Hamiltonian Mechanics of Gauge Systems.:
An introduction to Hamiltonian mechanics of systems with gauge symmetry for graduate students and researchers in theoretical and mathematical physics.
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2011.
|
Schriftenreihe: | Cambridge monographs on mathematical physics.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | An introduction to Hamiltonian mechanics of systems with gauge symmetry for graduate students and researchers in theoretical and mathematical physics. |
Beschreibung: | 3.3.1 The extended group of gauge transformations. |
Beschreibung: | 1 online resource (486 pages) |
Bibliographie: | Includes bibliographical references (pages 452-462) and index. |
ISBN: | 9781139187992 1139187996 9780511976209 0511976208 9780521895125 052189512X 9781139190596 1139190598 9781139185684 1139185683 1107219434 9781107219434 1139637770 9781139637770 1283383934 9781283383936 1139189298 9781139189293 9786613383938 6613383937 1139183370 9781139183376 |
Internformat
MARC
LEADER | 00000cam a2200000 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn782877022 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 120402s2011 enk ob 001 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d OCLCQ |d AUD |d IDEBK |d OCLCO |d OCLCQ |d DEBSZ |d OCLCQ |d OCLCO |d OCLCF |d CDX |d COO |d YDXCP |d E7B |d UIU |d UPM |d N$T |d OCLCQ |d LIP |d OCLCQ |d UAB |d OCLCQ |d COCUF |d STF |d CEF |d CUY |d MERUC |d ZCU |d ICG |d K6U |d LOA |d VT2 |d U3W |d OCLCQ |d WYU |d LVT |d TKN |d DKC |d AU@ |d OCLCQ |d UKAHL |d OL$ |d G3B |d OCLCQ |d UKCRE |d VLY |d AJS |d INTCL |d OCLCO |d OCLCQ |d OCLCO |d SFB | ||
015 | |a GBB0A7531 |2 bnb | ||
016 | 7 | |a 015644145 |2 Uk | |
019 | |a 772000583 |a 776970561 |a 778619925 |a 802261460 |a 990541438 |a 1042898079 |a 1043672741 |a 1066640510 |a 1076635039 |a 1081224843 |a 1102542524 |a 1153468813 |a 1162530109 |a 1170664170 |a 1170747776 |a 1228586340 |a 1264916285 | ||
020 | |a 9781139187992 | ||
020 | |a 1139187996 | ||
020 | |a 9780511976209 |q (ebook) | ||
020 | |a 0511976208 |q (ebook) | ||
020 | |a 9780521895125 |q (hardback) | ||
020 | |a 052189512X |q (hardback) | ||
020 | |a 9781139190596 |q (electronic bk.) | ||
020 | |a 1139190598 |q (electronic bk.) | ||
020 | |a 9781139185684 | ||
020 | |a 1139185683 | ||
020 | |a 1107219434 | ||
020 | |a 9781107219434 | ||
020 | |a 1139637770 | ||
020 | |a 9781139637770 | ||
020 | |a 1283383934 | ||
020 | |a 9781283383936 | ||
020 | |a 1139189298 | ||
020 | |a 9781139189293 | ||
020 | |a 9786613383938 | ||
020 | |a 6613383937 | ||
020 | |a 1139183370 | ||
020 | |a 9781139183376 | ||
024 | 8 | |a 9786613383938 | |
035 | |a (OCoLC)782877022 |z (OCoLC)772000583 |z (OCoLC)776970561 |z (OCoLC)778619925 |z (OCoLC)802261460 |z (OCoLC)990541438 |z (OCoLC)1042898079 |z (OCoLC)1043672741 |z (OCoLC)1066640510 |z (OCoLC)1076635039 |z (OCoLC)1081224843 |z (OCoLC)1102542524 |z (OCoLC)1153468813 |z (OCoLC)1162530109 |z (OCoLC)1170664170 |z (OCoLC)1170747776 |z (OCoLC)1228586340 |z (OCoLC)1264916285 | ||
037 | |a 338393 |b MIL | ||
050 | 4 | |a QC793 | |
072 | 7 | |a PH |2 bicssc | |
072 | 7 | |a SCI |x 067000 |2 bisacsh | |
082 | 7 | |a 530.1435 | |
049 | |a MAIN | ||
100 | 1 | |a Prokhorov, Lev V. | |
245 | 1 | 0 | |a Hamiltonian Mechanics of Gauge Systems. |
260 | |a Cambridge : |b Cambridge University Press, |c 2011. | ||
300 | |a 1 online resource (486 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a Cambridge Monographs on Mathematical Physics | |
505 | 0 | |a Cover; HAMILTONIAN MECHANICS OF GAUGE SYSTEMS; CAMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS; Title; Copyright; Contents; Preface; 1 Hamiltonian formalism; 1.1 Hamilton's principle of stationary action; 1.1.1 Poincaré equations; 1.1.2 The existence of a Lagrangian for a dynamical system; 1.2 Hamiltonian equations of motion; 1.3 The Poisson bracket; 1.4 Canonical transformations; 1.5 Generating functions of canonical transformations; 1.6 Symmetries and integrals of motion; 1.6.1 Noether's theorem; 1.6.2 Integrals of motion and symmetry groups; 1.7 Lagrangian formalism for Grassmann variables. | |
505 | 8 | |a 1.8 Hamiltonian formalism for Grassmann variables1.9 Hamiltonian dynamics on supermanifolds; 1.10 Canonical transformations on symplectic supermanifolds; 1.10.1 Hamilton-Jacobi theory; 1.11 Noether's theorem for systems on supermanifolds; 1.11.1 Supersymmetry; 1.12 Non-canonical transformations; 1.13 Examples of systems with non-canonical symplectic structures; 1.13.1 A particle with friction; 1.13.2 q-Oscillator; 1.14 Some generalizations of the Hamiltonian dynamics; 1.14.1 Nambu Mechanics; 1.14.2 Lie-Poisson symplectic structure; 1.14.3 Non-symplectic structures. | |
505 | 8 | |a 1.15 Hamiltonian mechanics. Recent developments2 Hamiltonian path integrals; 2.1 Introduction; 2.1.1 Preliminary remarks; 2.1.2 Quantization; 2.2 Hamiltonian path integrals in quantum mechanics; 2.2.1 Definition of the Hamiltonian path integral; 2.2.2 Lagrangian path integrals; 2.3 Non-standard terms and basic equivalence rules; 2.3.1 Non-standard terms; 2.3.2 Basic equivalence rules; 2.3.3 Basic integrals in curvilinear coordinates. Lagrangian basic equivalence rules; 2.4 Equivalence rules; 2.4.1 Hamiltonian equivalence rules; 2.4.2 Lagrangian equivalence rules. | |
505 | 8 | |a 2.5 Rules for changing the base point2.5.1 Ambiguities of the formal expression (2.8); 2.5.2 Rules for changing the base point; 2.6 Canonical transformations and Hamiltonian path integrals; 2.6.1 Preliminary remarks; 2.6.2 Change of variables in Lagrangian path integrals. Coordinates topologically equivalent to Cartesian coordinates; 2.6.3 Canonical and unitary transformations; 2.6.4 Canonical transformations of the Hamiltonian path integrals; 2.7 Problems with non-trivial boundary conditions; 2.7.1 A particle in an infinite well; 2.7.2 A particle in a disk. | |
505 | 8 | |a 2.7.3 General problems with zero boundary conditions2.7.4 A particle in the potential qk; 2.7.5 Topologically nontrivial coordinates; 2.8 Quantization by the path integral method; 2.8.1 Lagrangian formalism; 2.8.2 Hamiltonian formalism; 3 Dynamical systems with constraints; 3.1 Introduction; 3.1.1 Comparison of the Lagrange and d'Alambert methods for constrained dynamics; 3.2 A general analysis of dynamical systems with constraints; 3.2.1 The Hamiltonian formalism; 3.2.2 Examples of systems with constraints; 3.2.3 The Lagrangian formalism; 3.3 Physical variables in systems with constraints. | |
500 | |a 3.3.1 The extended group of gauge transformations. | ||
520 | |a An introduction to Hamiltonian mechanics of systems with gauge symmetry for graduate students and researchers in theoretical and mathematical physics. | ||
588 | 0 | |a Print version record. | |
504 | |a Includes bibliographical references (pages 452-462) and index. | ||
546 | |a English. | ||
650 | 0 | |a Gauge invariance. |0 http://id.loc.gov/authorities/subjects/sh85053535 | |
650 | 0 | |a Hamiltonian systems. |0 http://id.loc.gov/authorities/subjects/sh85058563 | |
650 | 6 | |a Invariance de jauge. | |
650 | 6 | |a Systèmes hamiltoniens. | |
650 | 7 | |a SCIENCE |x Waves & Wave Mechanics. |2 bisacsh | |
650 | 7 | |a Gauge invariance |2 fast | |
650 | 7 | |a Hamiltonian systems |2 fast | |
655 | 0 | |a Electronic book. | |
655 | 4 | |a Electronic books. | |
700 | 1 | |a Shabanov, Sergei V. | |
776 | 0 | 8 | |i Print version: |a Prokhorov, Lev V. |t Hamiltonian Mechanics of Gauge Systems. |d Cambridge : Cambridge University Press, ©2011 |z 9780521895125 |
830 | 0 | |a Cambridge monographs on mathematical physics. |0 http://id.loc.gov/authorities/names/n42005691 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=409033 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH13438544 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH33351192 | ||
938 | |a Coutts Information Services |b COUT |n 20471053 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL807303 | ||
938 | |a ebrary |b EBRY |n ebr10521026 | ||
938 | |a EBSCOhost |b EBSC |n 409033 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 338393 | ||
938 | |a YBP Library Services |b YANK |n 7167185 | ||
938 | |a YBP Library Services |b YANK |n 7309890 | ||
938 | |a YBP Library Services |b YANK |n 7571873 | ||
938 | |a YBP Library Services |b YANK |n 9523242 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn782877022 |
---|---|
_version_ | 1816881790543986688 |
adam_text | |
any_adam_object | |
author | Prokhorov, Lev V. |
author2 | Shabanov, Sergei V. |
author2_role | |
author2_variant | s v s sv svs |
author_facet | Prokhorov, Lev V. Shabanov, Sergei V. |
author_role | |
author_sort | Prokhorov, Lev V. |
author_variant | l v p lv lvp |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC793 |
callnumber-raw | QC793 |
callnumber-search | QC793 |
callnumber-sort | QC 3793 |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Cover; HAMILTONIAN MECHANICS OF GAUGE SYSTEMS; CAMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS; Title; Copyright; Contents; Preface; 1 Hamiltonian formalism; 1.1 Hamilton's principle of stationary action; 1.1.1 Poincaré equations; 1.1.2 The existence of a Lagrangian for a dynamical system; 1.2 Hamiltonian equations of motion; 1.3 The Poisson bracket; 1.4 Canonical transformations; 1.5 Generating functions of canonical transformations; 1.6 Symmetries and integrals of motion; 1.6.1 Noether's theorem; 1.6.2 Integrals of motion and symmetry groups; 1.7 Lagrangian formalism for Grassmann variables. 1.8 Hamiltonian formalism for Grassmann variables1.9 Hamiltonian dynamics on supermanifolds; 1.10 Canonical transformations on symplectic supermanifolds; 1.10.1 Hamilton-Jacobi theory; 1.11 Noether's theorem for systems on supermanifolds; 1.11.1 Supersymmetry; 1.12 Non-canonical transformations; 1.13 Examples of systems with non-canonical symplectic structures; 1.13.1 A particle with friction; 1.13.2 q-Oscillator; 1.14 Some generalizations of the Hamiltonian dynamics; 1.14.1 Nambu Mechanics; 1.14.2 Lie-Poisson symplectic structure; 1.14.3 Non-symplectic structures. 1.15 Hamiltonian mechanics. Recent developments2 Hamiltonian path integrals; 2.1 Introduction; 2.1.1 Preliminary remarks; 2.1.2 Quantization; 2.2 Hamiltonian path integrals in quantum mechanics; 2.2.1 Definition of the Hamiltonian path integral; 2.2.2 Lagrangian path integrals; 2.3 Non-standard terms and basic equivalence rules; 2.3.1 Non-standard terms; 2.3.2 Basic equivalence rules; 2.3.3 Basic integrals in curvilinear coordinates. Lagrangian basic equivalence rules; 2.4 Equivalence rules; 2.4.1 Hamiltonian equivalence rules; 2.4.2 Lagrangian equivalence rules. 2.5 Rules for changing the base point2.5.1 Ambiguities of the formal expression (2.8); 2.5.2 Rules for changing the base point; 2.6 Canonical transformations and Hamiltonian path integrals; 2.6.1 Preliminary remarks; 2.6.2 Change of variables in Lagrangian path integrals. Coordinates topologically equivalent to Cartesian coordinates; 2.6.3 Canonical and unitary transformations; 2.6.4 Canonical transformations of the Hamiltonian path integrals; 2.7 Problems with non-trivial boundary conditions; 2.7.1 A particle in an infinite well; 2.7.2 A particle in a disk. 2.7.3 General problems with zero boundary conditions2.7.4 A particle in the potential qk; 2.7.5 Topologically nontrivial coordinates; 2.8 Quantization by the path integral method; 2.8.1 Lagrangian formalism; 2.8.2 Hamiltonian formalism; 3 Dynamical systems with constraints; 3.1 Introduction; 3.1.1 Comparison of the Lagrange and d'Alambert methods for constrained dynamics; 3.2 A general analysis of dynamical systems with constraints; 3.2.1 The Hamiltonian formalism; 3.2.2 Examples of systems with constraints; 3.2.3 The Lagrangian formalism; 3.3 Physical variables in systems with constraints. |
ctrlnum | (OCoLC)782877022 |
dewey-full | 530.1435 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1435 |
dewey-search | 530.1435 |
dewey-sort | 3530.1435 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07364cam a2201045 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn782877022</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|---|||||</controlfield><controlfield tag="008">120402s2011 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AUD</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">CDX</subfield><subfield code="d">COO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">E7B</subfield><subfield code="d">UIU</subfield><subfield code="d">UPM</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LIP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">STF</subfield><subfield code="d">CEF</subfield><subfield code="d">CUY</subfield><subfield code="d">MERUC</subfield><subfield code="d">ZCU</subfield><subfield code="d">ICG</subfield><subfield code="d">K6U</subfield><subfield code="d">LOA</subfield><subfield code="d">VT2</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">TKN</subfield><subfield code="d">DKC</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OL$</subfield><subfield code="d">G3B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">VLY</subfield><subfield code="d">AJS</subfield><subfield code="d">INTCL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB0A7531</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">015644145</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">772000583</subfield><subfield code="a">776970561</subfield><subfield code="a">778619925</subfield><subfield code="a">802261460</subfield><subfield code="a">990541438</subfield><subfield code="a">1042898079</subfield><subfield code="a">1043672741</subfield><subfield code="a">1066640510</subfield><subfield code="a">1076635039</subfield><subfield code="a">1081224843</subfield><subfield code="a">1102542524</subfield><subfield code="a">1153468813</subfield><subfield code="a">1162530109</subfield><subfield code="a">1170664170</subfield><subfield code="a">1170747776</subfield><subfield code="a">1228586340</subfield><subfield code="a">1264916285</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139187992</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139187996</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511976209</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511976208</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521895125</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">052189512X</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139190596</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139190598</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139185684</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139185683</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107219434</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107219434</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139637770</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139637770</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283383934</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283383936</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139189298</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139189293</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786613383938</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6613383937</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139183370</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139183376</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">9786613383938</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)782877022</subfield><subfield code="z">(OCoLC)772000583</subfield><subfield code="z">(OCoLC)776970561</subfield><subfield code="z">(OCoLC)778619925</subfield><subfield code="z">(OCoLC)802261460</subfield><subfield code="z">(OCoLC)990541438</subfield><subfield code="z">(OCoLC)1042898079</subfield><subfield code="z">(OCoLC)1043672741</subfield><subfield code="z">(OCoLC)1066640510</subfield><subfield code="z">(OCoLC)1076635039</subfield><subfield code="z">(OCoLC)1081224843</subfield><subfield code="z">(OCoLC)1102542524</subfield><subfield code="z">(OCoLC)1153468813</subfield><subfield code="z">(OCoLC)1162530109</subfield><subfield code="z">(OCoLC)1170664170</subfield><subfield code="z">(OCoLC)1170747776</subfield><subfield code="z">(OCoLC)1228586340</subfield><subfield code="z">(OCoLC)1264916285</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">338393</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC793</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PH</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">067000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.1435</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Prokhorov, Lev V.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hamiltonian Mechanics of Gauge Systems.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (486 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge Monographs on Mathematical Physics</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; HAMILTONIAN MECHANICS OF GAUGE SYSTEMS; CAMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS; Title; Copyright; Contents; Preface; 1 Hamiltonian formalism; 1.1 Hamilton's principle of stationary action; 1.1.1 Poincaré equations; 1.1.2 The existence of a Lagrangian for a dynamical system; 1.2 Hamiltonian equations of motion; 1.3 The Poisson bracket; 1.4 Canonical transformations; 1.5 Generating functions of canonical transformations; 1.6 Symmetries and integrals of motion; 1.6.1 Noether's theorem; 1.6.2 Integrals of motion and symmetry groups; 1.7 Lagrangian formalism for Grassmann variables.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.8 Hamiltonian formalism for Grassmann variables1.9 Hamiltonian dynamics on supermanifolds; 1.10 Canonical transformations on symplectic supermanifolds; 1.10.1 Hamilton-Jacobi theory; 1.11 Noether's theorem for systems on supermanifolds; 1.11.1 Supersymmetry; 1.12 Non-canonical transformations; 1.13 Examples of systems with non-canonical symplectic structures; 1.13.1 A particle with friction; 1.13.2 q-Oscillator; 1.14 Some generalizations of the Hamiltonian dynamics; 1.14.1 Nambu Mechanics; 1.14.2 Lie-Poisson symplectic structure; 1.14.3 Non-symplectic structures.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.15 Hamiltonian mechanics. Recent developments2 Hamiltonian path integrals; 2.1 Introduction; 2.1.1 Preliminary remarks; 2.1.2 Quantization; 2.2 Hamiltonian path integrals in quantum mechanics; 2.2.1 Definition of the Hamiltonian path integral; 2.2.2 Lagrangian path integrals; 2.3 Non-standard terms and basic equivalence rules; 2.3.1 Non-standard terms; 2.3.2 Basic equivalence rules; 2.3.3 Basic integrals in curvilinear coordinates. Lagrangian basic equivalence rules; 2.4 Equivalence rules; 2.4.1 Hamiltonian equivalence rules; 2.4.2 Lagrangian equivalence rules.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.5 Rules for changing the base point2.5.1 Ambiguities of the formal expression (2.8); 2.5.2 Rules for changing the base point; 2.6 Canonical transformations and Hamiltonian path integrals; 2.6.1 Preliminary remarks; 2.6.2 Change of variables in Lagrangian path integrals. Coordinates topologically equivalent to Cartesian coordinates; 2.6.3 Canonical and unitary transformations; 2.6.4 Canonical transformations of the Hamiltonian path integrals; 2.7 Problems with non-trivial boundary conditions; 2.7.1 A particle in an infinite well; 2.7.2 A particle in a disk.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.7.3 General problems with zero boundary conditions2.7.4 A particle in the potential qk; 2.7.5 Topologically nontrivial coordinates; 2.8 Quantization by the path integral method; 2.8.1 Lagrangian formalism; 2.8.2 Hamiltonian formalism; 3 Dynamical systems with constraints; 3.1 Introduction; 3.1.1 Comparison of the Lagrange and d'Alambert methods for constrained dynamics; 3.2 A general analysis of dynamical systems with constraints; 3.2.1 The Hamiltonian formalism; 3.2.2 Examples of systems with constraints; 3.2.3 The Lagrangian formalism; 3.3 Physical variables in systems with constraints.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">3.3.1 The extended group of gauge transformations.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An introduction to Hamiltonian mechanics of systems with gauge symmetry for graduate students and researchers in theoretical and mathematical physics.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 452-462) and index.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Gauge invariance.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85053535</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Hamiltonian systems.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85058563</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Invariance de jauge.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Systèmes hamiltoniens.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Waves & Wave Mechanics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gauge invariance</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hamiltonian systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="0"><subfield code="a">Electronic book.</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shabanov, Sergei V.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Prokhorov, Lev V.</subfield><subfield code="t">Hamiltonian Mechanics of Gauge Systems.</subfield><subfield code="d">Cambridge : Cambridge University Press, ©2011</subfield><subfield code="z">9780521895125</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge monographs on mathematical physics.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42005691</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=409033</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH13438544</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH33351192</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">20471053</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL807303</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10521026</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">409033</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">338393</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7167185</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7309890</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7571873</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9523242</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic book. Electronic books. |
genre_facet | Electronic book. Electronic books. |
id | ZDB-4-EBA-ocn782877022 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:18:19Z |
institution | BVB |
isbn | 9781139187992 1139187996 9780511976209 0511976208 9780521895125 052189512X 9781139190596 1139190598 9781139185684 1139185683 1107219434 9781107219434 1139637770 9781139637770 1283383934 9781283383936 1139189298 9781139189293 9786613383938 6613383937 1139183370 9781139183376 |
language | English |
oclc_num | 782877022 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (486 pages) |
psigel | ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Cambridge University Press, |
record_format | marc |
series | Cambridge monographs on mathematical physics. |
series2 | Cambridge Monographs on Mathematical Physics |
spelling | Prokhorov, Lev V. Hamiltonian Mechanics of Gauge Systems. Cambridge : Cambridge University Press, 2011. 1 online resource (486 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Cambridge Monographs on Mathematical Physics Cover; HAMILTONIAN MECHANICS OF GAUGE SYSTEMS; CAMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS; Title; Copyright; Contents; Preface; 1 Hamiltonian formalism; 1.1 Hamilton's principle of stationary action; 1.1.1 Poincaré equations; 1.1.2 The existence of a Lagrangian for a dynamical system; 1.2 Hamiltonian equations of motion; 1.3 The Poisson bracket; 1.4 Canonical transformations; 1.5 Generating functions of canonical transformations; 1.6 Symmetries and integrals of motion; 1.6.1 Noether's theorem; 1.6.2 Integrals of motion and symmetry groups; 1.7 Lagrangian formalism for Grassmann variables. 1.8 Hamiltonian formalism for Grassmann variables1.9 Hamiltonian dynamics on supermanifolds; 1.10 Canonical transformations on symplectic supermanifolds; 1.10.1 Hamilton-Jacobi theory; 1.11 Noether's theorem for systems on supermanifolds; 1.11.1 Supersymmetry; 1.12 Non-canonical transformations; 1.13 Examples of systems with non-canonical symplectic structures; 1.13.1 A particle with friction; 1.13.2 q-Oscillator; 1.14 Some generalizations of the Hamiltonian dynamics; 1.14.1 Nambu Mechanics; 1.14.2 Lie-Poisson symplectic structure; 1.14.3 Non-symplectic structures. 1.15 Hamiltonian mechanics. Recent developments2 Hamiltonian path integrals; 2.1 Introduction; 2.1.1 Preliminary remarks; 2.1.2 Quantization; 2.2 Hamiltonian path integrals in quantum mechanics; 2.2.1 Definition of the Hamiltonian path integral; 2.2.2 Lagrangian path integrals; 2.3 Non-standard terms and basic equivalence rules; 2.3.1 Non-standard terms; 2.3.2 Basic equivalence rules; 2.3.3 Basic integrals in curvilinear coordinates. Lagrangian basic equivalence rules; 2.4 Equivalence rules; 2.4.1 Hamiltonian equivalence rules; 2.4.2 Lagrangian equivalence rules. 2.5 Rules for changing the base point2.5.1 Ambiguities of the formal expression (2.8); 2.5.2 Rules for changing the base point; 2.6 Canonical transformations and Hamiltonian path integrals; 2.6.1 Preliminary remarks; 2.6.2 Change of variables in Lagrangian path integrals. Coordinates topologically equivalent to Cartesian coordinates; 2.6.3 Canonical and unitary transformations; 2.6.4 Canonical transformations of the Hamiltonian path integrals; 2.7 Problems with non-trivial boundary conditions; 2.7.1 A particle in an infinite well; 2.7.2 A particle in a disk. 2.7.3 General problems with zero boundary conditions2.7.4 A particle in the potential qk; 2.7.5 Topologically nontrivial coordinates; 2.8 Quantization by the path integral method; 2.8.1 Lagrangian formalism; 2.8.2 Hamiltonian formalism; 3 Dynamical systems with constraints; 3.1 Introduction; 3.1.1 Comparison of the Lagrange and d'Alambert methods for constrained dynamics; 3.2 A general analysis of dynamical systems with constraints; 3.2.1 The Hamiltonian formalism; 3.2.2 Examples of systems with constraints; 3.2.3 The Lagrangian formalism; 3.3 Physical variables in systems with constraints. 3.3.1 The extended group of gauge transformations. An introduction to Hamiltonian mechanics of systems with gauge symmetry for graduate students and researchers in theoretical and mathematical physics. Print version record. Includes bibliographical references (pages 452-462) and index. English. Gauge invariance. http://id.loc.gov/authorities/subjects/sh85053535 Hamiltonian systems. http://id.loc.gov/authorities/subjects/sh85058563 Invariance de jauge. Systèmes hamiltoniens. SCIENCE Waves & Wave Mechanics. bisacsh Gauge invariance fast Hamiltonian systems fast Electronic book. Electronic books. Shabanov, Sergei V. Print version: Prokhorov, Lev V. Hamiltonian Mechanics of Gauge Systems. Cambridge : Cambridge University Press, ©2011 9780521895125 Cambridge monographs on mathematical physics. http://id.loc.gov/authorities/names/n42005691 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=409033 Volltext |
spellingShingle | Prokhorov, Lev V. Hamiltonian Mechanics of Gauge Systems. Cambridge monographs on mathematical physics. Cover; HAMILTONIAN MECHANICS OF GAUGE SYSTEMS; CAMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS; Title; Copyright; Contents; Preface; 1 Hamiltonian formalism; 1.1 Hamilton's principle of stationary action; 1.1.1 Poincaré equations; 1.1.2 The existence of a Lagrangian for a dynamical system; 1.2 Hamiltonian equations of motion; 1.3 The Poisson bracket; 1.4 Canonical transformations; 1.5 Generating functions of canonical transformations; 1.6 Symmetries and integrals of motion; 1.6.1 Noether's theorem; 1.6.2 Integrals of motion and symmetry groups; 1.7 Lagrangian formalism for Grassmann variables. 1.8 Hamiltonian formalism for Grassmann variables1.9 Hamiltonian dynamics on supermanifolds; 1.10 Canonical transformations on symplectic supermanifolds; 1.10.1 Hamilton-Jacobi theory; 1.11 Noether's theorem for systems on supermanifolds; 1.11.1 Supersymmetry; 1.12 Non-canonical transformations; 1.13 Examples of systems with non-canonical symplectic structures; 1.13.1 A particle with friction; 1.13.2 q-Oscillator; 1.14 Some generalizations of the Hamiltonian dynamics; 1.14.1 Nambu Mechanics; 1.14.2 Lie-Poisson symplectic structure; 1.14.3 Non-symplectic structures. 1.15 Hamiltonian mechanics. Recent developments2 Hamiltonian path integrals; 2.1 Introduction; 2.1.1 Preliminary remarks; 2.1.2 Quantization; 2.2 Hamiltonian path integrals in quantum mechanics; 2.2.1 Definition of the Hamiltonian path integral; 2.2.2 Lagrangian path integrals; 2.3 Non-standard terms and basic equivalence rules; 2.3.1 Non-standard terms; 2.3.2 Basic equivalence rules; 2.3.3 Basic integrals in curvilinear coordinates. Lagrangian basic equivalence rules; 2.4 Equivalence rules; 2.4.1 Hamiltonian equivalence rules; 2.4.2 Lagrangian equivalence rules. 2.5 Rules for changing the base point2.5.1 Ambiguities of the formal expression (2.8); 2.5.2 Rules for changing the base point; 2.6 Canonical transformations and Hamiltonian path integrals; 2.6.1 Preliminary remarks; 2.6.2 Change of variables in Lagrangian path integrals. Coordinates topologically equivalent to Cartesian coordinates; 2.6.3 Canonical and unitary transformations; 2.6.4 Canonical transformations of the Hamiltonian path integrals; 2.7 Problems with non-trivial boundary conditions; 2.7.1 A particle in an infinite well; 2.7.2 A particle in a disk. 2.7.3 General problems with zero boundary conditions2.7.4 A particle in the potential qk; 2.7.5 Topologically nontrivial coordinates; 2.8 Quantization by the path integral method; 2.8.1 Lagrangian formalism; 2.8.2 Hamiltonian formalism; 3 Dynamical systems with constraints; 3.1 Introduction; 3.1.1 Comparison of the Lagrange and d'Alambert methods for constrained dynamics; 3.2 A general analysis of dynamical systems with constraints; 3.2.1 The Hamiltonian formalism; 3.2.2 Examples of systems with constraints; 3.2.3 The Lagrangian formalism; 3.3 Physical variables in systems with constraints. Gauge invariance. http://id.loc.gov/authorities/subjects/sh85053535 Hamiltonian systems. http://id.loc.gov/authorities/subjects/sh85058563 Invariance de jauge. Systèmes hamiltoniens. SCIENCE Waves & Wave Mechanics. bisacsh Gauge invariance fast Hamiltonian systems fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85053535 http://id.loc.gov/authorities/subjects/sh85058563 |
title | Hamiltonian Mechanics of Gauge Systems. |
title_auth | Hamiltonian Mechanics of Gauge Systems. |
title_exact_search | Hamiltonian Mechanics of Gauge Systems. |
title_full | Hamiltonian Mechanics of Gauge Systems. |
title_fullStr | Hamiltonian Mechanics of Gauge Systems. |
title_full_unstemmed | Hamiltonian Mechanics of Gauge Systems. |
title_short | Hamiltonian Mechanics of Gauge Systems. |
title_sort | hamiltonian mechanics of gauge systems |
topic | Gauge invariance. http://id.loc.gov/authorities/subjects/sh85053535 Hamiltonian systems. http://id.loc.gov/authorities/subjects/sh85058563 Invariance de jauge. Systèmes hamiltoniens. SCIENCE Waves & Wave Mechanics. bisacsh Gauge invariance fast Hamiltonian systems fast |
topic_facet | Gauge invariance. Hamiltonian systems. Invariance de jauge. Systèmes hamiltoniens. SCIENCE Waves & Wave Mechanics. Gauge invariance Hamiltonian systems Electronic book. Electronic books. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=409033 |
work_keys_str_mv | AT prokhorovlevv hamiltonianmechanicsofgaugesystems AT shabanovsergeiv hamiltonianmechanicsofgaugesystems |