Mumford-Tate groups and domains :: their geometry and arithmetic /
Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains.
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton :
Princeton University Press,
2012.
|
Schriftenreihe: | Annals of mathematics studies ;
no. 183. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781400842735 1400842735 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn785347354 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 120411s2012 nju ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d E7B |d CDX |d OCLCQ |d DEBSZ |d OCLCQ |d JSTOR |d OCLCF |d UMI |d COO |d DEBBG |d OCLCQ |d EBLCP |d CN8ML |d JSTOR |d OCLCQ |d AZK |d LOA |d UIU |d AGLDB |d MOR |d PIFAG |d ZCU |d OTZ |d MERUC |d OCLCQ |d U3W |d EZ9 |d UUM |d STF |d WRM |d OCLCQ |d VTS |d COCUF |d CEF |d CUS |d ICG |d INT |d VT2 |d AU@ |d OCLCQ |d WYU |d LVT |d OCLCQ |d DKC |d OCLCQ |d UKAHL |d OCLCQ |d C6I |d OCLCQ |d CUS |d OCLCQ |d OCLCO |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
019 | |a 787851967 |a 854968413 |a 857637867 |a 870550954 |a 961490243 |a 962626306 |a 965982544 |a 988488020 |a 988488113 |a 992055267 |a 994917525 |a 1037752801 |a 1038629711 |a 1038682746 |a 1055373551 |a 1058152249 |a 1058565406 |a 1062908152 |a 1107375802 | ||
020 | |a 9781400842735 |q (electronic bk.) | ||
020 | |a 1400842735 |q (electronic bk.) | ||
020 | |z 9780691154244 | ||
020 | |z 0691154244 | ||
020 | |z 9780691154251 | ||
020 | |z 0691154252 | ||
024 | 7 | |a 10.1515/9781400842735 |2 doi | |
035 | |a (OCoLC)785347354 |z (OCoLC)787851967 |z (OCoLC)854968413 |z (OCoLC)857637867 |z (OCoLC)870550954 |z (OCoLC)961490243 |z (OCoLC)962626306 |z (OCoLC)965982544 |z (OCoLC)988488020 |z (OCoLC)988488113 |z (OCoLC)992055267 |z (OCoLC)994917525 |z (OCoLC)1037752801 |z (OCoLC)1038629711 |z (OCoLC)1038682746 |z (OCoLC)1055373551 |z (OCoLC)1058152249 |z (OCoLC)1058565406 |z (OCoLC)1062908152 |z (OCoLC)1107375802 | ||
037 | |a 22573/cttmswm |b JSTOR | ||
050 | 4 | |a QA564 |b .G634 2012eb | |
072 | 7 | |a MAT |x 012010 |2 bisacsh | |
072 | 7 | |a MAT014000 |2 bisacsh | |
072 | 7 | |a MAT040000 |2 bisacsh | |
072 | 7 | |a MAT012010 |2 bisacsh | |
082 | 7 | |a 516.3/5 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Green, M. |q (Mark), |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJghp6vMBBxydRqbtMGrbd |0 http://id.loc.gov/authorities/names/n94097484 | |
245 | 1 | 0 | |a Mumford-Tate groups and domains : |b their geometry and arithmetic / |c Mark Green, Phillip Griffiths, Matt Kerr. |
260 | |a Princeton : |b Princeton University Press, |c 2012. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
380 | |a Bibliography | ||
490 | 1 | |a Annals of mathematics studies ; |v no. 183 | |
504 | |a Includes bibliographical references and index. | ||
520 | |a Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Mumford-Tate groups -- Period domains and Mumford-Tate domains -- The Mumford-Tate group of a variation of Hodge structure -- Hodge representations and Hodge domains -- Hodge structures with complex multiplication -- Arithmetic aspects of Mumford-Tate domains -- Classification of Mumford-Tate subdomains -- Arithmetic of period maps of geometric origin. | |
546 | |a In English. | ||
650 | 0 | |a Mumford-Tate groups. |0 http://id.loc.gov/authorities/subjects/sh2011004900 | |
650 | 6 | |a Groupes de Mumford-Tate. | |
650 | 7 | |a MATHEMATICS |x Geometry |x Algebraic. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Group Theory. |2 bisacsh | |
650 | 7 | |a Mumford-Tate groups |2 fast | |
653 | |a JSTOR-DDA | ||
653 | |a Mumford-Tate groups | ||
653 | |a Hodge theory | ||
653 | |a Geometry, Algebraic | ||
653 | |a Multi-User. | ||
700 | 1 | |a Griffiths, Phillip, |d 1938- |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJqw6YJbXtpt37CFJ9MF8C |0 http://id.loc.gov/authorities/names/n80046285 | |
700 | 1 | |a Kerr, Matthew D., |d 1975- |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJB8pRMmhTBcQfFbQkjHmd |0 http://id.loc.gov/authorities/names/no2003007413 | |
758 | |i has work: |a Mumford-Tate groups and domains (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGR9dpg9tF6HWQBHKBrtqP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Green, M. (Mark). |t Mumford-Tate groups and domains. |d Princeton : Princeton University Press, 2012 |z 9780691154244 |w (DLC) 2011037621 |w (OCoLC)756912930 |
830 | 0 | |a Annals of mathematics studies ; |v no. 183. |0 http://id.loc.gov/authorities/names/n42002129 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=442946 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH23067675 | ||
938 | |a Coutts Information Services |b COUT |n 22288276 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL878315 | ||
938 | |a ebrary |b EBRY |n ebr10546024 | ||
938 | |a EBSCOhost |b EBSC |n 442946 | ||
938 | |a YBP Library Services |b YANK |n 7446879 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn785347354 |
---|---|
_version_ | 1816881791422693376 |
adam_text | |
any_adam_object | |
author | Green, M. (Mark) Griffiths, Phillip, 1938- Kerr, Matthew D., 1975- |
author_GND | http://id.loc.gov/authorities/names/n94097484 http://id.loc.gov/authorities/names/n80046285 http://id.loc.gov/authorities/names/no2003007413 |
author_facet | Green, M. (Mark) Griffiths, Phillip, 1938- Kerr, Matthew D., 1975- |
author_role | aut aut aut |
author_sort | Green, M. |
author_variant | m g mg p g pg m d k md mdk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA564 |
callnumber-raw | QA564 .G634 2012eb |
callnumber-search | QA564 .G634 2012eb |
callnumber-sort | QA 3564 G634 42012EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Mumford-Tate groups -- Period domains and Mumford-Tate domains -- The Mumford-Tate group of a variation of Hodge structure -- Hodge representations and Hodge domains -- Hodge structures with complex multiplication -- Arithmetic aspects of Mumford-Tate domains -- Classification of Mumford-Tate subdomains -- Arithmetic of period maps of geometric origin. |
ctrlnum | (OCoLC)785347354 |
dewey-full | 516.3/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/5 |
dewey-search | 516.3/5 |
dewey-sort | 3516.3 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04772cam a2200769 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn785347354</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">120411s2012 nju ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">E7B</subfield><subfield code="d">CDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">UMI</subfield><subfield code="d">COO</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">CN8ML</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">UIU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OTZ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">EZ9</subfield><subfield code="d">UUM</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">COCUF</subfield><subfield code="d">CEF</subfield><subfield code="d">CUS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">C6I</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CUS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">787851967</subfield><subfield code="a">854968413</subfield><subfield code="a">857637867</subfield><subfield code="a">870550954</subfield><subfield code="a">961490243</subfield><subfield code="a">962626306</subfield><subfield code="a">965982544</subfield><subfield code="a">988488020</subfield><subfield code="a">988488113</subfield><subfield code="a">992055267</subfield><subfield code="a">994917525</subfield><subfield code="a">1037752801</subfield><subfield code="a">1038629711</subfield><subfield code="a">1038682746</subfield><subfield code="a">1055373551</subfield><subfield code="a">1058152249</subfield><subfield code="a">1058565406</subfield><subfield code="a">1062908152</subfield><subfield code="a">1107375802</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400842735</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400842735</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691154244</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691154244</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691154251</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691154252</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400842735</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)785347354</subfield><subfield code="z">(OCoLC)787851967</subfield><subfield code="z">(OCoLC)854968413</subfield><subfield code="z">(OCoLC)857637867</subfield><subfield code="z">(OCoLC)870550954</subfield><subfield code="z">(OCoLC)961490243</subfield><subfield code="z">(OCoLC)962626306</subfield><subfield code="z">(OCoLC)965982544</subfield><subfield code="z">(OCoLC)988488020</subfield><subfield code="z">(OCoLC)988488113</subfield><subfield code="z">(OCoLC)992055267</subfield><subfield code="z">(OCoLC)994917525</subfield><subfield code="z">(OCoLC)1037752801</subfield><subfield code="z">(OCoLC)1038629711</subfield><subfield code="z">(OCoLC)1038682746</subfield><subfield code="z">(OCoLC)1055373551</subfield><subfield code="z">(OCoLC)1058152249</subfield><subfield code="z">(OCoLC)1058565406</subfield><subfield code="z">(OCoLC)1062908152</subfield><subfield code="z">(OCoLC)1107375802</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/cttmswm</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA564</subfield><subfield code="b">.G634 2012eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT040000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT012010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516.3/5</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Green, M.</subfield><subfield code="q">(Mark),</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJghp6vMBBxydRqbtMGrbd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n94097484</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mumford-Tate groups and domains :</subfield><subfield code="b">their geometry and arithmetic /</subfield><subfield code="c">Mark Green, Phillip Griffiths, Matt Kerr.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="380" ind1=" " ind2=" "><subfield code="a">Bibliography</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">no. 183</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Mumford-Tate groups -- Period domains and Mumford-Tate domains -- The Mumford-Tate group of a variation of Hodge structure -- Hodge representations and Hodge domains -- Hodge structures with complex multiplication -- Arithmetic aspects of Mumford-Tate domains -- Classification of Mumford-Tate subdomains -- Arithmetic of period maps of geometric origin.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mumford-Tate groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2011004900</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes de Mumford-Tate.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">Algebraic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Group Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mumford-Tate groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">JSTOR-DDA</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mumford-Tate groups</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hodge theory</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Geometry, Algebraic</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Multi-User.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Griffiths, Phillip,</subfield><subfield code="d">1938-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJqw6YJbXtpt37CFJ9MF8C</subfield><subfield code="0">http://id.loc.gov/authorities/names/n80046285</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kerr, Matthew D.,</subfield><subfield code="d">1975-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJB8pRMmhTBcQfFbQkjHmd</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2003007413</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Mumford-Tate groups and domains (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGR9dpg9tF6HWQBHKBrtqP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Green, M. (Mark).</subfield><subfield code="t">Mumford-Tate groups and domains.</subfield><subfield code="d">Princeton : Princeton University Press, 2012</subfield><subfield code="z">9780691154244</subfield><subfield code="w">(DLC) 2011037621</subfield><subfield code="w">(OCoLC)756912930</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">no. 183.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42002129</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=442946</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH23067675</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">22288276</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL878315</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10546024</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">442946</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7446879</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn785347354 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:18:20Z |
institution | BVB |
isbn | 9781400842735 1400842735 |
language | English |
oclc_num | 785347354 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Princeton University Press, |
record_format | marc |
series | Annals of mathematics studies ; |
series2 | Annals of mathematics studies ; |
spelling | Green, M. (Mark), author. https://id.oclc.org/worldcat/entity/E39PBJghp6vMBBxydRqbtMGrbd http://id.loc.gov/authorities/names/n94097484 Mumford-Tate groups and domains : their geometry and arithmetic / Mark Green, Phillip Griffiths, Matt Kerr. Princeton : Princeton University Press, 2012. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Bibliography Annals of mathematics studies ; no. 183 Includes bibliographical references and index. Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains. Print version record. Mumford-Tate groups -- Period domains and Mumford-Tate domains -- The Mumford-Tate group of a variation of Hodge structure -- Hodge representations and Hodge domains -- Hodge structures with complex multiplication -- Arithmetic aspects of Mumford-Tate domains -- Classification of Mumford-Tate subdomains -- Arithmetic of period maps of geometric origin. In English. Mumford-Tate groups. http://id.loc.gov/authorities/subjects/sh2011004900 Groupes de Mumford-Tate. MATHEMATICS Geometry Algebraic. bisacsh MATHEMATICS Group Theory. bisacsh Mumford-Tate groups fast JSTOR-DDA Mumford-Tate groups Hodge theory Geometry, Algebraic Multi-User. Griffiths, Phillip, 1938- author. https://id.oclc.org/worldcat/entity/E39PBJqw6YJbXtpt37CFJ9MF8C http://id.loc.gov/authorities/names/n80046285 Kerr, Matthew D., 1975- author. https://id.oclc.org/worldcat/entity/E39PBJB8pRMmhTBcQfFbQkjHmd http://id.loc.gov/authorities/names/no2003007413 has work: Mumford-Tate groups and domains (Text) https://id.oclc.org/worldcat/entity/E39PCGR9dpg9tF6HWQBHKBrtqP https://id.oclc.org/worldcat/ontology/hasWork Print version: Green, M. (Mark). Mumford-Tate groups and domains. Princeton : Princeton University Press, 2012 9780691154244 (DLC) 2011037621 (OCoLC)756912930 Annals of mathematics studies ; no. 183. http://id.loc.gov/authorities/names/n42002129 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=442946 Volltext |
spellingShingle | Green, M. (Mark) Griffiths, Phillip, 1938- Kerr, Matthew D., 1975- Mumford-Tate groups and domains : their geometry and arithmetic / Annals of mathematics studies ; Mumford-Tate groups -- Period domains and Mumford-Tate domains -- The Mumford-Tate group of a variation of Hodge structure -- Hodge representations and Hodge domains -- Hodge structures with complex multiplication -- Arithmetic aspects of Mumford-Tate domains -- Classification of Mumford-Tate subdomains -- Arithmetic of period maps of geometric origin. Mumford-Tate groups. http://id.loc.gov/authorities/subjects/sh2011004900 Groupes de Mumford-Tate. MATHEMATICS Geometry Algebraic. bisacsh MATHEMATICS Group Theory. bisacsh Mumford-Tate groups fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh2011004900 |
title | Mumford-Tate groups and domains : their geometry and arithmetic / |
title_auth | Mumford-Tate groups and domains : their geometry and arithmetic / |
title_exact_search | Mumford-Tate groups and domains : their geometry and arithmetic / |
title_full | Mumford-Tate groups and domains : their geometry and arithmetic / Mark Green, Phillip Griffiths, Matt Kerr. |
title_fullStr | Mumford-Tate groups and domains : their geometry and arithmetic / Mark Green, Phillip Griffiths, Matt Kerr. |
title_full_unstemmed | Mumford-Tate groups and domains : their geometry and arithmetic / Mark Green, Phillip Griffiths, Matt Kerr. |
title_short | Mumford-Tate groups and domains : |
title_sort | mumford tate groups and domains their geometry and arithmetic |
title_sub | their geometry and arithmetic / |
topic | Mumford-Tate groups. http://id.loc.gov/authorities/subjects/sh2011004900 Groupes de Mumford-Tate. MATHEMATICS Geometry Algebraic. bisacsh MATHEMATICS Group Theory. bisacsh Mumford-Tate groups fast |
topic_facet | Mumford-Tate groups. Groupes de Mumford-Tate. MATHEMATICS Geometry Algebraic. MATHEMATICS Group Theory. Mumford-Tate groups |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=442946 |
work_keys_str_mv | AT greenm mumfordtategroupsanddomainstheirgeometryandarithmetic AT griffithsphillip mumfordtategroupsanddomainstheirgeometryandarithmetic AT kerrmatthewd mumfordtategroupsanddomainstheirgeometryandarithmetic |