 | ||
020 | |a 1107226341 | ||
020 | |a 9781107226340 | ||
020 | |a 9786613719263 | ||
020 | |a 6613719269 | ||
020 | |a 1139378252 | ||
020 | |a 9781139378253 | ||
020 | |a 1139371401 | ||
020 | |a 9781139371407 | ||
024 | 8 | |a 9786613719263 | |
035 | |a (OCoLC)794731490 |z (OCoLC)798613255 |z (OCoLC)798795326 |z (OCoLC)801405882 |z (OCoLC)801926502 |z (OCoLC)817095858 |z (OCoLC)1055393161 |z (OCoLC)1058734737 |z (OCoLC)1066441973 |z (OCoLC)1081205956 |z (OCoLC)1096215940 |z (OCoLC)1162465998 |z (OCoLC)1167504271 |z (OCoLC)1228577630 |z (OCoLC)1241863053 |z (OCoLC)1259172929 | ||
037 | |a 371926 |b MIL | ||
050 | 4 | |a QA188 .L456 2012 | |
072 | 7 | |a PBKJ |2 bicssc | |
072 | 7 | |a MAT |x 002050 |2 bisacsh | |
082 | 7 | |a 512.5 |a 512/.5 | |
084 | |a MAT007000 |2 bisacsh | ||
049 | |a MAIN | ||
245 | 0 | 0 | |a Nonlinear Perron-Frobenius theory / |c Bas Lemmens, Roger Nussbaum. |
260 | |a Cambridge : |b Cambridge University Press, |c 2012. | ||
300 | |a 1 online resource (xii, 323 pages) : |b illustrations, tables | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge tracts in mathematics ; |v 189 | |
500 | |a Title from publishers bibliographic system (viewed 09 May 2012). | ||
504 | |a Includes chapter notes and comments, bibliographical references (pages 307-318), list of symbols, and index. | ||
505 | 0 | |6 880-01 |a Cover; CAMBRIDGE TRACTS IN MATHEMATICS; GENERAL EDITORS; Title; Copyright; Contents; Preface; 1 What is nonlinear Perron-Frobenius theory?; 1.1 Classical Perron-Frobenius theory; 1.2 Cones and partial orderings; 1.3 Order-preserving maps; 1.4 Subhomogeneous maps; 1.5 Topical maps; 1.6 Integral-preserving maps; 2 Non-expansiveness and nonlinear Perron-Frobenius theory; 2.1 Hilbert's and Thompson's metrics; 2.2 Polyhedral cones; 2.3 Lorentz cones; 2.4 The cone of positive-semidefinite symmetric matrices; 2.5 Completeness; 2.6 Convexity and geodesics; 2.7 Topical maps and the sup-norm. | |
520 | |a In the past several decades the classical Perron-Frobenius theory for nonnegative matrices has been extended to obtain remarkably precise and beautiful results for classes of nonlinear maps. This nonlinear Perron-Frobenius theory has found significant uses in computer science, mathematical biology, game theory and the study of dynamical systems. This is the first comprehensive and unified introduction to nonlinear Perron-Frobenius theory suitable for graduate students and researchers entering the field for the first time. It acquaints the reader with recent developments and provides a guide to challenging open problems. To enhance accessibility, the focus is on finite dimensional nonlinear Perron-Frobenius theory, but pointers are provided to infinite dimensional results. Prerequisites are little more than basic real analysis and topology. | ||
546 | |a English. | ||
650 | 0 | |a Non-negative matrices. |0 http://id.loc.gov/authorities/subjects/sh85092227 | |
650 | 0 | |a Eigenvalues. |0 http://id.loc.gov/authorities/subjects/sh85041389 | |
650 | 0 | |a Eigenvectors. |0 http://id.loc.gov/authorities/subjects/sh85041390 | |
650 | 0 | |a Algebras, Linear. |0 http://id.loc.gov/authorities/subjects/sh85003441 | |
650 | 6 | |a Matrices non-négatives. | |
650 | 6 | |a Valeurs propres. | |
650 | 6 | |a Vecteurs. | |
650 | 6 | |a Algèbre linéaire. | |
650 | 7 | |a MATHEMATICS |x Differential Equations. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Algebra |x Linear. |2 bisacsh | |
650 | 7 | |a Álgebra lineal |2 embne | |
650 | 0 | 7 | |a Matrices no negativas |2 embucm |
650 | 7 | |a Algebras, Linear |2 fast | |
650 | 7 | |a Eigenvalues |2 fast | |
650 | 7 | |a Eigenvectors |2 fast | |
650 | 7 | |a Non-negative matrices |2 fast | |
700 | 1 | |a Lemmens, Bas. |0 http://id.loc.gov/authorities/names/n2012008334 | |
700 | 1 | |a Nussbaum, Roger D., |d 1944- |1 https://id.oclc.org/worldcat/entity/E39PBJrm49pkGv9JmP7hGHkMT3 |0 http://id.loc.gov/authorities/names/n78044209 | |
776 | 0 | 8 | |i Print version: |z 9780521898812 |
830 | 0 | |a Cambridge tracts in mathematics ; |v 189. |0 http://id.loc.gov/authorities/names/n42005726 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=443672 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=443672 |3 Volltext |
880 | 0 | 0 | |6 505-01/(S |g Machine generated contents note: |g 1. |t What is nonlinear Perron--Frobenius theory-- |g 1.1. |t Classical Perron--Frobenius theory -- |g 1.2. |t Cones and partial orderings -- |g 1.3. |t Order-preserving maps -- |g 1.4. |t Subhomogeneous maps -- |g 1.5. |t Topical maps -- |g 1.6. |t Integral-preserving maps -- |g 2. |t Non-expansiveness and nonlinear Perron--Frobenius theory -- |g 2.1. |t Hilbert's and Thompson's metrics -- |g 2.2. |t Polyhedral cones -- |g 2.3. |t Lorentz cones -- |g 2.4. |t cone of positive-semidefinite symmetric matrices -- |g 2.5. |t Completeness -- |g 2.6. |t Convexity and geodesics -- |g 2.7. |t Topical maps and the sup-norm -- |g 2.8. |t Integral-preserving maps and the l1-norm -- |g 3. |t Dynamics of non-expansive maps -- |g 3.1. |t Basic properties of non-expansive maps -- |g 3.2. |t Fixed-point theorems for non-expansive maps -- |g 3.3. |t Horofunctions and horoballs -- |g 3.4. |t Denjoy--Wolff type theorem -- |g 3.5. |t Non-expansive retractions -- |g 4. |t Sup-norm non-expansive maps -- |g 4.1. |t size of the ω-limit sets -- |g 4.2. |t Periods of periodic points -- |g 4.3. |t Iterates of topical maps -- |g 5. |t Eigenvectors and eigenvalues of nonlinear cone maps -- |g 5.1. |t Extensions of order-preserving maps -- |g 5.2. |t cone spectrum -- |g 5.3. |t cone spectral radius -- |g 5.4. |t Eigenvectors corresponding to the cone spectral radius -- |g 5.5. |t Continuity of the cone spectral radius -- |g 5.6. |t Collatz--Wielandt formula -- |g 6. |t Eigenvectors in the interior of the cone -- |g 6.1. |t First principles -- |g 6.2. |t Perturbation method -- |g 6.3. |t Bounded invariant sets -- |g 6.4. |t Uniqueness of the eigenvector -- |g 6.5. |t Convergence to a unique eigenvector -- |g 6.6. |t Means and their eigenvectors -- |g 7. |t Applications to matrix scaling problems -- |g 7.1. |t Matrix scaling: a fixed-point approach -- |g 7.2. |t compatibility condition -- |g 7.3. |t Special DAD theorems -- |g 7.4. |t Doubly stochastic matrices: the classic case -- |g 7.5. |t Scaling to row stochastic matrices -- |g 8. |t Dynamics of subhomogeneous maps -- |g 8.1. |t Iterations on polyhedral cones -- |g 8.2. |t Periodic orbits in polyhedral cones -- |g 8.3. |t Denjoy--Wolff theorems for cone maps -- |g 8.4. |t Denjoy--Wolff theorem for polyhedral cones -- |g 9. |t Dynamics of integral-preserving maps -- |g 9.1. |t Lattice homomorphisms -- |g 9.2. |t Periodic orbits of lower semi-lattice homomorphisms -- |g 9.3. |t Periodic points and admissible arrays -- |g 9.4. |t Computing periods of admissible arrays -- |g 9.5. |t Maps on the whole space -- |g Appendix |t A Birkhoff--Hopf theorem -- |g A.1. |t Preliminaries -- |g A.2. |t Almost Archimedean cones -- |g A.3. |t Projective diameter -- |g A.4. |t Birkhoff--Hopf theorem: reduction to two dimensions -- |g A.5. |t Two-dimensional cones -- |g A.6. |t Completion of the proof of the Birkhoff--Hopf theorem -- |g A.7. |t Eigenvectors of cone-linear maps -- |g Appendix B |t Classical Perron--Frobenius theory -- |g B.1. |t general version of Perron's theorem -- |g B.2. |t finite-dimensional Krein--Rutman theorem -- |g B.3. |t Irreducible linear maps -- |g B.4. |t peripheral spectrum. |
938 | |a Askews and Holts Library Services |b ASKH |n AH21939974 | ||
938 | |a Coutts Information Services |b COUT |n 22835444 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL880642 | ||
938 | |a ebrary |b EBRY |n ebr10574287 | ||
938 | |a EBSCOhost |b EBSC |n 443672 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 371926 | ||
938 | |a YBP Library Services |b YANK |n 9445063 | ||
938 | |a YBP Library Services |b YANK |n 7636325 | ||
938 | |a YBP Library Services |b YANK |n 8923699 | ||
938 | |a YBP Library Services |b YANK |n 9003528 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH28321254 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn794731490 |
---|---|
_version_ | 1829094728278212608 |
adam_text | |
any_adam_object | |
author2 | Lemmens, Bas Nussbaum, Roger D., 1944- |
author2_role | |
author2_variant | b l bl r d n rd rdn |
author_GND | http://id.loc.gov/authorities/names/n2012008334 http://id.loc.gov/authorities/names/n78044209 |
author_facet | Lemmens, Bas Nussbaum, Roger D., 1944- |
author_sort | Lemmens, Bas |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA188 |
callnumber-raw | QA188 .L456 2012 |
callnumber-search | QA188 .L456 2012 |
callnumber-sort | QA 3188 L456 42012 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; CAMBRIDGE TRACTS IN MATHEMATICS; GENERAL EDITORS; Title; Copyright; Contents; Preface; 1 What is nonlinear Perron-Frobenius theory?; 1.1 Classical Perron-Frobenius theory; 1.2 Cones and partial orderings; 1.3 Order-preserving maps; 1.4 Subhomogeneous maps; 1.5 Topical maps; 1.6 Integral-preserving maps; 2 Non-expansiveness and nonlinear Perron-Frobenius theory; 2.1 Hilbert's and Thompson's metrics; 2.2 Polyhedral cones; 2.3 Lorentz cones; 2.4 The cone of positive-semidefinite symmetric matrices; 2.5 Completeness; 2.6 Convexity and geodesics; 2.7 Topical maps and the sup-norm. |
ctrlnum | (OCoLC)794731490 |
dewey-full | 512.5 512/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.5 512/.5 |
dewey-search | 512.5 512/.5 |
dewey-sort | 3512.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08990cam a2201033Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn794731490</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">110218s2012 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UkCbUP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">AUD</subfield><subfield code="d">EBLCP</subfield><subfield code="d">MHW</subfield><subfield code="d">AZU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">MERUC</subfield><subfield code="d">CDX</subfield><subfield code="d">IDEBK</subfield><subfield code="d">ORU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OSU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NJR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">STF</subfield><subfield code="d">LOA</subfield><subfield code="d">CUY</subfield><subfield code="d">ZCU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">K6U</subfield><subfield code="d">VT2</subfield><subfield code="d">U3W</subfield><subfield code="d">AU@</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TXI</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">A6Q</subfield><subfield code="d">G3B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VLY</subfield><subfield code="d">UKAHL</subfield><subfield code="d">LUN</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S9M</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">798613255</subfield><subfield code="a">798795326</subfield><subfield code="a">801405882</subfield><subfield code="a">801926502</subfield><subfield code="a">817095858</subfield><subfield code="a">1055393161</subfield><subfield code="a">1058734737</subfield><subfield code="a">1066441973</subfield><subfield code="a">1081205956</subfield><subfield code="a">1096215940</subfield><subfield code="a">1162465998</subfield><subfield code="a">1167504271</subfield><subfield code="a">1228577630</subfield><subfield code="a">1241863053</subfield><subfield code="a">1259172929</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139026079</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139026070</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521898812</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521898811</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1280877952</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781280877957</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139376822</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139376829</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139379687</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139379682</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139375399</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139375393</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107226341</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107226340</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786613719263</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6613719269</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139378252</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139378253</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139371401</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139371407</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">9786613719263</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)794731490</subfield><subfield code="z">(OCoLC)798613255</subfield><subfield code="z">(OCoLC)798795326</subfield><subfield code="z">(OCoLC)801405882</subfield><subfield code="z">(OCoLC)801926502</subfield><subfield code="z">(OCoLC)817095858</subfield><subfield code="z">(OCoLC)1055393161</subfield><subfield code="z">(OCoLC)1058734737</subfield><subfield code="z">(OCoLC)1066441973</subfield><subfield code="z">(OCoLC)1081205956</subfield><subfield code="z">(OCoLC)1096215940</subfield><subfield code="z">(OCoLC)1162465998</subfield><subfield code="z">(OCoLC)1167504271</subfield><subfield code="z">(OCoLC)1228577630</subfield><subfield code="z">(OCoLC)1241863053</subfield><subfield code="z">(OCoLC)1259172929</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">371926</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA188 .L456 2012</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBKJ</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002050</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.5</subfield><subfield code="a">512/.5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT007000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Nonlinear Perron-Frobenius theory /</subfield><subfield code="c">Bas Lemmens, Roger Nussbaum.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 323 pages) :</subfield><subfield code="b">illustrations, tables</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge tracts in mathematics ;</subfield><subfield code="v">189</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publishers bibliographic system (viewed 09 May 2012).</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes chapter notes and comments, bibliographical references (pages 307-318), list of symbols, and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="6">880-01</subfield><subfield code="a">Cover; CAMBRIDGE TRACTS IN MATHEMATICS; GENERAL EDITORS; Title; Copyright; Contents; Preface; 1 What is nonlinear Perron-Frobenius theory?; 1.1 Classical Perron-Frobenius theory; 1.2 Cones and partial orderings; 1.3 Order-preserving maps; 1.4 Subhomogeneous maps; 1.5 Topical maps; 1.6 Integral-preserving maps; 2 Non-expansiveness and nonlinear Perron-Frobenius theory; 2.1 Hilbert's and Thompson's metrics; 2.2 Polyhedral cones; 2.3 Lorentz cones; 2.4 The cone of positive-semidefinite symmetric matrices; 2.5 Completeness; 2.6 Convexity and geodesics; 2.7 Topical maps and the sup-norm.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the past several decades the classical Perron-Frobenius theory for nonnegative matrices has been extended to obtain remarkably precise and beautiful results for classes of nonlinear maps. This nonlinear Perron-Frobenius theory has found significant uses in computer science, mathematical biology, game theory and the study of dynamical systems. This is the first comprehensive and unified introduction to nonlinear Perron-Frobenius theory suitable for graduate students and researchers entering the field for the first time. It acquaints the reader with recent developments and provides a guide to challenging open problems. To enhance accessibility, the focus is on finite dimensional nonlinear Perron-Frobenius theory, but pointers are provided to infinite dimensional results. Prerequisites are little more than basic real analysis and topology.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Non-negative matrices.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85092227</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Eigenvalues.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85041389</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Eigenvectors.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85041390</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algebras, Linear.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85003441</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Matrices non-négatives.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Valeurs propres.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Vecteurs.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbre linéaire.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Differential Equations.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Linear.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Álgebra lineal</subfield><subfield code="2">embne</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrices no negativas</subfield><subfield code="2">embucm</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebras, Linear</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Eigenvalues</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Eigenvectors</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Non-negative matrices</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lemmens, Bas.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2012008334</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nussbaum, Roger D.,</subfield><subfield code="d">1944-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJrm49pkGv9JmP7hGHkMT3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n78044209</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9780521898812</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge tracts in mathematics ;</subfield><subfield code="v">189.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42005726</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=443672</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=443672</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="0" ind2="0"><subfield code="6">505-01/(S</subfield><subfield code="g">Machine generated contents note:</subfield><subfield code="g">1.</subfield><subfield code="t">What is nonlinear Perron--Frobenius theory--</subfield><subfield code="g">1.1.</subfield><subfield code="t">Classical Perron--Frobenius theory --</subfield><subfield code="g">1.2.</subfield><subfield code="t">Cones and partial orderings --</subfield><subfield code="g">1.3.</subfield><subfield code="t">Order-preserving maps --</subfield><subfield code="g">1.4.</subfield><subfield code="t">Subhomogeneous maps --</subfield><subfield code="g">1.5.</subfield><subfield code="t">Topical maps --</subfield><subfield code="g">1.6.</subfield><subfield code="t">Integral-preserving maps --</subfield><subfield code="g">2.</subfield><subfield code="t">Non-expansiveness and nonlinear Perron--Frobenius theory --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Hilbert's and Thompson's metrics --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Polyhedral cones --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Lorentz cones --</subfield><subfield code="g">2.4.</subfield><subfield code="t">cone of positive-semidefinite symmetric matrices --</subfield><subfield code="g">2.5.</subfield><subfield code="t">Completeness --</subfield><subfield code="g">2.6.</subfield><subfield code="t">Convexity and geodesics --</subfield><subfield code="g">2.7.</subfield><subfield code="t">Topical maps and the sup-norm --</subfield><subfield code="g">2.8.</subfield><subfield code="t">Integral-preserving maps and the l1-norm --</subfield><subfield code="g">3.</subfield><subfield code="t">Dynamics of non-expansive maps --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Basic properties of non-expansive maps --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Fixed-point theorems for non-expansive maps --</subfield><subfield code="g">3.3.</subfield><subfield code="t">Horofunctions and horoballs --</subfield><subfield code="g">3.4.</subfield><subfield code="t">Denjoy--Wolff type theorem --</subfield><subfield code="g">3.5.</subfield><subfield code="t">Non-expansive retractions --</subfield><subfield code="g">4.</subfield><subfield code="t">Sup-norm non-expansive maps --</subfield><subfield code="g">4.1.</subfield><subfield code="t">size of the ω-limit sets --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Periods of periodic points --</subfield><subfield code="g">4.3.</subfield><subfield code="t">Iterates of topical maps --</subfield><subfield code="g">5.</subfield><subfield code="t">Eigenvectors and eigenvalues of nonlinear cone maps --</subfield><subfield code="g">5.1.</subfield><subfield code="t">Extensions of order-preserving maps --</subfield><subfield code="g">5.2.</subfield><subfield code="t">cone spectrum --</subfield><subfield code="g">5.3.</subfield><subfield code="t">cone spectral radius --</subfield><subfield code="g">5.4.</subfield><subfield code="t">Eigenvectors corresponding to the cone spectral radius --</subfield><subfield code="g">5.5.</subfield><subfield code="t">Continuity of the cone spectral radius --</subfield><subfield code="g">5.6.</subfield><subfield code="t">Collatz--Wielandt formula --</subfield><subfield code="g">6.</subfield><subfield code="t">Eigenvectors in the interior of the cone --</subfield><subfield code="g">6.1.</subfield><subfield code="t">First principles --</subfield><subfield code="g">6.2.</subfield><subfield code="t">Perturbation method --</subfield><subfield code="g">6.3.</subfield><subfield code="t">Bounded invariant sets --</subfield><subfield code="g">6.4.</subfield><subfield code="t">Uniqueness of the eigenvector --</subfield><subfield code="g">6.5.</subfield><subfield code="t">Convergence to a unique eigenvector --</subfield><subfield code="g">6.6.</subfield><subfield code="t">Means and their eigenvectors --</subfield><subfield code="g">7.</subfield><subfield code="t">Applications to matrix scaling problems --</subfield><subfield code="g">7.1.</subfield><subfield code="t">Matrix scaling: a fixed-point approach --</subfield><subfield code="g">7.2.</subfield><subfield code="t">compatibility condition --</subfield><subfield code="g">7.3.</subfield><subfield code="t">Special DAD theorems --</subfield><subfield code="g">7.4.</subfield><subfield code="t">Doubly stochastic matrices: the classic case --</subfield><subfield code="g">7.5.</subfield><subfield code="t">Scaling to row stochastic matrices --</subfield><subfield code="g">8.</subfield><subfield code="t">Dynamics of subhomogeneous maps --</subfield><subfield code="g">8.1.</subfield><subfield code="t">Iterations on polyhedral cones --</subfield><subfield code="g">8.2.</subfield><subfield code="t">Periodic orbits in polyhedral cones --</subfield><subfield code="g">8.3.</subfield><subfield code="t">Denjoy--Wolff theorems for cone maps --</subfield><subfield code="g">8.4.</subfield><subfield code="t">Denjoy--Wolff theorem for polyhedral cones --</subfield><subfield code="g">9.</subfield><subfield code="t">Dynamics of integral-preserving maps --</subfield><subfield code="g">9.1.</subfield><subfield code="t">Lattice homomorphisms --</subfield><subfield code="g">9.2.</subfield><subfield code="t">Periodic orbits of lower semi-lattice homomorphisms --</subfield><subfield code="g">9.3.</subfield><subfield code="t">Periodic points and admissible arrays --</subfield><subfield code="g">9.4.</subfield><subfield code="t">Computing periods of admissible arrays --</subfield><subfield code="g">9.5.</subfield><subfield code="t">Maps on the whole space --</subfield><subfield code="g">Appendix</subfield><subfield code="t">A Birkhoff--Hopf theorem --</subfield><subfield code="g">A.1.</subfield><subfield code="t">Preliminaries --</subfield><subfield code="g">A.2.</subfield><subfield code="t">Almost Archimedean cones --</subfield><subfield code="g">A.3.</subfield><subfield code="t">Projective diameter --</subfield><subfield code="g">A.4.</subfield><subfield code="t">Birkhoff--Hopf theorem: reduction to two dimensions --</subfield><subfield code="g">A.5.</subfield><subfield code="t">Two-dimensional cones --</subfield><subfield code="g">A.6.</subfield><subfield code="t">Completion of the proof of the Birkhoff--Hopf theorem --</subfield><subfield code="g">A.7.</subfield><subfield code="t">Eigenvectors of cone-linear maps --</subfield><subfield code="g">Appendix B</subfield><subfield code="t">Classical Perron--Frobenius theory --</subfield><subfield code="g">B.1.</subfield><subfield code="t">general version of Perron's theorem --</subfield><subfield code="g">B.2.</subfield><subfield code="t">finite-dimensional Krein--Rutman theorem --</subfield><subfield code="g">B.3.</subfield><subfield code="t">Irreducible linear maps --</subfield><subfield code="g">B.4.</subfield><subfield code="t">peripheral spectrum.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH21939974</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">22835444</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL880642</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10574287</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">443672</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">371926</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9445063</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7636325</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">8923699</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9003528</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH28321254</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn794731490 |
illustrated | Illustrated |
indexdate | 2025-04-11T08:37:44Z |
institution | BVB |
isbn | 9781139026079 1139026070 9780521898812 0521898811 1280877952 9781280877957 9781139376822 1139376829 9781139379687 1139379682 9781139375399 1139375393 1107226341 9781107226340 9786613719263 6613719269 1139378252 9781139378253 1139371401 9781139371407 |
language | English |
oclc_num | 794731490 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 323 pages) : illustrations, tables |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge University Press, |
record_format | marc |
series | Cambridge tracts in mathematics ; |
series2 | Cambridge tracts in mathematics ; |
spelling | Nonlinear Perron-Frobenius theory / Bas Lemmens, Roger Nussbaum. Cambridge : Cambridge University Press, 2012. 1 online resource (xii, 323 pages) : illustrations, tables text txt rdacontent computer c rdamedia online resource cr rdacarrier Cambridge tracts in mathematics ; 189 Title from publishers bibliographic system (viewed 09 May 2012). Includes chapter notes and comments, bibliographical references (pages 307-318), list of symbols, and index. 880-01 Cover; CAMBRIDGE TRACTS IN MATHEMATICS; GENERAL EDITORS; Title; Copyright; Contents; Preface; 1 What is nonlinear Perron-Frobenius theory?; 1.1 Classical Perron-Frobenius theory; 1.2 Cones and partial orderings; 1.3 Order-preserving maps; 1.4 Subhomogeneous maps; 1.5 Topical maps; 1.6 Integral-preserving maps; 2 Non-expansiveness and nonlinear Perron-Frobenius theory; 2.1 Hilbert's and Thompson's metrics; 2.2 Polyhedral cones; 2.3 Lorentz cones; 2.4 The cone of positive-semidefinite symmetric matrices; 2.5 Completeness; 2.6 Convexity and geodesics; 2.7 Topical maps and the sup-norm. In the past several decades the classical Perron-Frobenius theory for nonnegative matrices has been extended to obtain remarkably precise and beautiful results for classes of nonlinear maps. This nonlinear Perron-Frobenius theory has found significant uses in computer science, mathematical biology, game theory and the study of dynamical systems. This is the first comprehensive and unified introduction to nonlinear Perron-Frobenius theory suitable for graduate students and researchers entering the field for the first time. It acquaints the reader with recent developments and provides a guide to challenging open problems. To enhance accessibility, the focus is on finite dimensional nonlinear Perron-Frobenius theory, but pointers are provided to infinite dimensional results. Prerequisites are little more than basic real analysis and topology. English. Non-negative matrices. http://id.loc.gov/authorities/subjects/sh85092227 Eigenvalues. http://id.loc.gov/authorities/subjects/sh85041389 Eigenvectors. http://id.loc.gov/authorities/subjects/sh85041390 Algebras, Linear. http://id.loc.gov/authorities/subjects/sh85003441 Matrices non-négatives. Valeurs propres. Vecteurs. Algèbre linéaire. MATHEMATICS Differential Equations. bisacsh MATHEMATICS Algebra Linear. bisacsh Álgebra lineal embne Matrices no negativas embucm Algebras, Linear fast Eigenvalues fast Eigenvectors fast Non-negative matrices fast Lemmens, Bas. http://id.loc.gov/authorities/names/n2012008334 Nussbaum, Roger D., 1944- https://id.oclc.org/worldcat/entity/E39PBJrm49pkGv9JmP7hGHkMT3 http://id.loc.gov/authorities/names/n78044209 Print version: 9780521898812 Cambridge tracts in mathematics ; 189. http://id.loc.gov/authorities/names/n42005726 505-01/(S Machine generated contents note: 1. What is nonlinear Perron--Frobenius theory-- 1.1. Classical Perron--Frobenius theory -- 1.2. Cones and partial orderings -- 1.3. Order-preserving maps -- 1.4. Subhomogeneous maps -- 1.5. Topical maps -- 1.6. Integral-preserving maps -- 2. Non-expansiveness and nonlinear Perron--Frobenius theory -- 2.1. Hilbert's and Thompson's metrics -- 2.2. Polyhedral cones -- 2.3. Lorentz cones -- 2.4. cone of positive-semidefinite symmetric matrices -- 2.5. Completeness -- 2.6. Convexity and geodesics -- 2.7. Topical maps and the sup-norm -- 2.8. Integral-preserving maps and the l1-norm -- 3. Dynamics of non-expansive maps -- 3.1. Basic properties of non-expansive maps -- 3.2. Fixed-point theorems for non-expansive maps -- 3.3. Horofunctions and horoballs -- 3.4. Denjoy--Wolff type theorem -- 3.5. Non-expansive retractions -- 4. Sup-norm non-expansive maps -- 4.1. size of the ω-limit sets -- 4.2. Periods of periodic points -- 4.3. Iterates of topical maps -- 5. Eigenvectors and eigenvalues of nonlinear cone maps -- 5.1. Extensions of order-preserving maps -- 5.2. cone spectrum -- 5.3. cone spectral radius -- 5.4. Eigenvectors corresponding to the cone spectral radius -- 5.5. Continuity of the cone spectral radius -- 5.6. Collatz--Wielandt formula -- 6. Eigenvectors in the interior of the cone -- 6.1. First principles -- 6.2. Perturbation method -- 6.3. Bounded invariant sets -- 6.4. Uniqueness of the eigenvector -- 6.5. Convergence to a unique eigenvector -- 6.6. Means and their eigenvectors -- 7. Applications to matrix scaling problems -- 7.1. Matrix scaling: a fixed-point approach -- 7.2. compatibility condition -- 7.3. Special DAD theorems -- 7.4. Doubly stochastic matrices: the classic case -- 7.5. Scaling to row stochastic matrices -- 8. Dynamics of subhomogeneous maps -- 8.1. Iterations on polyhedral cones -- 8.2. Periodic orbits in polyhedral cones -- 8.3. Denjoy--Wolff theorems for cone maps -- 8.4. Denjoy--Wolff theorem for polyhedral cones -- 9. Dynamics of integral-preserving maps -- 9.1. Lattice homomorphisms -- 9.2. Periodic orbits of lower semi-lattice homomorphisms -- 9.3. Periodic points and admissible arrays -- 9.4. Computing periods of admissible arrays -- 9.5. Maps on the whole space -- Appendix A Birkhoff--Hopf theorem -- A.1. Preliminaries -- A.2. Almost Archimedean cones -- A.3. Projective diameter -- A.4. Birkhoff--Hopf theorem: reduction to two dimensions -- A.5. Two-dimensional cones -- A.6. Completion of the proof of the Birkhoff--Hopf theorem -- A.7. Eigenvectors of cone-linear maps -- Appendix B Classical Perron--Frobenius theory -- B.1. general version of Perron's theorem -- B.2. finite-dimensional Krein--Rutman theorem -- B.3. Irreducible linear maps -- B.4. peripheral spectrum. |
spellingShingle | Nonlinear Perron-Frobenius theory / Cambridge tracts in mathematics ; Cover; CAMBRIDGE TRACTS IN MATHEMATICS; GENERAL EDITORS; Title; Copyright; Contents; Preface; 1 What is nonlinear Perron-Frobenius theory?; 1.1 Classical Perron-Frobenius theory; 1.2 Cones and partial orderings; 1.3 Order-preserving maps; 1.4 Subhomogeneous maps; 1.5 Topical maps; 1.6 Integral-preserving maps; 2 Non-expansiveness and nonlinear Perron-Frobenius theory; 2.1 Hilbert's and Thompson's metrics; 2.2 Polyhedral cones; 2.3 Lorentz cones; 2.4 The cone of positive-semidefinite symmetric matrices; 2.5 Completeness; 2.6 Convexity and geodesics; 2.7 Topical maps and the sup-norm. Non-negative matrices. http://id.loc.gov/authorities/subjects/sh85092227 Eigenvalues. http://id.loc.gov/authorities/subjects/sh85041389 Eigenvectors. http://id.loc.gov/authorities/subjects/sh85041390 Algebras, Linear. http://id.loc.gov/authorities/subjects/sh85003441 Matrices non-négatives. Valeurs propres. Vecteurs. Algèbre linéaire. MATHEMATICS Differential Equations. bisacsh MATHEMATICS Algebra Linear. bisacsh Álgebra lineal embne Matrices no negativas embucm Algebras, Linear fast Eigenvalues fast Eigenvectors fast Non-negative matrices fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85092227 http://id.loc.gov/authorities/subjects/sh85041389 http://id.loc.gov/authorities/subjects/sh85041390 http://id.loc.gov/authorities/subjects/sh85003441 |
title | Nonlinear Perron-Frobenius theory / |
title_auth | Nonlinear Perron-Frobenius theory / |
title_exact_search | Nonlinear Perron-Frobenius theory / |
title_full | Nonlinear Perron-Frobenius theory / Bas Lemmens, Roger Nussbaum. |
title_fullStr | Nonlinear Perron-Frobenius theory / Bas Lemmens, Roger Nussbaum. |
title_full_unstemmed | Nonlinear Perron-Frobenius theory / Bas Lemmens, Roger Nussbaum. |
title_short | Nonlinear Perron-Frobenius theory / |
title_sort | nonlinear perron frobenius theory |
topic | Non-negative matrices. http://id.loc.gov/authorities/subjects/sh85092227 Eigenvalues. http://id.loc.gov/authorities/subjects/sh85041389 Eigenvectors. http://id.loc.gov/authorities/subjects/sh85041390 Algebras, Linear. http://id.loc.gov/authorities/subjects/sh85003441 Matrices non-négatives. Valeurs propres. Vecteurs. Algèbre linéaire. MATHEMATICS Differential Equations. bisacsh MATHEMATICS Algebra Linear. bisacsh Álgebra lineal embne Matrices no negativas embucm Algebras, Linear fast Eigenvalues fast Eigenvectors fast Non-negative matrices fast |
topic_facet | Non-negative matrices. Eigenvalues. Eigenvectors. Algebras, Linear. Matrices non-négatives. Valeurs propres. Vecteurs. Algèbre linéaire. MATHEMATICS Differential Equations. MATHEMATICS Algebra Linear. Álgebra lineal Matrices no negativas Algebras, Linear Eigenvalues Eigenvectors Non-negative matrices |
work_keys_str_mv | AT lemmensbas nonlinearperronfrobeniustheory AT nussbaumrogerd nonlinearperronfrobeniustheory |