Black holes in higher dimensions /:
"Black holes are one of the most remarkable predictions of Einstein's general relativity. Now widely accepted by the scientific community, most work has focussed on black holes in our familiar four spacetime dimensions. But in recent years, ideas in brane-world cosmology, string theory, an...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Cambridge University Press,
2012.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "Black holes are one of the most remarkable predictions of Einstein's general relativity. Now widely accepted by the scientific community, most work has focussed on black holes in our familiar four spacetime dimensions. But in recent years, ideas in brane-world cosmology, string theory, and gauge/gravity duality have all motivated a study of black holes in more than four dimensions, with surprising results. In higher dimensions, black holes exist with exotic shapes and unusual dynamics. Edited by leading expert Gary Horowitz, this exciting book is the first devoted to this new field. The major discoveries are explained by the people who made them: RobMyers describes theMyers-Perry solutions that represent rotating black holes in higher dimensions; Ruth Gregory describes the Gregory-Laflamme instability of black strings; and Juan Maldacena introduces gauge/gravity duality, the remarkable correspondence that relates a gravitational theory to nongravitational physics. There are two additional chapters on this duality describing how black holes can be used to describe relativistic fluids and aspects of condensed matter physics"-- |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781139380041 1139380044 9781139004176 1139004174 128064754X 9781280647543 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn794379486 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 120529t20122012nyu ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d CDX |d YDXCP |d IDEBK |d COO |d E7B |d UIU |d OCLCQ |d CUS |d OCLCF |d OCLCQ |d VLY |d OCLCQ |d UKAHL |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 794901211 |a 817083636 |a 964301049 |a 990641836 | ||
020 | |a 9781139380041 |q (electronic bk.) | ||
020 | |a 1139380044 |q (electronic bk.) | ||
020 | |a 9781139004176 |q (electronic bk.) | ||
020 | |a 1139004174 |q (electronic bk.) | ||
020 | |a 128064754X | ||
020 | |a 9781280647543 | ||
020 | |z 9781107013452 | ||
020 | |z 1107013453 | ||
024 | 8 | |a 9786613633590 | |
035 | |a (OCoLC)794379486 |z (OCoLC)794901211 |z (OCoLC)817083636 |z (OCoLC)964301049 |z (OCoLC)990641836 | ||
050 | 4 | |a QB843.B55 |b .B5878 2012eb | |
072 | 7 | |a SCI |x 004000 |2 bisacsh | |
072 | 7 | |a PH |2 bicssc | |
082 | 7 | |a 523.8/875 |2 23 | |
084 | |a SCI015000 |2 bisacsh | ||
049 | |a MAIN | ||
245 | 0 | 0 | |a Black holes in higher dimensions / |c edited by Gary T. Horowitz. |
264 | 1 | |a New York : |b Cambridge University Press, |c 2012. | |
264 | 4 | |c ©2012 | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
520 | |a "Black holes are one of the most remarkable predictions of Einstein's general relativity. Now widely accepted by the scientific community, most work has focussed on black holes in our familiar four spacetime dimensions. But in recent years, ideas in brane-world cosmology, string theory, and gauge/gravity duality have all motivated a study of black holes in more than four dimensions, with surprising results. In higher dimensions, black holes exist with exotic shapes and unusual dynamics. Edited by leading expert Gary Horowitz, this exciting book is the first devoted to this new field. The major discoveries are explained by the people who made them: RobMyers describes theMyers-Perry solutions that represent rotating black holes in higher dimensions; Ruth Gregory describes the Gregory-Laflamme instability of black strings; and Juan Maldacena introduces gauge/gravity duality, the remarkable correspondence that relates a gravitational theory to nongravitational physics. There are two additional chapters on this duality describing how black holes can be used to describe relativistic fluids and aspects of condensed matter physics"-- |c Provided by publisher | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; BLACK HOLES IN HIGHER DIMENSIONS; Title; Copyright; Contents; Contributors; Preface; Part I: Introduction; 1: Black holes in four dimensions; 1.1 Schwarzschild solution; 1.2 Reissner -- Nordstrom solution; 1.3 Kerr solution; 1.4 Black holes with nonzero cosmological constant; 1.5 General properties of four-dimensional black holes; 1.5.1 Uniqueness; 1.5.2 Stability; 1.5.3 Topology of the event horizon; 1.5.4 Cosmic censorship; 1.6 Black hole thermodynamics; References; Part II: Kaluza -- Klein theory; 2: The Gregory -- Laflamme instability; 2.1 Overview; 2.2 Black holes in higher dimensions | |
505 | 8 | |a 2.3 A thermodynamic argument for instability2.4 Perturbing the black string; 2.4.1 Perturbation theory; 2.4.2 Finding the perturbation; 2.4.3 Regularity conditions; 2.4.4 The instability; 2.4.5 More general instabilities; 2.5 Consequences of the instability; References; 3: Final state of Gregory -- Laflamme instability; 3.1 Overview; 3.2 Background; 3.3 Numerical approach; 3.3.1 Initial data; 3.3.2 Evolution; 3.3.3 Apparent horizons; 3.3.4 Evolution code; 3.4 Evolution of an unstable black string; 3.4.1 Apparent horizon dynamics; 3.4.2 Interpretation of the horizon dynamics | |
505 | 8 | |a 3.5 Speculations and open questions3.5.1 Mode behavior; 3.5.2 Dynamics beyond the classical regime; 3.5.3 Future work; Acknowledgements; References; Extrinsic curvature; 4: General black holes in Kaluza -- Klein theory; 4.1 Energy in Kaluza -- Klein theory; 4.2 Homogeneous black hole solutions; 4.2.1 Nonrotating charged black holes; 4.2.2 Rotating Kaluza -- Klein black holes; 4.3 Inhomogeneous black hole solutions; 4.3.1 Localized black holes; 4.3.2 Inhomogeneous black strings; 4.3.3 The space of static black hole solutions; 4.3.4 Stability of the static black hole solutions; References | |
505 | 8 | |a Part III: Asymptotically flat solutions5: Myers -- Perry black holes; 5.1 Static black holes; 5.2 Spinning black holes; 5.2.1 Myers -- Perry black hole metrics; 5.2.2 Singularities; 5.2.3 Horizons; 5.2.4 Ergosurfaces and causality violation; 5.2.5 Maximal analytic extension; 5.2.6 Hidden symmetries and geodesics; 5.2.7 Black hole thermodynamics; 5.2.8 Instabilities; Acknowledgements; 5.3 Appendix A: Mass and angular momentum; 5.4 Appendix B: A case study of d = 5; References; 6: Black rings; 6.1 Introduction; 6.2 Ring coordinates; 6.3 Singly spinning black ring solution; 6.3.1 Spacetime geometry | |
505 | 8 | |a 6.3.2 Physical magnitudes and nonuniqueness6.4 Black ring with two angular momenta; 6.5 Multiple black hole solutions; 6.5.1 Black Saturns and multi-rings; 6.5.2 Phase diagram; 6.5.3 Bi-rings; 6.6 Stability; References; Part IV: General properties; Constraints on the topology of higher-dimensional black holes; 7.1 Introduction; 7.2 Hawking's theorem on black hole topology; 7.3 Marginally outer-trapped surfaces; 7.4 A generalization of Hawking's theorem and some topological restrictions; 7.5 The proof of Theorem 7.4.1; 7.6 The borderline case; 7.7 Effect of the cosmological constant | |
650 | 0 | |a Black holes (Astronomy) |x Mathematical models. | |
650 | 0 | |a Hyperspace. |0 http://id.loc.gov/authorities/subjects/sh85063720 | |
650 | 6 | |a Trous noirs (Astronomie) |x Modèles mathématiques. | |
650 | 6 | |a Hyperespace. | |
650 | 7 | |a SCIENCE |x Cosmology. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Astronomy. |2 bisacsh | |
650 | 7 | |a Hyperspace |2 fast | |
700 | 1 | |a Horowitz, Gary T., |d 1955- |e editor. |1 https://id.oclc.org/worldcat/entity/E39PBJrWGrB4rghwQ4mMwT9FKd |0 http://id.loc.gov/authorities/names/n2012007767 | |
776 | 0 | 8 | |i Print version: |t Black holes in higher dimensions. |d New York : Cambridge University Press, 2012 |z 9781107013452 |w (DLC) 2011053168 |w (OCoLC)761858493 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=443657 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH23038399 | ||
938 | |a Coutts Information Services |b COUT |n 22580086 |c 60.00 GBP | ||
938 | |a ebrary |b EBRY |n ebr10565049 | ||
938 | |a EBSCOhost |b EBSC |n 443657 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 363359 | ||
938 | |a YBP Library Services |b YANK |n 7665606 | ||
938 | |a YBP Library Services |b YANK |n 8784733 | ||
938 | |a YBP Library Services |b YANK |n 7636142 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn794379486 |
---|---|
_version_ | 1816881796267114497 |
adam_text | |
any_adam_object | |
author2 | Horowitz, Gary T., 1955- |
author2_role | edt |
author2_variant | g t h gt gth |
author_GND | http://id.loc.gov/authorities/names/n2012007767 |
author_facet | Horowitz, Gary T., 1955- |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QB843 |
callnumber-raw | QB843.B55 .B5878 2012eb |
callnumber-search | QB843.B55 .B5878 2012eb |
callnumber-sort | QB 3843 B55 B5878 42012EB |
callnumber-subject | QB - Astronomy |
collection | ZDB-4-EBA |
contents | Cover; BLACK HOLES IN HIGHER DIMENSIONS; Title; Copyright; Contents; Contributors; Preface; Part I: Introduction; 1: Black holes in four dimensions; 1.1 Schwarzschild solution; 1.2 Reissner -- Nordstrom solution; 1.3 Kerr solution; 1.4 Black holes with nonzero cosmological constant; 1.5 General properties of four-dimensional black holes; 1.5.1 Uniqueness; 1.5.2 Stability; 1.5.3 Topology of the event horizon; 1.5.4 Cosmic censorship; 1.6 Black hole thermodynamics; References; Part II: Kaluza -- Klein theory; 2: The Gregory -- Laflamme instability; 2.1 Overview; 2.2 Black holes in higher dimensions 2.3 A thermodynamic argument for instability2.4 Perturbing the black string; 2.4.1 Perturbation theory; 2.4.2 Finding the perturbation; 2.4.3 Regularity conditions; 2.4.4 The instability; 2.4.5 More general instabilities; 2.5 Consequences of the instability; References; 3: Final state of Gregory -- Laflamme instability; 3.1 Overview; 3.2 Background; 3.3 Numerical approach; 3.3.1 Initial data; 3.3.2 Evolution; 3.3.3 Apparent horizons; 3.3.4 Evolution code; 3.4 Evolution of an unstable black string; 3.4.1 Apparent horizon dynamics; 3.4.2 Interpretation of the horizon dynamics 3.5 Speculations and open questions3.5.1 Mode behavior; 3.5.2 Dynamics beyond the classical regime; 3.5.3 Future work; Acknowledgements; References; Extrinsic curvature; 4: General black holes in Kaluza -- Klein theory; 4.1 Energy in Kaluza -- Klein theory; 4.2 Homogeneous black hole solutions; 4.2.1 Nonrotating charged black holes; 4.2.2 Rotating Kaluza -- Klein black holes; 4.3 Inhomogeneous black hole solutions; 4.3.1 Localized black holes; 4.3.2 Inhomogeneous black strings; 4.3.3 The space of static black hole solutions; 4.3.4 Stability of the static black hole solutions; References Part III: Asymptotically flat solutions5: Myers -- Perry black holes; 5.1 Static black holes; 5.2 Spinning black holes; 5.2.1 Myers -- Perry black hole metrics; 5.2.2 Singularities; 5.2.3 Horizons; 5.2.4 Ergosurfaces and causality violation; 5.2.5 Maximal analytic extension; 5.2.6 Hidden symmetries and geodesics; 5.2.7 Black hole thermodynamics; 5.2.8 Instabilities; Acknowledgements; 5.3 Appendix A: Mass and angular momentum; 5.4 Appendix B: A case study of d = 5; References; 6: Black rings; 6.1 Introduction; 6.2 Ring coordinates; 6.3 Singly spinning black ring solution; 6.3.1 Spacetime geometry 6.3.2 Physical magnitudes and nonuniqueness6.4 Black ring with two angular momenta; 6.5 Multiple black hole solutions; 6.5.1 Black Saturns and multi-rings; 6.5.2 Phase diagram; 6.5.3 Bi-rings; 6.6 Stability; References; Part IV: General properties; Constraints on the topology of higher-dimensional black holes; 7.1 Introduction; 7.2 Hawking's theorem on black hole topology; 7.3 Marginally outer-trapped surfaces; 7.4 A generalization of Hawking's theorem and some topological restrictions; 7.5 The proof of Theorem 7.4.1; 7.6 The borderline case; 7.7 Effect of the cosmological constant |
ctrlnum | (OCoLC)794379486 |
dewey-full | 523.8/875 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 523 - Specific celestial bodies and phenomena |
dewey-raw | 523.8/875 |
dewey-search | 523.8/875 |
dewey-sort | 3523.8 3875 |
dewey-tens | 520 - Astronomy and allied sciences |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06971cam a2200721 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn794379486</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">120529t20122012nyu ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">CDX</subfield><subfield code="d">YDXCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">COO</subfield><subfield code="d">E7B</subfield><subfield code="d">UIU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CUS</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">794901211</subfield><subfield code="a">817083636</subfield><subfield code="a">964301049</subfield><subfield code="a">990641836</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139380041</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139380044</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139004176</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139004174</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">128064754X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781280647543</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107013452</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1107013453</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">9786613633590</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)794379486</subfield><subfield code="z">(OCoLC)794901211</subfield><subfield code="z">(OCoLC)817083636</subfield><subfield code="z">(OCoLC)964301049</subfield><subfield code="z">(OCoLC)990641836</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QB843.B55</subfield><subfield code="b">.B5878 2012eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PH</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">523.8/875</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SCI015000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Black holes in higher dimensions /</subfield><subfield code="c">edited by Gary T. Horowitz.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Black holes are one of the most remarkable predictions of Einstein's general relativity. Now widely accepted by the scientific community, most work has focussed on black holes in our familiar four spacetime dimensions. But in recent years, ideas in brane-world cosmology, string theory, and gauge/gravity duality have all motivated a study of black holes in more than four dimensions, with surprising results. In higher dimensions, black holes exist with exotic shapes and unusual dynamics. Edited by leading expert Gary Horowitz, this exciting book is the first devoted to this new field. The major discoveries are explained by the people who made them: RobMyers describes theMyers-Perry solutions that represent rotating black holes in higher dimensions; Ruth Gregory describes the Gregory-Laflamme instability of black strings; and Juan Maldacena introduces gauge/gravity duality, the remarkable correspondence that relates a gravitational theory to nongravitational physics. There are two additional chapters on this duality describing how black holes can be used to describe relativistic fluids and aspects of condensed matter physics"--</subfield><subfield code="c">Provided by publisher</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; BLACK HOLES IN HIGHER DIMENSIONS; Title; Copyright; Contents; Contributors; Preface; Part I: Introduction; 1: Black holes in four dimensions; 1.1 Schwarzschild solution; 1.2 Reissner -- Nordstrom solution; 1.3 Kerr solution; 1.4 Black holes with nonzero cosmological constant; 1.5 General properties of four-dimensional black holes; 1.5.1 Uniqueness; 1.5.2 Stability; 1.5.3 Topology of the event horizon; 1.5.4 Cosmic censorship; 1.6 Black hole thermodynamics; References; Part II: Kaluza -- Klein theory; 2: The Gregory -- Laflamme instability; 2.1 Overview; 2.2 Black holes in higher dimensions</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3 A thermodynamic argument for instability2.4 Perturbing the black string; 2.4.1 Perturbation theory; 2.4.2 Finding the perturbation; 2.4.3 Regularity conditions; 2.4.4 The instability; 2.4.5 More general instabilities; 2.5 Consequences of the instability; References; 3: Final state of Gregory -- Laflamme instability; 3.1 Overview; 3.2 Background; 3.3 Numerical approach; 3.3.1 Initial data; 3.3.2 Evolution; 3.3.3 Apparent horizons; 3.3.4 Evolution code; 3.4 Evolution of an unstable black string; 3.4.1 Apparent horizon dynamics; 3.4.2 Interpretation of the horizon dynamics</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.5 Speculations and open questions3.5.1 Mode behavior; 3.5.2 Dynamics beyond the classical regime; 3.5.3 Future work; Acknowledgements; References; Extrinsic curvature; 4: General black holes in Kaluza -- Klein theory; 4.1 Energy in Kaluza -- Klein theory; 4.2 Homogeneous black hole solutions; 4.2.1 Nonrotating charged black holes; 4.2.2 Rotating Kaluza -- Klein black holes; 4.3 Inhomogeneous black hole solutions; 4.3.1 Localized black holes; 4.3.2 Inhomogeneous black strings; 4.3.3 The space of static black hole solutions; 4.3.4 Stability of the static black hole solutions; References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Part III: Asymptotically flat solutions5: Myers -- Perry black holes; 5.1 Static black holes; 5.2 Spinning black holes; 5.2.1 Myers -- Perry black hole metrics; 5.2.2 Singularities; 5.2.3 Horizons; 5.2.4 Ergosurfaces and causality violation; 5.2.5 Maximal analytic extension; 5.2.6 Hidden symmetries and geodesics; 5.2.7 Black hole thermodynamics; 5.2.8 Instabilities; Acknowledgements; 5.3 Appendix A: Mass and angular momentum; 5.4 Appendix B: A case study of d = 5; References; 6: Black rings; 6.1 Introduction; 6.2 Ring coordinates; 6.3 Singly spinning black ring solution; 6.3.1 Spacetime geometry</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.3.2 Physical magnitudes and nonuniqueness6.4 Black ring with two angular momenta; 6.5 Multiple black hole solutions; 6.5.1 Black Saturns and multi-rings; 6.5.2 Phase diagram; 6.5.3 Bi-rings; 6.6 Stability; References; Part IV: General properties; Constraints on the topology of higher-dimensional black holes; 7.1 Introduction; 7.2 Hawking's theorem on black hole topology; 7.3 Marginally outer-trapped surfaces; 7.4 A generalization of Hawking's theorem and some topological restrictions; 7.5 The proof of Theorem 7.4.1; 7.6 The borderline case; 7.7 Effect of the cosmological constant</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Black holes (Astronomy)</subfield><subfield code="x">Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Hyperspace.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85063720</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Trous noirs (Astronomie)</subfield><subfield code="x">Modèles mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Hyperespace.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Cosmology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Astronomy.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hyperspace</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Horowitz, Gary T.,</subfield><subfield code="d">1955-</subfield><subfield code="e">editor.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJrWGrB4rghwQ4mMwT9FKd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2012007767</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Black holes in higher dimensions.</subfield><subfield code="d">New York : Cambridge University Press, 2012</subfield><subfield code="z">9781107013452</subfield><subfield code="w">(DLC) 2011053168</subfield><subfield code="w">(OCoLC)761858493</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=443657</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH23038399</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">22580086</subfield><subfield code="c">60.00 GBP</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10565049</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">443657</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">363359</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7665606</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">8784733</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7636142</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn794379486 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:18:24Z |
institution | BVB |
isbn | 9781139380041 1139380044 9781139004176 1139004174 128064754X 9781280647543 |
language | English |
oclc_num | 794379486 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge University Press, |
record_format | marc |
spelling | Black holes in higher dimensions / edited by Gary T. Horowitz. New York : Cambridge University Press, 2012. ©2012 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier "Black holes are one of the most remarkable predictions of Einstein's general relativity. Now widely accepted by the scientific community, most work has focussed on black holes in our familiar four spacetime dimensions. But in recent years, ideas in brane-world cosmology, string theory, and gauge/gravity duality have all motivated a study of black holes in more than four dimensions, with surprising results. In higher dimensions, black holes exist with exotic shapes and unusual dynamics. Edited by leading expert Gary Horowitz, this exciting book is the first devoted to this new field. The major discoveries are explained by the people who made them: RobMyers describes theMyers-Perry solutions that represent rotating black holes in higher dimensions; Ruth Gregory describes the Gregory-Laflamme instability of black strings; and Juan Maldacena introduces gauge/gravity duality, the remarkable correspondence that relates a gravitational theory to nongravitational physics. There are two additional chapters on this duality describing how black holes can be used to describe relativistic fluids and aspects of condensed matter physics"-- Provided by publisher Includes bibliographical references and index. Print version record. Cover; BLACK HOLES IN HIGHER DIMENSIONS; Title; Copyright; Contents; Contributors; Preface; Part I: Introduction; 1: Black holes in four dimensions; 1.1 Schwarzschild solution; 1.2 Reissner -- Nordstrom solution; 1.3 Kerr solution; 1.4 Black holes with nonzero cosmological constant; 1.5 General properties of four-dimensional black holes; 1.5.1 Uniqueness; 1.5.2 Stability; 1.5.3 Topology of the event horizon; 1.5.4 Cosmic censorship; 1.6 Black hole thermodynamics; References; Part II: Kaluza -- Klein theory; 2: The Gregory -- Laflamme instability; 2.1 Overview; 2.2 Black holes in higher dimensions 2.3 A thermodynamic argument for instability2.4 Perturbing the black string; 2.4.1 Perturbation theory; 2.4.2 Finding the perturbation; 2.4.3 Regularity conditions; 2.4.4 The instability; 2.4.5 More general instabilities; 2.5 Consequences of the instability; References; 3: Final state of Gregory -- Laflamme instability; 3.1 Overview; 3.2 Background; 3.3 Numerical approach; 3.3.1 Initial data; 3.3.2 Evolution; 3.3.3 Apparent horizons; 3.3.4 Evolution code; 3.4 Evolution of an unstable black string; 3.4.1 Apparent horizon dynamics; 3.4.2 Interpretation of the horizon dynamics 3.5 Speculations and open questions3.5.1 Mode behavior; 3.5.2 Dynamics beyond the classical regime; 3.5.3 Future work; Acknowledgements; References; Extrinsic curvature; 4: General black holes in Kaluza -- Klein theory; 4.1 Energy in Kaluza -- Klein theory; 4.2 Homogeneous black hole solutions; 4.2.1 Nonrotating charged black holes; 4.2.2 Rotating Kaluza -- Klein black holes; 4.3 Inhomogeneous black hole solutions; 4.3.1 Localized black holes; 4.3.2 Inhomogeneous black strings; 4.3.3 The space of static black hole solutions; 4.3.4 Stability of the static black hole solutions; References Part III: Asymptotically flat solutions5: Myers -- Perry black holes; 5.1 Static black holes; 5.2 Spinning black holes; 5.2.1 Myers -- Perry black hole metrics; 5.2.2 Singularities; 5.2.3 Horizons; 5.2.4 Ergosurfaces and causality violation; 5.2.5 Maximal analytic extension; 5.2.6 Hidden symmetries and geodesics; 5.2.7 Black hole thermodynamics; 5.2.8 Instabilities; Acknowledgements; 5.3 Appendix A: Mass and angular momentum; 5.4 Appendix B: A case study of d = 5; References; 6: Black rings; 6.1 Introduction; 6.2 Ring coordinates; 6.3 Singly spinning black ring solution; 6.3.1 Spacetime geometry 6.3.2 Physical magnitudes and nonuniqueness6.4 Black ring with two angular momenta; 6.5 Multiple black hole solutions; 6.5.1 Black Saturns and multi-rings; 6.5.2 Phase diagram; 6.5.3 Bi-rings; 6.6 Stability; References; Part IV: General properties; Constraints on the topology of higher-dimensional black holes; 7.1 Introduction; 7.2 Hawking's theorem on black hole topology; 7.3 Marginally outer-trapped surfaces; 7.4 A generalization of Hawking's theorem and some topological restrictions; 7.5 The proof of Theorem 7.4.1; 7.6 The borderline case; 7.7 Effect of the cosmological constant Black holes (Astronomy) Mathematical models. Hyperspace. http://id.loc.gov/authorities/subjects/sh85063720 Trous noirs (Astronomie) Modèles mathématiques. Hyperespace. SCIENCE Cosmology. bisacsh SCIENCE Astronomy. bisacsh Hyperspace fast Horowitz, Gary T., 1955- editor. https://id.oclc.org/worldcat/entity/E39PBJrWGrB4rghwQ4mMwT9FKd http://id.loc.gov/authorities/names/n2012007767 Print version: Black holes in higher dimensions. New York : Cambridge University Press, 2012 9781107013452 (DLC) 2011053168 (OCoLC)761858493 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=443657 Volltext |
spellingShingle | Black holes in higher dimensions / Cover; BLACK HOLES IN HIGHER DIMENSIONS; Title; Copyright; Contents; Contributors; Preface; Part I: Introduction; 1: Black holes in four dimensions; 1.1 Schwarzschild solution; 1.2 Reissner -- Nordstrom solution; 1.3 Kerr solution; 1.4 Black holes with nonzero cosmological constant; 1.5 General properties of four-dimensional black holes; 1.5.1 Uniqueness; 1.5.2 Stability; 1.5.3 Topology of the event horizon; 1.5.4 Cosmic censorship; 1.6 Black hole thermodynamics; References; Part II: Kaluza -- Klein theory; 2: The Gregory -- Laflamme instability; 2.1 Overview; 2.2 Black holes in higher dimensions 2.3 A thermodynamic argument for instability2.4 Perturbing the black string; 2.4.1 Perturbation theory; 2.4.2 Finding the perturbation; 2.4.3 Regularity conditions; 2.4.4 The instability; 2.4.5 More general instabilities; 2.5 Consequences of the instability; References; 3: Final state of Gregory -- Laflamme instability; 3.1 Overview; 3.2 Background; 3.3 Numerical approach; 3.3.1 Initial data; 3.3.2 Evolution; 3.3.3 Apparent horizons; 3.3.4 Evolution code; 3.4 Evolution of an unstable black string; 3.4.1 Apparent horizon dynamics; 3.4.2 Interpretation of the horizon dynamics 3.5 Speculations and open questions3.5.1 Mode behavior; 3.5.2 Dynamics beyond the classical regime; 3.5.3 Future work; Acknowledgements; References; Extrinsic curvature; 4: General black holes in Kaluza -- Klein theory; 4.1 Energy in Kaluza -- Klein theory; 4.2 Homogeneous black hole solutions; 4.2.1 Nonrotating charged black holes; 4.2.2 Rotating Kaluza -- Klein black holes; 4.3 Inhomogeneous black hole solutions; 4.3.1 Localized black holes; 4.3.2 Inhomogeneous black strings; 4.3.3 The space of static black hole solutions; 4.3.4 Stability of the static black hole solutions; References Part III: Asymptotically flat solutions5: Myers -- Perry black holes; 5.1 Static black holes; 5.2 Spinning black holes; 5.2.1 Myers -- Perry black hole metrics; 5.2.2 Singularities; 5.2.3 Horizons; 5.2.4 Ergosurfaces and causality violation; 5.2.5 Maximal analytic extension; 5.2.6 Hidden symmetries and geodesics; 5.2.7 Black hole thermodynamics; 5.2.8 Instabilities; Acknowledgements; 5.3 Appendix A: Mass and angular momentum; 5.4 Appendix B: A case study of d = 5; References; 6: Black rings; 6.1 Introduction; 6.2 Ring coordinates; 6.3 Singly spinning black ring solution; 6.3.1 Spacetime geometry 6.3.2 Physical magnitudes and nonuniqueness6.4 Black ring with two angular momenta; 6.5 Multiple black hole solutions; 6.5.1 Black Saturns and multi-rings; 6.5.2 Phase diagram; 6.5.3 Bi-rings; 6.6 Stability; References; Part IV: General properties; Constraints on the topology of higher-dimensional black holes; 7.1 Introduction; 7.2 Hawking's theorem on black hole topology; 7.3 Marginally outer-trapped surfaces; 7.4 A generalization of Hawking's theorem and some topological restrictions; 7.5 The proof of Theorem 7.4.1; 7.6 The borderline case; 7.7 Effect of the cosmological constant Black holes (Astronomy) Mathematical models. Hyperspace. http://id.loc.gov/authorities/subjects/sh85063720 Trous noirs (Astronomie) Modèles mathématiques. Hyperespace. SCIENCE Cosmology. bisacsh SCIENCE Astronomy. bisacsh Hyperspace fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85063720 |
title | Black holes in higher dimensions / |
title_auth | Black holes in higher dimensions / |
title_exact_search | Black holes in higher dimensions / |
title_full | Black holes in higher dimensions / edited by Gary T. Horowitz. |
title_fullStr | Black holes in higher dimensions / edited by Gary T. Horowitz. |
title_full_unstemmed | Black holes in higher dimensions / edited by Gary T. Horowitz. |
title_short | Black holes in higher dimensions / |
title_sort | black holes in higher dimensions |
topic | Black holes (Astronomy) Mathematical models. Hyperspace. http://id.loc.gov/authorities/subjects/sh85063720 Trous noirs (Astronomie) Modèles mathématiques. Hyperespace. SCIENCE Cosmology. bisacsh SCIENCE Astronomy. bisacsh Hyperspace fast |
topic_facet | Black holes (Astronomy) Mathematical models. Hyperspace. Trous noirs (Astronomie) Modèles mathématiques. Hyperespace. SCIENCE Cosmology. SCIENCE Astronomy. Hyperspace |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=443657 |
work_keys_str_mv | AT horowitzgaryt blackholesinhigherdimensions |