Fusion systems in algebra and topology /:
"A fusion system over a p-group S is a category whose objects form the set of all subgroups of S, whose morphisms are certain injective group homomorphisms, and which satisfies axioms first formulated by Puig that are modelled on conjugacy relations in finite groups. The definition was original...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
2011.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
391. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "A fusion system over a p-group S is a category whose objects form the set of all subgroups of S, whose morphisms are certain injective group homomorphisms, and which satisfies axioms first formulated by Puig that are modelled on conjugacy relations in finite groups. The definition was originally motivated by representation theory, but fusion systems also have applications to local group theory and to homotopy theory. The connection with homotopy theory arises through classifying spaces which can be associated to fusion systems and which have many of the nice properties of p-completed classifying spaces of finite groups. Beginning with a detailed exposition of the foundational material, the authors then proceed to discuss the role of fusion systems in local finite group theory, homotopy theory and modular representation theory. The book serves as a basic reference and as an introduction to the field, particularly for students and other young mathematicians"-- |
Beschreibung: | 1 online resource (vi, 320 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 1139003844 9781139003841 9781139099868 1139099868 9781139101844 1139101846 9781139101189 1139101188 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn793899285 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 120427s2011 enka ob 001 0 eng d | ||
040 | |a YDXCP |b eng |e pn |c YDXCP |d E7B |d OCLCO |d IUL |d DEBSZ |d CUS |d N$T |d IDEBK |d AUD |d EBLCP |d MHW |d OCLCQ |d OCLCF |d OCLCQ |d HEBIS |d OCLCO |d UAB |d OCLCQ |d COCUF |d STF |d CUY |d MERUC |d ZCU |d ICG |d K6U |d U3W |d LOA |d VT2 |d OCLCQ |d WYU |d LVT |d TKN |d DKC |d OCLCQ |d A6Q |d G3B |d OCLCQ |d AU@ |d YDX |d AJS |d UKAHL |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d OCLCL |d SFB | ||
016 | 7 | |a 015804326 |2 Uk | |
019 | |a 776970606 |a 826452027 |a 836869198 |a 1042895125 |a 1043672616 |a 1059033535 |a 1066434386 |a 1076724569 |a 1081228682 |a 1097140784 | ||
020 | |a 1139003844 |q (electronic bk.) | ||
020 | |a 9781139003841 |q (electronic bk.) | ||
020 | |a 9781139099868 | ||
020 | |a 1139099868 | ||
020 | |a 9781139101844 |q (electronic bk.) | ||
020 | |a 1139101846 |q (electronic bk.) | ||
020 | |a 9781139101189 | ||
020 | |a 1139101188 | ||
020 | |z 9781107601000 |q (pbk.) | ||
020 | |z 1107601002 |q (pbk.) | ||
035 | |a (OCoLC)793899285 |z (OCoLC)776970606 |z (OCoLC)826452027 |z (OCoLC)836869198 |z (OCoLC)1042895125 |z (OCoLC)1043672616 |z (OCoLC)1059033535 |z (OCoLC)1066434386 |z (OCoLC)1076724569 |z (OCoLC)1081228682 |z (OCoLC)1097140784 | ||
050 | 4 | |a QA182.5 |b .A74 2011eb | |
072 | 7 | |a MAT |x 014000 |2 bisacsh | |
082 | 7 | |a 512/.2 |2 23 | |
084 | |a MAT002000 |2 bisacsh | ||
049 | |a MAIN | ||
100 | 1 | |a Aschbacher, Michael, |d 1944- |1 https://id.oclc.org/worldcat/entity/E39PBJcGm66wBrRJJxDHyCgtKd |0 http://id.loc.gov/authorities/names/n79108158 | |
245 | 1 | 0 | |a Fusion systems in algebra and topology / |c Michael Aschbacher, Radha Kessar, Bob Oliver. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 2011. | ||
300 | |a 1 online resource (vi, 320 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a London mathematical society lecture note series ; |v 391 | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a 1. Introduction to fusion systems -- 2. The local theory of fusion systems -- 3. Fusion and homotopy theory -- 4. Fusion and representation theory -- Appendix A. Background facts about groups. | |
520 | |a "A fusion system over a p-group S is a category whose objects form the set of all subgroups of S, whose morphisms are certain injective group homomorphisms, and which satisfies axioms first formulated by Puig that are modelled on conjugacy relations in finite groups. The definition was originally motivated by representation theory, but fusion systems also have applications to local group theory and to homotopy theory. The connection with homotopy theory arises through classifying spaces which can be associated to fusion systems and which have many of the nice properties of p-completed classifying spaces of finite groups. Beginning with a detailed exposition of the foundational material, the authors then proceed to discuss the role of fusion systems in local finite group theory, homotopy theory and modular representation theory. The book serves as a basic reference and as an introduction to the field, particularly for students and other young mathematicians"-- |c Provided by publisher | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Combinatorial group theory. |0 http://id.loc.gov/authorities/subjects/sh85028806 | |
650 | 0 | |a Topological groups. |0 http://id.loc.gov/authorities/subjects/sh85136082 | |
650 | 0 | |a Algebraic topology. |0 http://id.loc.gov/authorities/subjects/sh85003438 | |
650 | 6 | |a Théorie combinatoire des groupes. | |
650 | 6 | |a Groupes topologiques. | |
650 | 6 | |a Topologie algébrique. | |
650 | 7 | |a MATHEMATICS |x Algebra |x General. |2 bisacsh | |
650 | 7 | |a Algebraic topology |2 fast | |
650 | 7 | |a Combinatorial group theory |2 fast | |
650 | 7 | |a Topological groups |2 fast | |
650 | 7 | |a p-Gruppe |2 gnd |0 http://d-nb.info/gnd/4174108-0 | |
650 | 7 | |a Darstellungstheorie |2 gnd |0 http://d-nb.info/gnd/4148816-7 | |
650 | 7 | |a Homotopietheorie |2 gnd |0 http://d-nb.info/gnd/4128142-1 | |
655 | 0 | |a Electronic book. | |
655 | 4 | |a Electronic books. | |
700 | 1 | |a Kessar, Radha. |0 http://id.loc.gov/authorities/names/n2011030108 | |
700 | 1 | |a Oliver, Robert, |d 1949- |1 https://id.oclc.org/worldcat/entity/E39PCjwxdQWcK8JPDmWvQBTMWC |0 http://id.loc.gov/authorities/names/n87843931 | |
758 | |i has work: |a Fusion systems in algebra and topology (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGfWdbCY6mvTtDwFxydc8y |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Aschbacher, Michael, 1944- |t Fusion systems in algebra and topology. |d Cambridge ; New York : Cambridge University Press, 2011 |z 9781107601000 |w (DLC) 2011019266 |w (OCoLC)727702110 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 391. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=375975 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH16077529 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL802953 | ||
938 | |a ebrary |b EBRY |n ebr10576305 | ||
938 | |a EBSCOhost |b EBSC |n 375975 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25154657 | ||
938 | |a YBP Library Services |b YANK |n 7113552 | ||
938 | |a YBP Library Services |b YANK |n 9009579 | ||
938 | |a YBP Library Services |b YANK |n 10410151 | ||
938 | |a YBP Library Services |b YANK |n 10375016 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn793899285 |
---|---|
_version_ | 1816881795049717760 |
adam_text | |
any_adam_object | |
author | Aschbacher, Michael, 1944- |
author2 | Kessar, Radha Oliver, Robert, 1949- |
author2_role | |
author2_variant | r k rk r o ro |
author_GND | http://id.loc.gov/authorities/names/n79108158 http://id.loc.gov/authorities/names/n2011030108 http://id.loc.gov/authorities/names/n87843931 |
author_facet | Aschbacher, Michael, 1944- Kessar, Radha Oliver, Robert, 1949- |
author_role | |
author_sort | Aschbacher, Michael, 1944- |
author_variant | m a ma |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA182 |
callnumber-raw | QA182.5 .A74 2011eb |
callnumber-search | QA182.5 .A74 2011eb |
callnumber-sort | QA 3182.5 A74 42011EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Introduction to fusion systems -- 2. The local theory of fusion systems -- 3. Fusion and homotopy theory -- 4. Fusion and representation theory -- Appendix A. Background facts about groups. |
ctrlnum | (OCoLC)793899285 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05601cam a2200853 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn793899285</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">120427s2011 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDXCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">YDXCP</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">IUL</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">CUS</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">AUD</subfield><subfield code="d">EBLCP</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">STF</subfield><subfield code="d">CUY</subfield><subfield code="d">MERUC</subfield><subfield code="d">ZCU</subfield><subfield code="d">ICG</subfield><subfield code="d">K6U</subfield><subfield code="d">U3W</subfield><subfield code="d">LOA</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">TKN</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">A6Q</subfield><subfield code="d">G3B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">YDX</subfield><subfield code="d">AJS</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">015804326</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">776970606</subfield><subfield code="a">826452027</subfield><subfield code="a">836869198</subfield><subfield code="a">1042895125</subfield><subfield code="a">1043672616</subfield><subfield code="a">1059033535</subfield><subfield code="a">1066434386</subfield><subfield code="a">1076724569</subfield><subfield code="a">1081228682</subfield><subfield code="a">1097140784</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139003844</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139003841</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139099868</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139099868</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139101844</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139101846</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139101189</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139101188</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107601000</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1107601002</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)793899285</subfield><subfield code="z">(OCoLC)776970606</subfield><subfield code="z">(OCoLC)826452027</subfield><subfield code="z">(OCoLC)836869198</subfield><subfield code="z">(OCoLC)1042895125</subfield><subfield code="z">(OCoLC)1043672616</subfield><subfield code="z">(OCoLC)1059033535</subfield><subfield code="z">(OCoLC)1066434386</subfield><subfield code="z">(OCoLC)1076724569</subfield><subfield code="z">(OCoLC)1081228682</subfield><subfield code="z">(OCoLC)1097140784</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA182.5</subfield><subfield code="b">.A74 2011eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT002000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aschbacher, Michael,</subfield><subfield code="d">1944-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJcGm66wBrRJJxDHyCgtKd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n79108158</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fusion systems in algebra and topology /</subfield><subfield code="c">Michael Aschbacher, Radha Kessar, Bob Oliver.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vi, 320 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London mathematical society lecture note series ;</subfield><subfield code="v">391</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Introduction to fusion systems -- 2. The local theory of fusion systems -- 3. Fusion and homotopy theory -- 4. Fusion and representation theory -- Appendix A. Background facts about groups.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"A fusion system over a p-group S is a category whose objects form the set of all subgroups of S, whose morphisms are certain injective group homomorphisms, and which satisfies axioms first formulated by Puig that are modelled on conjugacy relations in finite groups. The definition was originally motivated by representation theory, but fusion systems also have applications to local group theory and to homotopy theory. The connection with homotopy theory arises through classifying spaces which can be associated to fusion systems and which have many of the nice properties of p-completed classifying spaces of finite groups. Beginning with a detailed exposition of the foundational material, the authors then proceed to discuss the role of fusion systems in local finite group theory, homotopy theory and modular representation theory. The book serves as a basic reference and as an introduction to the field, particularly for students and other young mathematicians"--</subfield><subfield code="c">Provided by publisher</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Combinatorial group theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85028806</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Topological groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85136082</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algebraic topology.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85003438</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie combinatoire des groupes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes topologiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Topologie algébrique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraic topology</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combinatorial group theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topological groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">p-Gruppe</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4174108-0</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4148816-7</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homotopietheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4128142-1</subfield></datafield><datafield tag="655" ind1=" " ind2="0"><subfield code="a">Electronic book.</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kessar, Radha.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2011030108</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oliver, Robert,</subfield><subfield code="d">1949-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjwxdQWcK8JPDmWvQBTMWC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n87843931</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Fusion systems in algebra and topology (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGfWdbCY6mvTtDwFxydc8y</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Aschbacher, Michael, 1944-</subfield><subfield code="t">Fusion systems in algebra and topology.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 2011</subfield><subfield code="z">9781107601000</subfield><subfield code="w">(DLC) 2011019266</subfield><subfield code="w">(OCoLC)727702110</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">391.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=375975</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH16077529</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL802953</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10576305</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">375975</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25154657</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7113552</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9009579</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10410151</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10375016</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic book. Electronic books. |
genre_facet | Electronic book. Electronic books. |
id | ZDB-4-EBA-ocn793899285 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:18:23Z |
institution | BVB |
isbn | 1139003844 9781139003841 9781139099868 1139099868 9781139101844 1139101846 9781139101189 1139101188 |
language | English |
oclc_num | 793899285 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (vi, 320 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London mathematical society lecture note series ; |
spelling | Aschbacher, Michael, 1944- https://id.oclc.org/worldcat/entity/E39PBJcGm66wBrRJJxDHyCgtKd http://id.loc.gov/authorities/names/n79108158 Fusion systems in algebra and topology / Michael Aschbacher, Radha Kessar, Bob Oliver. Cambridge ; New York : Cambridge University Press, 2011. 1 online resource (vi, 320 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file London mathematical society lecture note series ; 391 Includes bibliographical references and index. 1. Introduction to fusion systems -- 2. The local theory of fusion systems -- 3. Fusion and homotopy theory -- 4. Fusion and representation theory -- Appendix A. Background facts about groups. "A fusion system over a p-group S is a category whose objects form the set of all subgroups of S, whose morphisms are certain injective group homomorphisms, and which satisfies axioms first formulated by Puig that are modelled on conjugacy relations in finite groups. The definition was originally motivated by representation theory, but fusion systems also have applications to local group theory and to homotopy theory. The connection with homotopy theory arises through classifying spaces which can be associated to fusion systems and which have many of the nice properties of p-completed classifying spaces of finite groups. Beginning with a detailed exposition of the foundational material, the authors then proceed to discuss the role of fusion systems in local finite group theory, homotopy theory and modular representation theory. The book serves as a basic reference and as an introduction to the field, particularly for students and other young mathematicians"-- Provided by publisher Print version record. Combinatorial group theory. http://id.loc.gov/authorities/subjects/sh85028806 Topological groups. http://id.loc.gov/authorities/subjects/sh85136082 Algebraic topology. http://id.loc.gov/authorities/subjects/sh85003438 Théorie combinatoire des groupes. Groupes topologiques. Topologie algébrique. MATHEMATICS Algebra General. bisacsh Algebraic topology fast Combinatorial group theory fast Topological groups fast p-Gruppe gnd http://d-nb.info/gnd/4174108-0 Darstellungstheorie gnd http://d-nb.info/gnd/4148816-7 Homotopietheorie gnd http://d-nb.info/gnd/4128142-1 Electronic book. Electronic books. Kessar, Radha. http://id.loc.gov/authorities/names/n2011030108 Oliver, Robert, 1949- https://id.oclc.org/worldcat/entity/E39PCjwxdQWcK8JPDmWvQBTMWC http://id.loc.gov/authorities/names/n87843931 has work: Fusion systems in algebra and topology (Text) https://id.oclc.org/worldcat/entity/E39PCGfWdbCY6mvTtDwFxydc8y https://id.oclc.org/worldcat/ontology/hasWork Print version: Aschbacher, Michael, 1944- Fusion systems in algebra and topology. Cambridge ; New York : Cambridge University Press, 2011 9781107601000 (DLC) 2011019266 (OCoLC)727702110 London Mathematical Society lecture note series ; 391. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=375975 Volltext |
spellingShingle | Aschbacher, Michael, 1944- Fusion systems in algebra and topology / London Mathematical Society lecture note series ; 1. Introduction to fusion systems -- 2. The local theory of fusion systems -- 3. Fusion and homotopy theory -- 4. Fusion and representation theory -- Appendix A. Background facts about groups. Combinatorial group theory. http://id.loc.gov/authorities/subjects/sh85028806 Topological groups. http://id.loc.gov/authorities/subjects/sh85136082 Algebraic topology. http://id.loc.gov/authorities/subjects/sh85003438 Théorie combinatoire des groupes. Groupes topologiques. Topologie algébrique. MATHEMATICS Algebra General. bisacsh Algebraic topology fast Combinatorial group theory fast Topological groups fast p-Gruppe gnd http://d-nb.info/gnd/4174108-0 Darstellungstheorie gnd http://d-nb.info/gnd/4148816-7 Homotopietheorie gnd http://d-nb.info/gnd/4128142-1 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85028806 http://id.loc.gov/authorities/subjects/sh85136082 http://id.loc.gov/authorities/subjects/sh85003438 http://d-nb.info/gnd/4174108-0 http://d-nb.info/gnd/4148816-7 http://d-nb.info/gnd/4128142-1 |
title | Fusion systems in algebra and topology / |
title_auth | Fusion systems in algebra and topology / |
title_exact_search | Fusion systems in algebra and topology / |
title_full | Fusion systems in algebra and topology / Michael Aschbacher, Radha Kessar, Bob Oliver. |
title_fullStr | Fusion systems in algebra and topology / Michael Aschbacher, Radha Kessar, Bob Oliver. |
title_full_unstemmed | Fusion systems in algebra and topology / Michael Aschbacher, Radha Kessar, Bob Oliver. |
title_short | Fusion systems in algebra and topology / |
title_sort | fusion systems in algebra and topology |
topic | Combinatorial group theory. http://id.loc.gov/authorities/subjects/sh85028806 Topological groups. http://id.loc.gov/authorities/subjects/sh85136082 Algebraic topology. http://id.loc.gov/authorities/subjects/sh85003438 Théorie combinatoire des groupes. Groupes topologiques. Topologie algébrique. MATHEMATICS Algebra General. bisacsh Algebraic topology fast Combinatorial group theory fast Topological groups fast p-Gruppe gnd http://d-nb.info/gnd/4174108-0 Darstellungstheorie gnd http://d-nb.info/gnd/4148816-7 Homotopietheorie gnd http://d-nb.info/gnd/4128142-1 |
topic_facet | Combinatorial group theory. Topological groups. Algebraic topology. Théorie combinatoire des groupes. Groupes topologiques. Topologie algébrique. MATHEMATICS Algebra General. Algebraic topology Combinatorial group theory Topological groups p-Gruppe Darstellungstheorie Homotopietheorie Electronic book. Electronic books. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=375975 |
work_keys_str_mv | AT aschbachermichael fusionsystemsinalgebraandtopology AT kessarradha fusionsystemsinalgebraandtopology AT oliverrobert fusionsystemsinalgebraandtopology |