Fractional calculus :: models and numerical methods /
The subject of fractional calculus and its applications (that is, convolution-type pseudo-differential operators including integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, mainly due to its applic...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; London :
World Scientific.
|
Schriftenreihe: | Series on complexity, nonlinearity and chaos ;
v. 3. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The subject of fractional calculus and its applications (that is, convolution-type pseudo-differential operators including integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, mainly due to its applications in diverse fields of science and engineering. These operators have been used to model problems with anomalous dynamics, however, they also are an effective tool as filters and controllers, and they can be applied to write complicated functions in terms of fractional integrals or derivatives o. |
Beschreibung: | 1 online resource (xxiv, 400 pages :) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9789814355216 9814355216 1280669527 9781280669521 9786613646453 6613646458 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn793804652 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr bn||||||||| | ||
008 | 111017s2012 si a ob 001 0 eng d | ||
040 | |a LGG |b eng |e pn |c LGG |d YDXCP |d EBLCP |d OCLCO |d MHW |d MERUC |d N$T |d IDEBK |d E7B |d OCLCQ |d DEBSZ |d OCLCQ |d CDX |d OCLCQ |d OCLCF |d OCLCQ |d AZK |d LOA |d JBG |d AGLDB |d MOR |d PIFAG |d ZCU |d OCLCQ |d U3W |d STF |d WRM |d OCLCQ |d VTS |d ICG |d INT |d VT2 |d NRAMU |d OCLCQ |d WYU |d OCLCQ |d DKC |d OCLCQ |d M8D |d OCLCQ |d LEAUB |d AU@ |d UKCRE |d VLY |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
019 | |a 794306951 |a 794902710 |a 817084820 |a 961613825 |a 962704781 |a 966212302 |a 988428839 |a 988460068 |a 992041472 |a 1037754151 |a 1038614570 |a 1045529398 |a 1058497297 |a 1086444298 |a 1153472209 |a 1162401204 |a 1241928454 |a 1290073074 |a 1300675131 | ||
020 | |a 9789814355216 |q (electronic bk.) | ||
020 | |a 9814355216 |q (electronic bk.) | ||
020 | |a 1280669527 | ||
020 | |a 9781280669521 | ||
020 | |z 9789814355209 | ||
020 | |z 9814355208 | ||
020 | |a 9786613646453 | ||
020 | |a 6613646458 | ||
035 | |a (OCoLC)793804652 |z (OCoLC)794306951 |z (OCoLC)794902710 |z (OCoLC)817084820 |z (OCoLC)961613825 |z (OCoLC)962704781 |z (OCoLC)966212302 |z (OCoLC)988428839 |z (OCoLC)988460068 |z (OCoLC)992041472 |z (OCoLC)1037754151 |z (OCoLC)1038614570 |z (OCoLC)1045529398 |z (OCoLC)1058497297 |z (OCoLC)1086444298 |z (OCoLC)1153472209 |z (OCoLC)1162401204 |z (OCoLC)1241928454 |z (OCoLC)1290073074 |z (OCoLC)1300675131 | ||
050 | 4 | |a QA314 |b .F73 2012 | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
072 | 7 | |a PBWH |2 bicssc | |
082 | 7 | |a 515.83 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Fractional calculus : |b models and numerical methods / |c Dumitru Baleanu [and others]. |
260 | |a Singapore ; |a London : |b World Scientific. | ||
300 | |a 1 online resource (xxiv, 400 pages :) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Series on complexity, nonlinearity, and chaos ; |v vol. 3 | |
588 | 0 | |a Print version record. | |
520 | |a The subject of fractional calculus and its applications (that is, convolution-type pseudo-differential operators including integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, mainly due to its applications in diverse fields of science and engineering. These operators have been used to model problems with anomalous dynamics, however, they also are an effective tool as filters and controllers, and they can be applied to write complicated functions in terms of fractional integrals or derivatives o. | ||
505 | 0 | |a Preface; 1. Preliminaries; 1.1 Fourier and Laplace Transforms; 1.2 Special Functions and Their Properties; 1.2.1 The Gamma function and related special functions; 1.2.2 Hypergeometric functions; 1.2.3 Mittag-Leffler functions; 1.3 Fractional Operators; 1.3.1 Riemann-Liouville fractional integrals and fractional derivatives; 1.3.2 Caputo fractional derivatives; 1.3.3 Liouville fractional integrals and fractional derivatives. Marchaud derivatives; 1.3.4 Generalized exponential functions; 1.3.5 Hadamard type fractional integrals and fractional derivatives. | |
504 | |a Includes bibliographical references and index. | ||
546 | |a English. | ||
650 | 0 | |a Fractional calculus. |0 http://id.loc.gov/authorities/subjects/sh93004015 | |
650 | 6 | |a Dérivées fractionnaires. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Fractional calculus |2 fast | |
700 | 1 | |a Baleanu, D. |q (Dumitru) |1 https://id.oclc.org/worldcat/entity/E39PCjMgw6rB9tyXcrmmQCw4D3 |0 http://id.loc.gov/authorities/names/nb2007006583 | |
758 | |i has work: |a Fractional calculus (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFYmBKdkBgyJ7ppgXQHw83 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 1 | |z 9814355208 | |
776 | 1 | |z 9789814355209 | |
830 | 0 | |a Series on complexity, nonlinearity and chaos ; |v v. 3. |0 http://id.loc.gov/authorities/names/no2010048286 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=457176 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=457176 |3 Volltext | |
938 | |a Coutts Information Services |b COUT |n 23981220 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL919078 | ||
938 | |a ebrary |b EBRY |n ebr10563531 | ||
938 | |a EBSCOhost |b EBSC |n 457176 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 364645 | ||
938 | |a YBP Library Services |b YANK |n 7280419 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn793804652 |
---|---|
_version_ | 1813903435971428353 |
adam_text | |
any_adam_object | |
author2 | Baleanu, D. (Dumitru) |
author2_role | |
author2_variant | d b db |
author_GND | http://id.loc.gov/authorities/names/nb2007006583 |
author_facet | Baleanu, D. (Dumitru) |
author_sort | Baleanu, D. |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA314 |
callnumber-raw | QA314 .F73 2012 |
callnumber-search | QA314 .F73 2012 |
callnumber-sort | QA 3314 F73 42012 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Preface; 1. Preliminaries; 1.1 Fourier and Laplace Transforms; 1.2 Special Functions and Their Properties; 1.2.1 The Gamma function and related special functions; 1.2.2 Hypergeometric functions; 1.2.3 Mittag-Leffler functions; 1.3 Fractional Operators; 1.3.1 Riemann-Liouville fractional integrals and fractional derivatives; 1.3.2 Caputo fractional derivatives; 1.3.3 Liouville fractional integrals and fractional derivatives. Marchaud derivatives; 1.3.4 Generalized exponential functions; 1.3.5 Hadamard type fractional integrals and fractional derivatives. |
ctrlnum | (OCoLC)793804652 |
dewey-full | 515.83 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.83 |
dewey-search | 515.83 |
dewey-sort | 3515.83 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04567cam a2200661Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn793804652</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr bn|||||||||</controlfield><controlfield tag="008">111017s2012 si a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">LGG</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">LGG</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">MHW</subfield><subfield code="d">MERUC</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">JBG</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">NRAMU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">AU@</subfield><subfield code="d">UKCRE</subfield><subfield code="d">VLY</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">794306951</subfield><subfield code="a">794902710</subfield><subfield code="a">817084820</subfield><subfield code="a">961613825</subfield><subfield code="a">962704781</subfield><subfield code="a">966212302</subfield><subfield code="a">988428839</subfield><subfield code="a">988460068</subfield><subfield code="a">992041472</subfield><subfield code="a">1037754151</subfield><subfield code="a">1038614570</subfield><subfield code="a">1045529398</subfield><subfield code="a">1058497297</subfield><subfield code="a">1086444298</subfield><subfield code="a">1153472209</subfield><subfield code="a">1162401204</subfield><subfield code="a">1241928454</subfield><subfield code="a">1290073074</subfield><subfield code="a">1300675131</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814355216</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814355216</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1280669527</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781280669521</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814355209</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814355208</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786613646453</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6613646458</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)793804652</subfield><subfield code="z">(OCoLC)794306951</subfield><subfield code="z">(OCoLC)794902710</subfield><subfield code="z">(OCoLC)817084820</subfield><subfield code="z">(OCoLC)961613825</subfield><subfield code="z">(OCoLC)962704781</subfield><subfield code="z">(OCoLC)966212302</subfield><subfield code="z">(OCoLC)988428839</subfield><subfield code="z">(OCoLC)988460068</subfield><subfield code="z">(OCoLC)992041472</subfield><subfield code="z">(OCoLC)1037754151</subfield><subfield code="z">(OCoLC)1038614570</subfield><subfield code="z">(OCoLC)1045529398</subfield><subfield code="z">(OCoLC)1058497297</subfield><subfield code="z">(OCoLC)1086444298</subfield><subfield code="z">(OCoLC)1153472209</subfield><subfield code="z">(OCoLC)1162401204</subfield><subfield code="z">(OCoLC)1241928454</subfield><subfield code="z">(OCoLC)1290073074</subfield><subfield code="z">(OCoLC)1300675131</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA314</subfield><subfield code="b">.F73 2012</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBWH</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.83</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Fractional calculus :</subfield><subfield code="b">models and numerical methods /</subfield><subfield code="c">Dumitru Baleanu [and others].</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">London :</subfield><subfield code="b">World Scientific.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxiv, 400 pages :)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series on complexity, nonlinearity, and chaos ;</subfield><subfield code="v">vol. 3</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The subject of fractional calculus and its applications (that is, convolution-type pseudo-differential operators including integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, mainly due to its applications in diverse fields of science and engineering. These operators have been used to model problems with anomalous dynamics, however, they also are an effective tool as filters and controllers, and they can be applied to write complicated functions in terms of fractional integrals or derivatives o.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface; 1. Preliminaries; 1.1 Fourier and Laplace Transforms; 1.2 Special Functions and Their Properties; 1.2.1 The Gamma function and related special functions; 1.2.2 Hypergeometric functions; 1.2.3 Mittag-Leffler functions; 1.3 Fractional Operators; 1.3.1 Riemann-Liouville fractional integrals and fractional derivatives; 1.3.2 Caputo fractional derivatives; 1.3.3 Liouville fractional integrals and fractional derivatives. Marchaud derivatives; 1.3.4 Generalized exponential functions; 1.3.5 Hadamard type fractional integrals and fractional derivatives.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fractional calculus.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh93004015</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Dérivées fractionnaires.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fractional calculus</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baleanu, D.</subfield><subfield code="q">(Dumitru)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjMgw6rB9tyXcrmmQCw4D3</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2007006583</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Fractional calculus (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFYmBKdkBgyJ7ppgXQHw83</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9814355208</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9789814355209</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Series on complexity, nonlinearity and chaos ;</subfield><subfield code="v">v. 3.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2010048286</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=457176</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=457176</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">23981220</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL919078</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10563531</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">457176</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">364645</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7280419</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn793804652 |
illustrated | Illustrated |
indexdate | 2024-10-25T16:18:39Z |
institution | BVB |
isbn | 9789814355216 9814355216 1280669527 9781280669521 9786613646453 6613646458 |
language | English |
oclc_num | 793804652 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (xxiv, 400 pages :) |
psigel | ZDB-4-EBA |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | World Scientific. |
record_format | marc |
series | Series on complexity, nonlinearity and chaos ; |
series2 | Series on complexity, nonlinearity, and chaos ; |
spelling | Fractional calculus : models and numerical methods / Dumitru Baleanu [and others]. Singapore ; London : World Scientific. 1 online resource (xxiv, 400 pages :) text txt rdacontent computer c rdamedia online resource cr rdacarrier Series on complexity, nonlinearity, and chaos ; vol. 3 Print version record. The subject of fractional calculus and its applications (that is, convolution-type pseudo-differential operators including integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, mainly due to its applications in diverse fields of science and engineering. These operators have been used to model problems with anomalous dynamics, however, they also are an effective tool as filters and controllers, and they can be applied to write complicated functions in terms of fractional integrals or derivatives o. Preface; 1. Preliminaries; 1.1 Fourier and Laplace Transforms; 1.2 Special Functions and Their Properties; 1.2.1 The Gamma function and related special functions; 1.2.2 Hypergeometric functions; 1.2.3 Mittag-Leffler functions; 1.3 Fractional Operators; 1.3.1 Riemann-Liouville fractional integrals and fractional derivatives; 1.3.2 Caputo fractional derivatives; 1.3.3 Liouville fractional integrals and fractional derivatives. Marchaud derivatives; 1.3.4 Generalized exponential functions; 1.3.5 Hadamard type fractional integrals and fractional derivatives. Includes bibliographical references and index. English. Fractional calculus. http://id.loc.gov/authorities/subjects/sh93004015 Dérivées fractionnaires. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Fractional calculus fast Baleanu, D. (Dumitru) https://id.oclc.org/worldcat/entity/E39PCjMgw6rB9tyXcrmmQCw4D3 http://id.loc.gov/authorities/names/nb2007006583 has work: Fractional calculus (Text) https://id.oclc.org/worldcat/entity/E39PCFYmBKdkBgyJ7ppgXQHw83 https://id.oclc.org/worldcat/ontology/hasWork 9814355208 9789814355209 Series on complexity, nonlinearity and chaos ; v. 3. http://id.loc.gov/authorities/names/no2010048286 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=457176 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=457176 Volltext |
spellingShingle | Fractional calculus : models and numerical methods / Series on complexity, nonlinearity and chaos ; Preface; 1. Preliminaries; 1.1 Fourier and Laplace Transforms; 1.2 Special Functions and Their Properties; 1.2.1 The Gamma function and related special functions; 1.2.2 Hypergeometric functions; 1.2.3 Mittag-Leffler functions; 1.3 Fractional Operators; 1.3.1 Riemann-Liouville fractional integrals and fractional derivatives; 1.3.2 Caputo fractional derivatives; 1.3.3 Liouville fractional integrals and fractional derivatives. Marchaud derivatives; 1.3.4 Generalized exponential functions; 1.3.5 Hadamard type fractional integrals and fractional derivatives. Fractional calculus. http://id.loc.gov/authorities/subjects/sh93004015 Dérivées fractionnaires. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Fractional calculus fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh93004015 |
title | Fractional calculus : models and numerical methods / |
title_auth | Fractional calculus : models and numerical methods / |
title_exact_search | Fractional calculus : models and numerical methods / |
title_full | Fractional calculus : models and numerical methods / Dumitru Baleanu [and others]. |
title_fullStr | Fractional calculus : models and numerical methods / Dumitru Baleanu [and others]. |
title_full_unstemmed | Fractional calculus : models and numerical methods / Dumitru Baleanu [and others]. |
title_short | Fractional calculus : |
title_sort | fractional calculus models and numerical methods |
title_sub | models and numerical methods / |
topic | Fractional calculus. http://id.loc.gov/authorities/subjects/sh93004015 Dérivées fractionnaires. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Fractional calculus fast |
topic_facet | Fractional calculus. Dérivées fractionnaires. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Fractional calculus |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=457176 |
work_keys_str_mv | AT baleanud fractionalcalculusmodelsandnumericalmethods |