Circuit Double Cover of Graphs.:
Contains all the techniques, methods and results developed so far in a bid to solve the famous CDC conjecture.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2012.
|
Schriftenreihe: | London Mathematical Society Lecture Note Series, 399.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Contains all the techniques, methods and results developed so far in a bid to solve the famous CDC conjecture. |
Beschreibung: | 1 online resource (381 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781139376440 1139376446 0521282357 9780521282352 9781107263598 110726359X 9781139379304 1139379305 9781139375016 1139375016 9780511863158 0511863152 |
Internformat
MARC
LEADER | 00000cam a2200000Mu 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn794327665 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 120528s2012 enk ob 001 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d OCLCQ |d N15 |d OCLCO |d IDEBK |d DEBSZ |d UMI |d OCLCQ |d OCLCO |d CDX |d YDXCP |d OCLCF |d COO |d N$T |d E7B |d CAMBR |d OCL |d OCLCQ |d UAB |d OCLCQ |d COCUF |d STF |d CEF |d CUY |d MERUC |d ZCU |d ICG |d K6U |d LOA |d VT2 |d U3W |d OCLCQ |d WYU |d LVT |d TKN |d DKC |d AGLDB |d SNK |d BTN |d MHW |d INTCL |d AUW |d OCLCQ |d M8D |d UX1 |d AUD |d OCLCQ |d A6Q |d G3B |d OCLCQ |d UKCRE |d AJS |d OCLCQ |d OCLCO |d UKAHL |d OCLCQ |d OCLCO |d S9M |d OCLCL | ||
066 | |c (S | ||
015 | |a GBB203847 |2 bnb | ||
016 | 7 | |a 016009584 |2 Uk | |
019 | |a 794706805 |a 794901179 |a 795123496 |a 817921697 |a 861503474 |a 1042908308 |a 1043683336 |a 1066649521 |a 1076655746 |a 1081285628 |a 1103276174 |a 1153471644 |a 1169992379 |a 1170637549 |a 1228599191 |a 1264731011 | ||
020 | |a 9781139376440 | ||
020 | |a 1139376446 | ||
020 | |a 0521282357 | ||
020 | |a 9780521282352 | ||
020 | |a 9781107263598 | ||
020 | |a 110726359X | ||
020 | |a 9781139379304 |q (electronic bk.) | ||
020 | |a 1139379305 |q (electronic bk.) | ||
020 | |a 9781139375016 | ||
020 | |a 1139375016 | ||
020 | |a 9780511863158 |q (electronic bk.) | ||
020 | |a 0511863152 |q (electronic bk.) | ||
020 | |z 9780521282352 | ||
035 | |a (OCoLC)794327665 |z (OCoLC)794706805 |z (OCoLC)794901179 |z (OCoLC)795123496 |z (OCoLC)817921697 |z (OCoLC)861503474 |z (OCoLC)1042908308 |z (OCoLC)1043683336 |z (OCoLC)1066649521 |z (OCoLC)1076655746 |z (OCoLC)1081285628 |z (OCoLC)1103276174 |z (OCoLC)1153471644 |z (OCoLC)1169992379 |z (OCoLC)1170637549 |z (OCoLC)1228599191 |z (OCoLC)1264731011 | ||
037 | |a CL0500000328 |b Safari Books Online | ||
050 | 4 | |a QA166 | |
072 | 7 | |a MAT |x 013000 |2 bisacsh | |
082 | 7 | |a 511.5 |a 511/.5 | |
049 | |a MAIN | ||
100 | 1 | |a Zhang, Cun-Quan. | |
245 | 1 | 0 | |a Circuit Double Cover of Graphs. |
260 | |a Cambridge : |b Cambridge University Press, |c 2012. | ||
300 | |a 1 online resource (381 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a London Mathematical Society Lecture Note Series, 399 ; |v v. 399 | |
505 | 0 | |a Cover; Series; Title; Copyright; Dedication; Contents; Foreword; Foreword; Preface; 1: Circuit double cover; 1.1 Circuit double cover conjecture; 1.2 Minimal counterexamples; 1.3 3-edge-coloring and even subgraph cover; 1.4 Circuit double covers and graph embeddings; 1.5 Open problems; 1.6 Exercises; 2: Faithful circuit cover; 2.1 Faithful circuit cover; 2.2 3-edge-coloring and faithful cover; Applications of Lemma 2.2.1; 2.3 Construction of contra pairs; Isaacs-Fleischner-Jackson product; 2.4 Open problems; 2.5 Exercises; Admissible eulerian weights; Faithful cover; Contra pairs. | |
505 | 8 | |a 3: Circuit chain and Petersen minor3.1 Weight decomposition and removable circuit; 3.2 Cubic minimal contra pair; 3.3 Minimal contra pair; 3.4 Structure of circuit chain; 3.5 Open problems; 3.6 Exercises; Structure of circuit chain; Girth for faithful cover; Miscellanies; 4: Small oddness; 4.1 k-even subgraph double covers; 4.2 Small oddness; 4.3 Open problems; 4.4 Exercises; 5: Spanning minor, Kotzig frames; 5.1 Spanning Kotzig subgraphs; Generalizations of Kotzig graphs; Various spanning minors; 5.2 Kotzig frames; Proof of Theorem 5.2.6; 5.3 Construction of Kotzig graphs. | |
505 | 8 | |a 5.4 Three-Hamilton circuit double coversStrong Kotzig graphs; Uniquely 3-edge-colorable graphs; Hamilton weighted graphs; 5.5 Open problems; From frames to CDC; Existence of Kotzig frames; 5.6 Exercises; Constructions; Examples, counterexamples; Spanning minors; 6: Strong circuit double cover; 6.1 Circuit extension and strong CDC; 6.2 Thomason's lollipop method; Almost Hamilton circuit; 6.3 Stable circuits; 6.4 Extension-inheritable properties; 6.5 Extendable circuits; 6.6 Semi-extension of circuits; Further generalizations; 6.7 Circumferences; 6.8 Open problems; 6.9 Exercises. | |
505 | 8 | |a 7: Spanning trees, supereulerian graphs7.1 Jaeger Theorem: 2-even subgraph covers; Supereulerian graphs, even subgraph covers; Spanning trees, supereulerian graphs; 4-edge-connected graphs; 7.2 Jaeger Theorem: 3-even subgraph covers; Smallest counterexample to the theorem; The first proof of Theorem 7.2.1; The second proof of Theorem 7.2.1; 7.3 Even subgraph 2k-covers; 4-covers; 6-covers; Berge-Fulkerson conjecture; 7.4 Catlin's collapsible graphs; Examples of collapsible graphs; Maximal collapsible subgraph and graph reduction; Contractible configurations; 7.5 Exercises. | |
505 | 8 | |a 3-even subgraph coversBerge-Fulkerson conjecture; Collapsible graphs; 8: Flows and circuit covers; 8.1 Jaeger Theorems: 4-flow and 8-flow; 8.2 4-flows; Even subgraph covers; Parity subgraph decompositions; Evenly spanning even subgraphs; Faithful cover; 8.3 Seymour Theorem: 6-flow; Even subgraph 6-covers; 8.4 Contractible configurations for 4-flow; 8.5 Bipartizing matching, flow covering; 8.6 Exercises; 4-flows; Faithful covers; Seymour's operation; Miscellanies; 9: Girth, embedding, small cover; 9.1 Girth; 9.2 Small genus embedding; 9.3 Small circuit double covers; 9.4 Exercises. | |
520 | |a Contains all the techniques, methods and results developed so far in a bid to solve the famous CDC conjecture. | ||
588 | 0 | |a Print version record. | |
504 | |a Includes bibliographical references and index. | ||
650 | 0 | |a Graph theory. |0 http://id.loc.gov/authorities/subjects/sh85056471 | |
650 | 0 | |a Graph theory |v Problems, exercises, etc. | |
650 | 7 | |a MATHEMATICS |x Graphic Methods. |2 bisacsh | |
650 | 7 | |a Teoría de grafos |2 embne | |
650 | 7 | |a Graph theory |2 fast | |
655 | 7 | |a Problems and exercises |2 fast | |
758 | |i has work: |a Circuit double cover of graphs (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFF9Wr9h6xCG6gc87JhQ4m |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Zhang, Cun-Quan. |t Circuit Double Cover of Graphs. |d Cambridge : Cambridge University Press, ©2012 |z 9780521282352 |
830 | 0 | |a London Mathematical Society Lecture Note Series, 399. | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=443712 |3 Volltext |
880 | 8 | |6 505-00/(S |a 11.1 Restricted circuit decompositions -- 11.2 Open problems -- 11.3 Exercises -- 12: Reductions of weights, coverages -- 12.1 Weight reduction for contra pairs -- Application of Theorem 12.1.1 -- Outline of the proof of Theorem 12.1.1 -- Notation and lemmas -- Admissible dipath -- A technical lemma for adjustment of faithful cover -- V. Summary -- Proof of Theorem 12.1.1 -- Part one -- Part two -- 12.2 Coverage reduction with fixed parity -- 12.3 Exercises -- 13: Orientable cover -- 13.1 Orientable double cover -- Orientable 3-even subgraph double covers -- Orientable 4-even subgraph double covers -- 13.2 Circular double covers and modulo orientations -- Circular double covers -- Modulo orientations -- 13.3 Open problems -- 13.4 Exercises -- 14: Shortest cycle covers -- 14.1 Shortest cover and double cover -- 14.2 Minimum eulerian weight -- Faithful coverable graphs -- Smallest parity subgraphs -- Chinese postman problem -- 14.3 3-even subgraph covers -- 14.3.1 Basis of cycle space -- 14.3.2 3-even subgraph covers -- 14.3.3 (>= 4)-even subgraph covers -- 14.3.4 Upper bounds of SCC3 -- 14.3.5 Relations with other major conjectures -- Berge-Fulkerson conjecture -- Tutte's 5-flow conjecture -- Tutte's 3-flow conjecture -- Summary -- 14.3.6 Fano plane and Fano flows -- (A) Elements of the Fano plane -- (B) Fano flow 3-even subgraph cover -- (C) Fano points edge set partition -- (D) Fano lines vertex set partition -- (E) Fano line even subgraph -- (F) Fano basis 3-even subgraph cover -- 14.3.7 Incomplete Fano flows, Fμ-flows -- Line-incomplete, Fμ-flows -- Point-incomplete -- F4-flows, F5-flows and 2-factors -- 14.3.8 Some proofs -- Berge-Fulkerson conjecture and SCC3 -- Fano flows and SCC3 -- 14.4 Open problems -- 14.5 Exercises -- 15: Beyond integer (1, 2)-weight -- A uniform definition in linear/integer programming. | |
938 | |a Askews and Holts Library Services |b ASKH |n AH23028222 | ||
938 | |a Coutts Information Services |b COUT |n 22580054 |c 45.00 GBP | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL880644 | ||
938 | |a ebrary |b EBRY |n ebr10565026 | ||
938 | |a EBSCOhost |b EBSC |n 443712 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 363329 | ||
938 | |a YBP Library Services |b YANK |n 7665551 | ||
938 | |a YBP Library Services |b YANK |n 7651029 | ||
938 | |a YBP Library Services |b YANK |n 8871522 | ||
938 | |a YBP Library Services |b YANK |n 7636089 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn794327665 |
---|---|
_version_ | 1816881795474391040 |
adam_text | |
any_adam_object | |
author | Zhang, Cun-Quan |
author_facet | Zhang, Cun-Quan |
author_role | |
author_sort | Zhang, Cun-Quan |
author_variant | c q z cqz |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA166 |
callnumber-raw | QA166 |
callnumber-search | QA166 |
callnumber-sort | QA 3166 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Series; Title; Copyright; Dedication; Contents; Foreword; Foreword; Preface; 1: Circuit double cover; 1.1 Circuit double cover conjecture; 1.2 Minimal counterexamples; 1.3 3-edge-coloring and even subgraph cover; 1.4 Circuit double covers and graph embeddings; 1.5 Open problems; 1.6 Exercises; 2: Faithful circuit cover; 2.1 Faithful circuit cover; 2.2 3-edge-coloring and faithful cover; Applications of Lemma 2.2.1; 2.3 Construction of contra pairs; Isaacs-Fleischner-Jackson product; 2.4 Open problems; 2.5 Exercises; Admissible eulerian weights; Faithful cover; Contra pairs. 3: Circuit chain and Petersen minor3.1 Weight decomposition and removable circuit; 3.2 Cubic minimal contra pair; 3.3 Minimal contra pair; 3.4 Structure of circuit chain; 3.5 Open problems; 3.6 Exercises; Structure of circuit chain; Girth for faithful cover; Miscellanies; 4: Small oddness; 4.1 k-even subgraph double covers; 4.2 Small oddness; 4.3 Open problems; 4.4 Exercises; 5: Spanning minor, Kotzig frames; 5.1 Spanning Kotzig subgraphs; Generalizations of Kotzig graphs; Various spanning minors; 5.2 Kotzig frames; Proof of Theorem 5.2.6; 5.3 Construction of Kotzig graphs. 5.4 Three-Hamilton circuit double coversStrong Kotzig graphs; Uniquely 3-edge-colorable graphs; Hamilton weighted graphs; 5.5 Open problems; From frames to CDC; Existence of Kotzig frames; 5.6 Exercises; Constructions; Examples, counterexamples; Spanning minors; 6: Strong circuit double cover; 6.1 Circuit extension and strong CDC; 6.2 Thomason's lollipop method; Almost Hamilton circuit; 6.3 Stable circuits; 6.4 Extension-inheritable properties; 6.5 Extendable circuits; 6.6 Semi-extension of circuits; Further generalizations; 6.7 Circumferences; 6.8 Open problems; 6.9 Exercises. 7: Spanning trees, supereulerian graphs7.1 Jaeger Theorem: 2-even subgraph covers; Supereulerian graphs, even subgraph covers; Spanning trees, supereulerian graphs; 4-edge-connected graphs; 7.2 Jaeger Theorem: 3-even subgraph covers; Smallest counterexample to the theorem; The first proof of Theorem 7.2.1; The second proof of Theorem 7.2.1; 7.3 Even subgraph 2k-covers; 4-covers; 6-covers; Berge-Fulkerson conjecture; 7.4 Catlin's collapsible graphs; Examples of collapsible graphs; Maximal collapsible subgraph and graph reduction; Contractible configurations; 7.5 Exercises. 3-even subgraph coversBerge-Fulkerson conjecture; Collapsible graphs; 8: Flows and circuit covers; 8.1 Jaeger Theorems: 4-flow and 8-flow; 8.2 4-flows; Even subgraph covers; Parity subgraph decompositions; Evenly spanning even subgraphs; Faithful cover; 8.3 Seymour Theorem: 6-flow; Even subgraph 6-covers; 8.4 Contractible configurations for 4-flow; 8.5 Bipartizing matching, flow covering; 8.6 Exercises; 4-flows; Faithful covers; Seymour's operation; Miscellanies; 9: Girth, embedding, small cover; 9.1 Girth; 9.2 Small genus embedding; 9.3 Small circuit double covers; 9.4 Exercises. |
ctrlnum | (OCoLC)794327665 |
dewey-full | 511.5 511/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.5 511/.5 |
dewey-search | 511.5 511/.5 |
dewey-sort | 3511.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08718cam a2200853Mu 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn794327665</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|---|||||</controlfield><controlfield tag="008">120528s2012 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N15</subfield><subfield code="d">OCLCO</subfield><subfield code="d">IDEBK</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">UMI</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">CDX</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCF</subfield><subfield code="d">COO</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">STF</subfield><subfield code="d">CEF</subfield><subfield code="d">CUY</subfield><subfield code="d">MERUC</subfield><subfield code="d">ZCU</subfield><subfield code="d">ICG</subfield><subfield code="d">K6U</subfield><subfield code="d">LOA</subfield><subfield code="d">VT2</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">TKN</subfield><subfield code="d">DKC</subfield><subfield code="d">AGLDB</subfield><subfield code="d">SNK</subfield><subfield code="d">BTN</subfield><subfield code="d">MHW</subfield><subfield code="d">INTCL</subfield><subfield code="d">AUW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UX1</subfield><subfield code="d">AUD</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">A6Q</subfield><subfield code="d">G3B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">S9M</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB203847</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">016009584</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">794706805</subfield><subfield code="a">794901179</subfield><subfield code="a">795123496</subfield><subfield code="a">817921697</subfield><subfield code="a">861503474</subfield><subfield code="a">1042908308</subfield><subfield code="a">1043683336</subfield><subfield code="a">1066649521</subfield><subfield code="a">1076655746</subfield><subfield code="a">1081285628</subfield><subfield code="a">1103276174</subfield><subfield code="a">1153471644</subfield><subfield code="a">1169992379</subfield><subfield code="a">1170637549</subfield><subfield code="a">1228599191</subfield><subfield code="a">1264731011</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139376440</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139376446</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521282357</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521282352</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107263598</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">110726359X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139379304</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139379305</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139375016</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139375016</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511863158</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511863152</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521282352</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)794327665</subfield><subfield code="z">(OCoLC)794706805</subfield><subfield code="z">(OCoLC)794901179</subfield><subfield code="z">(OCoLC)795123496</subfield><subfield code="z">(OCoLC)817921697</subfield><subfield code="z">(OCoLC)861503474</subfield><subfield code="z">(OCoLC)1042908308</subfield><subfield code="z">(OCoLC)1043683336</subfield><subfield code="z">(OCoLC)1066649521</subfield><subfield code="z">(OCoLC)1076655746</subfield><subfield code="z">(OCoLC)1081285628</subfield><subfield code="z">(OCoLC)1103276174</subfield><subfield code="z">(OCoLC)1153471644</subfield><subfield code="z">(OCoLC)1169992379</subfield><subfield code="z">(OCoLC)1170637549</subfield><subfield code="z">(OCoLC)1228599191</subfield><subfield code="z">(OCoLC)1264731011</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000328</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA166</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">013000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.5</subfield><subfield code="a">511/.5</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Cun-Quan.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Circuit Double Cover of Graphs.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (381 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society Lecture Note Series, 399 ;</subfield><subfield code="v">v. 399</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Series; Title; Copyright; Dedication; Contents; Foreword; Foreword; Preface; 1: Circuit double cover; 1.1 Circuit double cover conjecture; 1.2 Minimal counterexamples; 1.3 3-edge-coloring and even subgraph cover; 1.4 Circuit double covers and graph embeddings; 1.5 Open problems; 1.6 Exercises; 2: Faithful circuit cover; 2.1 Faithful circuit cover; 2.2 3-edge-coloring and faithful cover; Applications of Lemma 2.2.1; 2.3 Construction of contra pairs; Isaacs-Fleischner-Jackson product; 2.4 Open problems; 2.5 Exercises; Admissible eulerian weights; Faithful cover; Contra pairs.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3: Circuit chain and Petersen minor3.1 Weight decomposition and removable circuit; 3.2 Cubic minimal contra pair; 3.3 Minimal contra pair; 3.4 Structure of circuit chain; 3.5 Open problems; 3.6 Exercises; Structure of circuit chain; Girth for faithful cover; Miscellanies; 4: Small oddness; 4.1 k-even subgraph double covers; 4.2 Small oddness; 4.3 Open problems; 4.4 Exercises; 5: Spanning minor, Kotzig frames; 5.1 Spanning Kotzig subgraphs; Generalizations of Kotzig graphs; Various spanning minors; 5.2 Kotzig frames; Proof of Theorem 5.2.6; 5.3 Construction of Kotzig graphs.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.4 Three-Hamilton circuit double coversStrong Kotzig graphs; Uniquely 3-edge-colorable graphs; Hamilton weighted graphs; 5.5 Open problems; From frames to CDC; Existence of Kotzig frames; 5.6 Exercises; Constructions; Examples, counterexamples; Spanning minors; 6: Strong circuit double cover; 6.1 Circuit extension and strong CDC; 6.2 Thomason's lollipop method; Almost Hamilton circuit; 6.3 Stable circuits; 6.4 Extension-inheritable properties; 6.5 Extendable circuits; 6.6 Semi-extension of circuits; Further generalizations; 6.7 Circumferences; 6.8 Open problems; 6.9 Exercises.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7: Spanning trees, supereulerian graphs7.1 Jaeger Theorem: 2-even subgraph covers; Supereulerian graphs, even subgraph covers; Spanning trees, supereulerian graphs; 4-edge-connected graphs; 7.2 Jaeger Theorem: 3-even subgraph covers; Smallest counterexample to the theorem; The first proof of Theorem 7.2.1; The second proof of Theorem 7.2.1; 7.3 Even subgraph 2k-covers; 4-covers; 6-covers; Berge-Fulkerson conjecture; 7.4 Catlin's collapsible graphs; Examples of collapsible graphs; Maximal collapsible subgraph and graph reduction; Contractible configurations; 7.5 Exercises.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3-even subgraph coversBerge-Fulkerson conjecture; Collapsible graphs; 8: Flows and circuit covers; 8.1 Jaeger Theorems: 4-flow and 8-flow; 8.2 4-flows; Even subgraph covers; Parity subgraph decompositions; Evenly spanning even subgraphs; Faithful cover; 8.3 Seymour Theorem: 6-flow; Even subgraph 6-covers; 8.4 Contractible configurations for 4-flow; 8.5 Bipartizing matching, flow covering; 8.6 Exercises; 4-flows; Faithful covers; Seymour's operation; Miscellanies; 9: Girth, embedding, small cover; 9.1 Girth; 9.2 Small genus embedding; 9.3 Small circuit double covers; 9.4 Exercises.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Contains all the techniques, methods and results developed so far in a bid to solve the famous CDC conjecture.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Graph theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85056471</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Graph theory</subfield><subfield code="v">Problems, exercises, etc.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Graphic Methods.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Teoría de grafos</subfield><subfield code="2">embne</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Graph theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Problems and exercises</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Circuit double cover of graphs (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFF9Wr9h6xCG6gc87JhQ4m</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Zhang, Cun-Quan.</subfield><subfield code="t">Circuit Double Cover of Graphs.</subfield><subfield code="d">Cambridge : Cambridge University Press, ©2012</subfield><subfield code="z">9780521282352</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society Lecture Note Series, 399.</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=443712</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="8" ind2=" "><subfield code="6">505-00/(S</subfield><subfield code="a">11.1 Restricted circuit decompositions -- 11.2 Open problems -- 11.3 Exercises -- 12: Reductions of weights, coverages -- 12.1 Weight reduction for contra pairs -- Application of Theorem 12.1.1 -- Outline of the proof of Theorem 12.1.1 -- Notation and lemmas -- Admissible dipath -- A technical lemma for adjustment of faithful cover -- V. Summary -- Proof of Theorem 12.1.1 -- Part one -- Part two -- 12.2 Coverage reduction with fixed parity -- 12.3 Exercises -- 13: Orientable cover -- 13.1 Orientable double cover -- Orientable 3-even subgraph double covers -- Orientable 4-even subgraph double covers -- 13.2 Circular double covers and modulo orientations -- Circular double covers -- Modulo orientations -- 13.3 Open problems -- 13.4 Exercises -- 14: Shortest cycle covers -- 14.1 Shortest cover and double cover -- 14.2 Minimum eulerian weight -- Faithful coverable graphs -- Smallest parity subgraphs -- Chinese postman problem -- 14.3 3-even subgraph covers -- 14.3.1 Basis of cycle space -- 14.3.2 3-even subgraph covers -- 14.3.3 (>= 4)-even subgraph covers -- 14.3.4 Upper bounds of SCC3 -- 14.3.5 Relations with other major conjectures -- Berge-Fulkerson conjecture -- Tutte's 5-flow conjecture -- Tutte's 3-flow conjecture -- Summary -- 14.3.6 Fano plane and Fano flows -- (A) Elements of the Fano plane -- (B) Fano flow 3-even subgraph cover -- (C) Fano points edge set partition -- (D) Fano lines vertex set partition -- (E) Fano line even subgraph -- (F) Fano basis 3-even subgraph cover -- 14.3.7 Incomplete Fano flows, Fμ-flows -- Line-incomplete, Fμ-flows -- Point-incomplete -- F4-flows, F5-flows and 2-factors -- 14.3.8 Some proofs -- Berge-Fulkerson conjecture and SCC3 -- Fano flows and SCC3 -- 14.4 Open problems -- 14.5 Exercises -- 15: Beyond integer (1, 2)-weight -- A uniform definition in linear/integer programming.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH23028222</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">22580054</subfield><subfield code="c">45.00 GBP</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL880644</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10565026</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">443712</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">363329</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7665551</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7651029</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">8871522</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7636089</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Problems and exercises fast |
genre_facet | Problems and exercises |
id | ZDB-4-EBA-ocn794327665 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:18:24Z |
institution | BVB |
isbn | 9781139376440 1139376446 0521282357 9780521282352 9781107263598 110726359X 9781139379304 1139379305 9781139375016 1139375016 9780511863158 0511863152 |
language | English |
oclc_num | 794327665 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (381 pages) |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society Lecture Note Series, 399. |
series2 | London Mathematical Society Lecture Note Series, 399 ; |
spelling | Zhang, Cun-Quan. Circuit Double Cover of Graphs. Cambridge : Cambridge University Press, 2012. 1 online resource (381 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier data file London Mathematical Society Lecture Note Series, 399 ; v. 399 Cover; Series; Title; Copyright; Dedication; Contents; Foreword; Foreword; Preface; 1: Circuit double cover; 1.1 Circuit double cover conjecture; 1.2 Minimal counterexamples; 1.3 3-edge-coloring and even subgraph cover; 1.4 Circuit double covers and graph embeddings; 1.5 Open problems; 1.6 Exercises; 2: Faithful circuit cover; 2.1 Faithful circuit cover; 2.2 3-edge-coloring and faithful cover; Applications of Lemma 2.2.1; 2.3 Construction of contra pairs; Isaacs-Fleischner-Jackson product; 2.4 Open problems; 2.5 Exercises; Admissible eulerian weights; Faithful cover; Contra pairs. 3: Circuit chain and Petersen minor3.1 Weight decomposition and removable circuit; 3.2 Cubic minimal contra pair; 3.3 Minimal contra pair; 3.4 Structure of circuit chain; 3.5 Open problems; 3.6 Exercises; Structure of circuit chain; Girth for faithful cover; Miscellanies; 4: Small oddness; 4.1 k-even subgraph double covers; 4.2 Small oddness; 4.3 Open problems; 4.4 Exercises; 5: Spanning minor, Kotzig frames; 5.1 Spanning Kotzig subgraphs; Generalizations of Kotzig graphs; Various spanning minors; 5.2 Kotzig frames; Proof of Theorem 5.2.6; 5.3 Construction of Kotzig graphs. 5.4 Three-Hamilton circuit double coversStrong Kotzig graphs; Uniquely 3-edge-colorable graphs; Hamilton weighted graphs; 5.5 Open problems; From frames to CDC; Existence of Kotzig frames; 5.6 Exercises; Constructions; Examples, counterexamples; Spanning minors; 6: Strong circuit double cover; 6.1 Circuit extension and strong CDC; 6.2 Thomason's lollipop method; Almost Hamilton circuit; 6.3 Stable circuits; 6.4 Extension-inheritable properties; 6.5 Extendable circuits; 6.6 Semi-extension of circuits; Further generalizations; 6.7 Circumferences; 6.8 Open problems; 6.9 Exercises. 7: Spanning trees, supereulerian graphs7.1 Jaeger Theorem: 2-even subgraph covers; Supereulerian graphs, even subgraph covers; Spanning trees, supereulerian graphs; 4-edge-connected graphs; 7.2 Jaeger Theorem: 3-even subgraph covers; Smallest counterexample to the theorem; The first proof of Theorem 7.2.1; The second proof of Theorem 7.2.1; 7.3 Even subgraph 2k-covers; 4-covers; 6-covers; Berge-Fulkerson conjecture; 7.4 Catlin's collapsible graphs; Examples of collapsible graphs; Maximal collapsible subgraph and graph reduction; Contractible configurations; 7.5 Exercises. 3-even subgraph coversBerge-Fulkerson conjecture; Collapsible graphs; 8: Flows and circuit covers; 8.1 Jaeger Theorems: 4-flow and 8-flow; 8.2 4-flows; Even subgraph covers; Parity subgraph decompositions; Evenly spanning even subgraphs; Faithful cover; 8.3 Seymour Theorem: 6-flow; Even subgraph 6-covers; 8.4 Contractible configurations for 4-flow; 8.5 Bipartizing matching, flow covering; 8.6 Exercises; 4-flows; Faithful covers; Seymour's operation; Miscellanies; 9: Girth, embedding, small cover; 9.1 Girth; 9.2 Small genus embedding; 9.3 Small circuit double covers; 9.4 Exercises. Contains all the techniques, methods and results developed so far in a bid to solve the famous CDC conjecture. Print version record. Includes bibliographical references and index. Graph theory. http://id.loc.gov/authorities/subjects/sh85056471 Graph theory Problems, exercises, etc. MATHEMATICS Graphic Methods. bisacsh Teoría de grafos embne Graph theory fast Problems and exercises fast has work: Circuit double cover of graphs (Text) https://id.oclc.org/worldcat/entity/E39PCFF9Wr9h6xCG6gc87JhQ4m https://id.oclc.org/worldcat/ontology/hasWork Print version: Zhang, Cun-Quan. Circuit Double Cover of Graphs. Cambridge : Cambridge University Press, ©2012 9780521282352 London Mathematical Society Lecture Note Series, 399. FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=443712 Volltext 505-00/(S 11.1 Restricted circuit decompositions -- 11.2 Open problems -- 11.3 Exercises -- 12: Reductions of weights, coverages -- 12.1 Weight reduction for contra pairs -- Application of Theorem 12.1.1 -- Outline of the proof of Theorem 12.1.1 -- Notation and lemmas -- Admissible dipath -- A technical lemma for adjustment of faithful cover -- V. Summary -- Proof of Theorem 12.1.1 -- Part one -- Part two -- 12.2 Coverage reduction with fixed parity -- 12.3 Exercises -- 13: Orientable cover -- 13.1 Orientable double cover -- Orientable 3-even subgraph double covers -- Orientable 4-even subgraph double covers -- 13.2 Circular double covers and modulo orientations -- Circular double covers -- Modulo orientations -- 13.3 Open problems -- 13.4 Exercises -- 14: Shortest cycle covers -- 14.1 Shortest cover and double cover -- 14.2 Minimum eulerian weight -- Faithful coverable graphs -- Smallest parity subgraphs -- Chinese postman problem -- 14.3 3-even subgraph covers -- 14.3.1 Basis of cycle space -- 14.3.2 3-even subgraph covers -- 14.3.3 (>= 4)-even subgraph covers -- 14.3.4 Upper bounds of SCC3 -- 14.3.5 Relations with other major conjectures -- Berge-Fulkerson conjecture -- Tutte's 5-flow conjecture -- Tutte's 3-flow conjecture -- Summary -- 14.3.6 Fano plane and Fano flows -- (A) Elements of the Fano plane -- (B) Fano flow 3-even subgraph cover -- (C) Fano points edge set partition -- (D) Fano lines vertex set partition -- (E) Fano line even subgraph -- (F) Fano basis 3-even subgraph cover -- 14.3.7 Incomplete Fano flows, Fμ-flows -- Line-incomplete, Fμ-flows -- Point-incomplete -- F4-flows, F5-flows and 2-factors -- 14.3.8 Some proofs -- Berge-Fulkerson conjecture and SCC3 -- Fano flows and SCC3 -- 14.4 Open problems -- 14.5 Exercises -- 15: Beyond integer (1, 2)-weight -- A uniform definition in linear/integer programming. |
spellingShingle | Zhang, Cun-Quan Circuit Double Cover of Graphs. London Mathematical Society Lecture Note Series, 399. Cover; Series; Title; Copyright; Dedication; Contents; Foreword; Foreword; Preface; 1: Circuit double cover; 1.1 Circuit double cover conjecture; 1.2 Minimal counterexamples; 1.3 3-edge-coloring and even subgraph cover; 1.4 Circuit double covers and graph embeddings; 1.5 Open problems; 1.6 Exercises; 2: Faithful circuit cover; 2.1 Faithful circuit cover; 2.2 3-edge-coloring and faithful cover; Applications of Lemma 2.2.1; 2.3 Construction of contra pairs; Isaacs-Fleischner-Jackson product; 2.4 Open problems; 2.5 Exercises; Admissible eulerian weights; Faithful cover; Contra pairs. 3: Circuit chain and Petersen minor3.1 Weight decomposition and removable circuit; 3.2 Cubic minimal contra pair; 3.3 Minimal contra pair; 3.4 Structure of circuit chain; 3.5 Open problems; 3.6 Exercises; Structure of circuit chain; Girth for faithful cover; Miscellanies; 4: Small oddness; 4.1 k-even subgraph double covers; 4.2 Small oddness; 4.3 Open problems; 4.4 Exercises; 5: Spanning minor, Kotzig frames; 5.1 Spanning Kotzig subgraphs; Generalizations of Kotzig graphs; Various spanning minors; 5.2 Kotzig frames; Proof of Theorem 5.2.6; 5.3 Construction of Kotzig graphs. 5.4 Three-Hamilton circuit double coversStrong Kotzig graphs; Uniquely 3-edge-colorable graphs; Hamilton weighted graphs; 5.5 Open problems; From frames to CDC; Existence of Kotzig frames; 5.6 Exercises; Constructions; Examples, counterexamples; Spanning minors; 6: Strong circuit double cover; 6.1 Circuit extension and strong CDC; 6.2 Thomason's lollipop method; Almost Hamilton circuit; 6.3 Stable circuits; 6.4 Extension-inheritable properties; 6.5 Extendable circuits; 6.6 Semi-extension of circuits; Further generalizations; 6.7 Circumferences; 6.8 Open problems; 6.9 Exercises. 7: Spanning trees, supereulerian graphs7.1 Jaeger Theorem: 2-even subgraph covers; Supereulerian graphs, even subgraph covers; Spanning trees, supereulerian graphs; 4-edge-connected graphs; 7.2 Jaeger Theorem: 3-even subgraph covers; Smallest counterexample to the theorem; The first proof of Theorem 7.2.1; The second proof of Theorem 7.2.1; 7.3 Even subgraph 2k-covers; 4-covers; 6-covers; Berge-Fulkerson conjecture; 7.4 Catlin's collapsible graphs; Examples of collapsible graphs; Maximal collapsible subgraph and graph reduction; Contractible configurations; 7.5 Exercises. 3-even subgraph coversBerge-Fulkerson conjecture; Collapsible graphs; 8: Flows and circuit covers; 8.1 Jaeger Theorems: 4-flow and 8-flow; 8.2 4-flows; Even subgraph covers; Parity subgraph decompositions; Evenly spanning even subgraphs; Faithful cover; 8.3 Seymour Theorem: 6-flow; Even subgraph 6-covers; 8.4 Contractible configurations for 4-flow; 8.5 Bipartizing matching, flow covering; 8.6 Exercises; 4-flows; Faithful covers; Seymour's operation; Miscellanies; 9: Girth, embedding, small cover; 9.1 Girth; 9.2 Small genus embedding; 9.3 Small circuit double covers; 9.4 Exercises. Graph theory. http://id.loc.gov/authorities/subjects/sh85056471 Graph theory Problems, exercises, etc. MATHEMATICS Graphic Methods. bisacsh Teoría de grafos embne Graph theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85056471 |
title | Circuit Double Cover of Graphs. |
title_auth | Circuit Double Cover of Graphs. |
title_exact_search | Circuit Double Cover of Graphs. |
title_full | Circuit Double Cover of Graphs. |
title_fullStr | Circuit Double Cover of Graphs. |
title_full_unstemmed | Circuit Double Cover of Graphs. |
title_short | Circuit Double Cover of Graphs. |
title_sort | circuit double cover of graphs |
topic | Graph theory. http://id.loc.gov/authorities/subjects/sh85056471 Graph theory Problems, exercises, etc. MATHEMATICS Graphic Methods. bisacsh Teoría de grafos embne Graph theory fast |
topic_facet | Graph theory. Graph theory Problems, exercises, etc. MATHEMATICS Graphic Methods. Teoría de grafos Graph theory Problems and exercises |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=443712 |
work_keys_str_mv | AT zhangcunquan circuitdoublecoverofgraphs |