Fourier series /:
This is a concise introduction to Fourier series covering history, major themes, theorems, examples, and applications. It can be used for self study, or to supplement undergraduate courses on mathematical analysis. Beginning with a brief summary of the rich history of the subject over three centurie...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C. :
Mathematical Association of America,
2005.
|
Schriftenreihe: | Classroom resource materials.
|
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | This is a concise introduction to Fourier series covering history, major themes, theorems, examples, and applications. It can be used for self study, or to supplement undergraduate courses on mathematical analysis. Beginning with a brief summary of the rich history of the subject over three centuries, the reader will appreciate how a mathematical theory develops in stages from a practical problem (such as conduction of heat) to an abstract theory dealing with concepts such as sets, functions, infinity, and convergence. The abstract theory then provides unforeseen applications in diverse areas. Exercises of varying difficulty are included throughout to test understanding. A broad range of applications are also covered, and directions for further reading and research are provided, along with a chapter that provides material at a more advanced level suitable for graduate students. |
Beschreibung: | 1 online resource (x, 120 pages :) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781614441045 1614441049 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn792742349 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 120430s2005 dcuac ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d OCLCF |d E7B |d JSTOR |d CAMBR |d OCLCQ |d HEBIS |d JSTOR |d YDXCP |d OCLCQ |d AZK |d LOA |d OCLCO |d AGLDB |d MOR |d PIFAG |d OCLCQ |d U3W |d STF |d WRM |d VTS |d COCUF |d NRAMU |d REC |d VT2 |d OCLCQ |d WYU |d M8D |d OCLCQ |d AU@ |d UKCRE |d AJS |d OCLCQ |d OCLCA |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
015 | |a GBA511529 |2 bnb | ||
016 | 7 | |a 013106186 |2 Uk | |
019 | |a 961595915 |a 962575676 |a 966234228 |a 988463362 |a 991925046 |a 1037903101 |a 1038636177 |a 1045487667 |a 1055380259 |a 1059007260 |a 1065926687 |a 1081287690 |a 1097140246 |a 1153476037 | ||
020 | |a 9781614441045 |q (electronic bk.) | ||
020 | |a 1614441049 |q (electronic bk.) | ||
020 | |z 0883857405 | ||
020 | |z 9780883857403 | ||
035 | |a (OCoLC)792742349 |z (OCoLC)961595915 |z (OCoLC)962575676 |z (OCoLC)966234228 |z (OCoLC)988463362 |z (OCoLC)991925046 |z (OCoLC)1037903101 |z (OCoLC)1038636177 |z (OCoLC)1045487667 |z (OCoLC)1055380259 |z (OCoLC)1059007260 |z (OCoLC)1065926687 |z (OCoLC)1081287690 |z (OCoLC)1097140246 |z (OCoLC)1153476037 | ||
037 | |a 22573/ctt59h3kt |b JSTOR | ||
050 | 4 | |a QA404 |b .B48 2005eb | |
072 | 7 | |a MAT |x 016000 |2 bisacsh | |
072 | 7 | |a MAT034000 |2 bisacsh | |
082 | 7 | |a 515.2433 |2 22 | |
084 | |a SK 450 |2 rvk | ||
084 | |a MAT 420f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a Bhatia, Rajendra, |d 1952- |1 https://id.oclc.org/worldcat/entity/E39PBJkMMWgg9dFHrkh8FTtYfq |0 http://id.loc.gov/authorities/names/n82058270 | |
245 | 1 | 0 | |a Fourier series / |c by Rajendra Bhatia. |
260 | |a Washington, D.C. : |b Mathematical Association of America, |c 2005. | ||
300 | |a 1 online resource (x, 120 pages :) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Classroom resource materials | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Heat conduction and fourier series -- Convergence of fourier series -- Odds and ends -- Convergence in L2 and L1 -- Some applications -- A note on normalisation. | |
520 | |a This is a concise introduction to Fourier series covering history, major themes, theorems, examples, and applications. It can be used for self study, or to supplement undergraduate courses on mathematical analysis. Beginning with a brief summary of the rich history of the subject over three centuries, the reader will appreciate how a mathematical theory develops in stages from a practical problem (such as conduction of heat) to an abstract theory dealing with concepts such as sets, functions, infinity, and convergence. The abstract theory then provides unforeseen applications in diverse areas. Exercises of varying difficulty are included throughout to test understanding. A broad range of applications are also covered, and directions for further reading and research are provided, along with a chapter that provides material at a more advanced level suitable for graduate students. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Fourier series. |0 http://id.loc.gov/authorities/subjects/sh85051090 | |
650 | 6 | |a Séries de Fourier. | |
650 | 7 | |a MATHEMATICS |x Infinity. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Fourier series |2 fast | |
650 | 7 | |a Fourier-Reihe |2 gnd |0 http://d-nb.info/gnd/4155109-6 | |
650 | 7 | |a Fourier, Séries de. |2 ram | |
655 | 7 | |a Lehrbuch. |2 swd | |
776 | 0 | 8 | |i Print version: |a Bhatia, Rajendra, 1952- |t Fourier series. |d Washington, D.C. : Mathematical Association of America, 2005 |z 0883857405 |w (DLC) 2004113541 |w (OCoLC)57638397 |
830 | 0 | |a Classroom resource materials. | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450234 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450234 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10722453 | ||
938 | |a EBSCOhost |b EBSC |n 450234 | ||
938 | |a YBP Library Services |b YANK |n 7648346 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn792742349 |
---|---|
_version_ | 1826941681824432129 |
adam_text | |
any_adam_object | |
author | Bhatia, Rajendra, 1952- |
author_GND | http://id.loc.gov/authorities/names/n82058270 |
author_facet | Bhatia, Rajendra, 1952- |
author_role | |
author_sort | Bhatia, Rajendra, 1952- |
author_variant | r b rb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA404 |
callnumber-raw | QA404 .B48 2005eb |
callnumber-search | QA404 .B48 2005eb |
callnumber-sort | QA 3404 B48 42005EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 450 |
classification_tum | MAT 420f |
collection | ZDB-4-EBA |
contents | Heat conduction and fourier series -- Convergence of fourier series -- Odds and ends -- Convergence in L2 and L1 -- Some applications -- A note on normalisation. |
ctrlnum | (OCoLC)792742349 |
dewey-full | 515.2433 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.2433 |
dewey-search | 515.2433 |
dewey-sort | 3515.2433 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04005cam a2200625 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn792742349</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">120430s2005 dcuac ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">E7B</subfield><subfield code="d">JSTOR</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HEBIS</subfield><subfield code="d">JSTOR</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">COCUF</subfield><subfield code="d">NRAMU</subfield><subfield code="d">REC</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">UKCRE</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA511529</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">013106186</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">961595915</subfield><subfield code="a">962575676</subfield><subfield code="a">966234228</subfield><subfield code="a">988463362</subfield><subfield code="a">991925046</subfield><subfield code="a">1037903101</subfield><subfield code="a">1038636177</subfield><subfield code="a">1045487667</subfield><subfield code="a">1055380259</subfield><subfield code="a">1059007260</subfield><subfield code="a">1065926687</subfield><subfield code="a">1081287690</subfield><subfield code="a">1097140246</subfield><subfield code="a">1153476037</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781614441045</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1614441049</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0883857405</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780883857403</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)792742349</subfield><subfield code="z">(OCoLC)961595915</subfield><subfield code="z">(OCoLC)962575676</subfield><subfield code="z">(OCoLC)966234228</subfield><subfield code="z">(OCoLC)988463362</subfield><subfield code="z">(OCoLC)991925046</subfield><subfield code="z">(OCoLC)1037903101</subfield><subfield code="z">(OCoLC)1038636177</subfield><subfield code="z">(OCoLC)1045487667</subfield><subfield code="z">(OCoLC)1055380259</subfield><subfield code="z">(OCoLC)1059007260</subfield><subfield code="z">(OCoLC)1065926687</subfield><subfield code="z">(OCoLC)1081287690</subfield><subfield code="z">(OCoLC)1097140246</subfield><subfield code="z">(OCoLC)1153476037</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/ctt59h3kt</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA404</subfield><subfield code="b">.B48 2005eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">016000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.2433</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 450</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 420f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bhatia, Rajendra,</subfield><subfield code="d">1952-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJkMMWgg9dFHrkh8FTtYfq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n82058270</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fourier series /</subfield><subfield code="c">by Rajendra Bhatia.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Washington, D.C. :</subfield><subfield code="b">Mathematical Association of America,</subfield><subfield code="c">2005.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 120 pages :)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Classroom resource materials</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Heat conduction and fourier series -- Convergence of fourier series -- Odds and ends -- Convergence in L2 and L1 -- Some applications -- A note on normalisation.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is a concise introduction to Fourier series covering history, major themes, theorems, examples, and applications. It can be used for self study, or to supplement undergraduate courses on mathematical analysis. Beginning with a brief summary of the rich history of the subject over three centuries, the reader will appreciate how a mathematical theory develops in stages from a practical problem (such as conduction of heat) to an abstract theory dealing with concepts such as sets, functions, infinity, and convergence. The abstract theory then provides unforeseen applications in diverse areas. Exercises of varying difficulty are included throughout to test understanding. A broad range of applications are also covered, and directions for further reading and research are provided, along with a chapter that provides material at a more advanced level suitable for graduate students.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fourier series.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85051090</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Séries de Fourier.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Infinity.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fourier series</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fourier-Reihe</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4155109-6</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fourier, Séries de.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Lehrbuch.</subfield><subfield code="2">swd</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Bhatia, Rajendra, 1952-</subfield><subfield code="t">Fourier series.</subfield><subfield code="d">Washington, D.C. : Mathematical Association of America, 2005</subfield><subfield code="z">0883857405</subfield><subfield code="w">(DLC) 2004113541</subfield><subfield code="w">(OCoLC)57638397</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Classroom resource materials.</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450234</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450234</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10722453</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">450234</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7648346</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Lehrbuch. swd |
genre_facet | Lehrbuch. |
id | ZDB-4-EBA-ocn792742349 |
illustrated | Illustrated |
indexdate | 2025-03-18T14:15:59Z |
institution | BVB |
isbn | 9781614441045 1614441049 |
language | English |
oclc_num | 792742349 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (x, 120 pages :) |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Mathematical Association of America, |
record_format | marc |
series | Classroom resource materials. |
series2 | Classroom resource materials |
spelling | Bhatia, Rajendra, 1952- https://id.oclc.org/worldcat/entity/E39PBJkMMWgg9dFHrkh8FTtYfq http://id.loc.gov/authorities/names/n82058270 Fourier series / by Rajendra Bhatia. Washington, D.C. : Mathematical Association of America, 2005. 1 online resource (x, 120 pages :) text txt rdacontent computer c rdamedia online resource cr rdacarrier Classroom resource materials Includes bibliographical references and index. Heat conduction and fourier series -- Convergence of fourier series -- Odds and ends -- Convergence in L2 and L1 -- Some applications -- A note on normalisation. This is a concise introduction to Fourier series covering history, major themes, theorems, examples, and applications. It can be used for self study, or to supplement undergraduate courses on mathematical analysis. Beginning with a brief summary of the rich history of the subject over three centuries, the reader will appreciate how a mathematical theory develops in stages from a practical problem (such as conduction of heat) to an abstract theory dealing with concepts such as sets, functions, infinity, and convergence. The abstract theory then provides unforeseen applications in diverse areas. Exercises of varying difficulty are included throughout to test understanding. A broad range of applications are also covered, and directions for further reading and research are provided, along with a chapter that provides material at a more advanced level suitable for graduate students. Print version record. Fourier series. http://id.loc.gov/authorities/subjects/sh85051090 Séries de Fourier. MATHEMATICS Infinity. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Fourier series fast Fourier-Reihe gnd http://d-nb.info/gnd/4155109-6 Fourier, Séries de. ram Lehrbuch. swd Print version: Bhatia, Rajendra, 1952- Fourier series. Washington, D.C. : Mathematical Association of America, 2005 0883857405 (DLC) 2004113541 (OCoLC)57638397 Classroom resource materials. |
spellingShingle | Bhatia, Rajendra, 1952- Fourier series / Classroom resource materials. Heat conduction and fourier series -- Convergence of fourier series -- Odds and ends -- Convergence in L2 and L1 -- Some applications -- A note on normalisation. Fourier series. http://id.loc.gov/authorities/subjects/sh85051090 Séries de Fourier. MATHEMATICS Infinity. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Fourier series fast Fourier-Reihe gnd http://d-nb.info/gnd/4155109-6 Fourier, Séries de. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85051090 http://d-nb.info/gnd/4155109-6 |
title | Fourier series / |
title_auth | Fourier series / |
title_exact_search | Fourier series / |
title_full | Fourier series / by Rajendra Bhatia. |
title_fullStr | Fourier series / by Rajendra Bhatia. |
title_full_unstemmed | Fourier series / by Rajendra Bhatia. |
title_short | Fourier series / |
title_sort | fourier series |
topic | Fourier series. http://id.loc.gov/authorities/subjects/sh85051090 Séries de Fourier. MATHEMATICS Infinity. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Fourier series fast Fourier-Reihe gnd http://d-nb.info/gnd/4155109-6 Fourier, Séries de. ram |
topic_facet | Fourier series. Séries de Fourier. MATHEMATICS Infinity. MATHEMATICS Mathematical Analysis. Fourier series Fourier-Reihe Fourier, Séries de. Lehrbuch. |
work_keys_str_mv | AT bhatiarajendra fourierseries |