Plant physics /:
From Galileo, who used the hollow stalks of grass to demonstrate the idea that peripherally located construction materials provide most of the resistance to bending forces, to Leonardo da Vinci, whose illustrations of the parachute are alleged to be based on his study of the dandelion's pappus...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Chicago :
University of Chicago Press,
©2012.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | From Galileo, who used the hollow stalks of grass to demonstrate the idea that peripherally located construction materials provide most of the resistance to bending forces, to Leonardo da Vinci, whose illustrations of the parachute are alleged to be based on his study of the dandelion's pappus and the maple tree's samara, many of our greatest physicists, mathematicians, and engineers have learned much from studying plants. A symbiotic relationship between botany and the fields of physics, mathematics, engineering, and chemistry continues today, as is revealed in Plant Physics. The result of a long-term collaboration between plant evolutionary biologist Karl J. Niklas and physicist Hanns-Christof Spatz, Plant Physics presents a detailed account of the principles of classical physics, evolutionary theory, and plant biology in order to explain the complex interrelationships among plant form, function, environment, and evolutionary history. Covering a wide range of topics-from the development and evolution of the basic plant body and the ecology of aquatic unicellular plants to mathematical treatments of light attenuation through tree canopies and the movement of water through plants' roots, stems, and leaves- Plant Physics is destined to inspire students and professionals alike to traverse disciplinary membranes. |
Beschreibung: | 1 online resource (xx, 426 pages) : illustrations, digital |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780226586342 0226586340 1280126310 9781280126314 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn779173734 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 120305s2012 ilua ob 001 0 eng d | ||
010 | |z 2011024765 | ||
040 | |a N$T |b eng |e pn |c N$T |d EBLCP |d CDX |d IDEBK |d E7B |d OCLCQ |d TLS |d OCLCQ |d OSU |d OCLCF |d DEBSZ |d OCLCQ |d MHW |d YDXCP |d CHVBK |d OCLCQ |d D6H |d OCLCQ |d YDX |d AGLDB |d Z5A |d MOR |d ICA |d OCLCQ |d MERUC |d OCLCQ |d VTS |d INT |d STF |d LOA |d ZCU |d ICG |d VT2 |d OCLCQ |d TKN |d DKC |d OCLCQ |d K6U |d DEGRU |d UKCRE |d U9X |d AJS |d DKU |d OCLCQ |d UKAHL |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL |d OCLCQ |d SXB |d OCLCQ |d OCLCO |d HOPLA | ||
019 | |a 780250613 |a 785870807 |a 786276918 |a 787844525 |a 817068278 |a 961312545 |a 988411437 |a 988498198 |a 994551994 |a 1004922095 |a 1005312098 |a 1055762845 |a 1056578354 |a 1061028013 |a 1081234806 |a 1082758418 |a 1153535640 |a 1228592824 | ||
020 | |a 9780226586342 |q (electronic bk.) | ||
020 | |a 0226586340 |q (electronic bk.) | ||
020 | |a 1280126310 | ||
020 | |a 9781280126314 | ||
020 | |z 9780226586328 | ||
020 | |z 0226586324 | ||
024 | 8 | |a 9786613530172 | |
035 | |a (OCoLC)779173734 |z (OCoLC)780250613 |z (OCoLC)785870807 |z (OCoLC)786276918 |z (OCoLC)787844525 |z (OCoLC)817068278 |z (OCoLC)961312545 |z (OCoLC)988411437 |z (OCoLC)988498198 |z (OCoLC)994551994 |z (OCoLC)1004922095 |z (OCoLC)1005312098 |z (OCoLC)1055762845 |z (OCoLC)1056578354 |z (OCoLC)1061028013 |z (OCoLC)1081234806 |z (OCoLC)1082758418 |z (OCoLC)1153535640 |z (OCoLC)1228592824 | ||
037 | |a 353017 |b MIL | ||
050 | 4 | |a QK711.2 |b .N54 2012eb | |
070 | |a QK711.2 |b .N54 2012 | ||
072 | 7 | |a SCI |x 056000 |2 bisacsh | |
082 | 7 | |a 571.2 |2 23 | |
084 | |a WN 1000 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Niklas, Karl J. |1 https://id.oclc.org/worldcat/entity/E39PBJdWMmJQry3h6w9Mf3PYT3 |0 http://id.loc.gov/authorities/names/n81014318 | |
245 | 1 | 0 | |a Plant physics / |c Karl J. Niklas and Hanns-Christof Spatz. |
260 | |a Chicago : |b University of Chicago Press, |c ©2012. | ||
300 | |a 1 online resource (xx, 426 pages) : |b illustrations, digital | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
520 | |a From Galileo, who used the hollow stalks of grass to demonstrate the idea that peripherally located construction materials provide most of the resistance to bending forces, to Leonardo da Vinci, whose illustrations of the parachute are alleged to be based on his study of the dandelion's pappus and the maple tree's samara, many of our greatest physicists, mathematicians, and engineers have learned much from studying plants. A symbiotic relationship between botany and the fields of physics, mathematics, engineering, and chemistry continues today, as is revealed in Plant Physics. The result of a long-term collaboration between plant evolutionary biologist Karl J. Niklas and physicist Hanns-Christof Spatz, Plant Physics presents a detailed account of the principles of classical physics, evolutionary theory, and plant biology in order to explain the complex interrelationships among plant form, function, environment, and evolutionary history. Covering a wide range of topics-from the development and evolution of the basic plant body and the ecology of aquatic unicellular plants to mathematical treatments of light attenuation through tree canopies and the movement of water through plants' roots, stems, and leaves- Plant Physics is destined to inspire students and professionals alike to traverse disciplinary membranes. | ||
505 | 0 | |a An Introduction to Some Basic Concepts. What is plant physics? -- The importance of plants -- The amount of organic carbon produced annually -- A brief history of plant life -- A brief review of vascular plant ontogeny -- Plant reproduction -- Compromise and adaptive evolution -- Photosynthetic efficiency versus mechanical stability -- Elucidating function from form -- The basic plant body plans -- The importance of multicellularity. Environmental Biophysics. Three transport laws -- Boundary layers -- Living in water versus air -- Passive diffusion of carbon dioxide in the boundary layer in air and in water -- Light interception and photosynthesis -- Absorption of light by chloroplasts -- Formulas for the effective light absorption cross section of some geometric objects -- Modeling light interception in canopies -- Phototropism -- Mechanoperception -- Thigmomorphogenesis -- Gravitropism -- Root growth, root anchorage, and soil properties. -- Plant Water Relations. The roles of water acquisition and conservation -- Some physical properties of water -- Vapor pressure and Raoult's law -- Chemical potential and osmotic pressure -- Water potential -- Turgor pressure and the volumetric elastic modulus -- Flow through tubes and the Hagen-Poiseuille equation -- The cohesion-tension theory and the ascent of water -- Phloem and phloem loading. -- The Mechanical Behavior of Materials. Types of forces and their components -- Strains -- Different responses to applied forces -- A note of caution about normal stresses and strains -- Extension to three dimensions -- Poisson's ratios -- Poisson's ratio for an incompressible fluid -- Poisson's ratio for a cell -- Isotropic and anisotropic materials -- Gordon mechanism. -- The Effects of Geometry, Shape, and Size. Geometry and shape are not the same things -- Pure bending -- The second moment of area -- Simple bending -- Bending of slender cantilevers -- Three-point bending of slender beams -- Bending and shearing -- Bending and shearing of a cantilever -- Bending and shearing of a simply supported beam -- The influence of the microfibrillar angle on the stiffness of a cell -- Fracture in bending -- Torsion -- Static loads -- Comparison of forces on a tree trunk resulting from self-loading with those experienced in bending -- The constant stress hypothesis -- Predictions for the geometry of a tree trunk obeying the constant stress hypothesis -- Euler buckling -- Hollow stems and Brazier buckling -- Dynamics, oscillation, and oscillation bending -- Derivation of eigenfrequencies. -- Fluid Mechanics. What are fluids? -- The Navier-Stokes equations -- The Reynolds number -- Flow and drag at small Reynolds numbers -- Derivation of the Hagen-Poiseuille equation -- Flow of ideal fluids -- Boundary layers and flow of real fluids -- Vorticity -- Turbulent flow -- Turbulent stresses and friction velocities -- Drag in real fluids -- Drag and flexibility -- Vertical velocity profiles -- Terminal settling velocity -- Fluid dispersal of reproductive structures. -- Plant Electrophysiology. The principle of electroneutrality -- The Nernst-Planck equation -- Membrane potentials -- The Goldman equation -- Ion channels and ion pumps -- The Ussing-Teorell equation -- Electrical currents and gravisensitivity -- Action potentials -- Electrical signaling in plants. -- A Synthesis: the Properties of Selected Plant Materials, Cells, and Tissues. The plant cuticle -- A brief introduction to the primary cell wall -- Cell wall stress and expansion resulting from turgor -- The plasmalemma and cell wall deposition -- The epidermis and the tissue tension hypothesis -- Hydrostatic tissues -- Stresses in thick-walled cylinders -- Compression of spherical turgid cells -- Nonhydrostatic cells and tissues -- Cellular solids -- Tissue stresses and growth stresses -- Secondary growth and reaction wood -- Wood as an engineering material. -- Experimental Tools. Anatomical methods on a microscale -- Mechanical measuring techniques on a macroscale -- An example of applied biomechanics: Tree risk assessment -- Mechanical measuring techniques on a microscale -- Scholander pressure chamber -- Pressure probe -- Recording of electric potentials and electrical currents -- Patch clamp techniques -- Biomimetics. -- Theoretical Tools. Modeling -- Morphology: The problematic nature of structure-function relationships -- Theoretical morphology, optimization, and adaptation -- Size, proportion, and allometry -- Comparison of regression parameters -- Finite element methods (FEM) -- Optimization techniques -- Optimal allocation of biological resources -- Lagrange multipliers and Murray's law. | |
650 | 0 | |a Plant physiology. |0 http://id.loc.gov/authorities/subjects/sh85102796 | |
650 | 0 | |a Botanical chemistry. |0 http://id.loc.gov/authorities/subjects/sh85015961 | |
650 | 6 | |a Physiologie végétale. | |
650 | 6 | |a Chimie végétale. | |
650 | 7 | |a SCIENCE |x Life Sciences |x Anatomy & Physiology. |2 bisacsh | |
650 | 7 | |a Botanical chemistry |2 fast | |
650 | 7 | |a Plant physiology |2 fast | |
700 | 1 | |a Spatz, Hanns-Christof. |1 https://id.oclc.org/worldcat/entity/E39PCjvFC937FcTVXvkyFQT6YX |0 http://id.loc.gov/authorities/names/n88051908 | |
758 | |i has work: |a Plant physics (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGt4xhDCxwdW9C7YrbhHBX |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Niklas, Karl J. |t Plant physics. |d Chicago : University of Chicago Press, 2012 |z 9780226586328 |w (DLC) 2011024765 |w (OCoLC)730906535 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=438288 |3 Volltext |
938 | |a hoopla Digital |b HOPL |n MWT16976575 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26872404 | ||
938 | |a De Gruyter |b DEGR |n 9780226586342 | ||
938 | |a Coutts Information Services |b COUT |n 21892294 | ||
938 | |a ebrary |b EBRY |n ebr10537820 | ||
938 | |a EBSCOhost |b EBSC |n 438288 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 353017 | ||
938 | |a YBP Library Services |b YANK |n 7475266 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL867820 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn779173734 |
---|---|
_version_ | 1816881788373434368 |
adam_text | |
any_adam_object | |
author | Niklas, Karl J. |
author2 | Spatz, Hanns-Christof |
author2_role | |
author2_variant | h c s hcs |
author_GND | http://id.loc.gov/authorities/names/n81014318 http://id.loc.gov/authorities/names/n88051908 |
author_facet | Niklas, Karl J. Spatz, Hanns-Christof |
author_role | |
author_sort | Niklas, Karl J. |
author_variant | k j n kj kjn |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QK711 |
callnumber-raw | QK711.2 .N54 2012eb |
callnumber-search | QK711.2 .N54 2012eb |
callnumber-sort | QK 3711.2 N54 42012EB |
callnumber-subject | QK - Botany |
classification_rvk | WN 1000 |
collection | ZDB-4-EBA |
contents | An Introduction to Some Basic Concepts. What is plant physics? -- The importance of plants -- The amount of organic carbon produced annually -- A brief history of plant life -- A brief review of vascular plant ontogeny -- Plant reproduction -- Compromise and adaptive evolution -- Photosynthetic efficiency versus mechanical stability -- Elucidating function from form -- The basic plant body plans -- The importance of multicellularity. Environmental Biophysics. Three transport laws -- Boundary layers -- Living in water versus air -- Passive diffusion of carbon dioxide in the boundary layer in air and in water -- Light interception and photosynthesis -- Absorption of light by chloroplasts -- Formulas for the effective light absorption cross section of some geometric objects -- Modeling light interception in canopies -- Phototropism -- Mechanoperception -- Thigmomorphogenesis -- Gravitropism -- Root growth, root anchorage, and soil properties. -- Plant Water Relations. The roles of water acquisition and conservation -- Some physical properties of water -- Vapor pressure and Raoult's law -- Chemical potential and osmotic pressure -- Water potential -- Turgor pressure and the volumetric elastic modulus -- Flow through tubes and the Hagen-Poiseuille equation -- The cohesion-tension theory and the ascent of water -- Phloem and phloem loading. -- The Mechanical Behavior of Materials. Types of forces and their components -- Strains -- Different responses to applied forces -- A note of caution about normal stresses and strains -- Extension to three dimensions -- Poisson's ratios -- Poisson's ratio for an incompressible fluid -- Poisson's ratio for a cell -- Isotropic and anisotropic materials -- Gordon mechanism. -- The Effects of Geometry, Shape, and Size. Geometry and shape are not the same things -- Pure bending -- The second moment of area -- Simple bending -- Bending of slender cantilevers -- Three-point bending of slender beams -- Bending and shearing -- Bending and shearing of a cantilever -- Bending and shearing of a simply supported beam -- The influence of the microfibrillar angle on the stiffness of a cell -- Fracture in bending -- Torsion -- Static loads -- Comparison of forces on a tree trunk resulting from self-loading with those experienced in bending -- The constant stress hypothesis -- Predictions for the geometry of a tree trunk obeying the constant stress hypothesis -- Euler buckling -- Hollow stems and Brazier buckling -- Dynamics, oscillation, and oscillation bending -- Derivation of eigenfrequencies. -- Fluid Mechanics. What are fluids? -- The Navier-Stokes equations -- The Reynolds number -- Flow and drag at small Reynolds numbers -- Derivation of the Hagen-Poiseuille equation -- Flow of ideal fluids -- Boundary layers and flow of real fluids -- Vorticity -- Turbulent flow -- Turbulent stresses and friction velocities -- Drag in real fluids -- Drag and flexibility -- Vertical velocity profiles -- Terminal settling velocity -- Fluid dispersal of reproductive structures. -- Plant Electrophysiology. The principle of electroneutrality -- The Nernst-Planck equation -- Membrane potentials -- The Goldman equation -- Ion channels and ion pumps -- The Ussing-Teorell equation -- Electrical currents and gravisensitivity -- Action potentials -- Electrical signaling in plants. -- A Synthesis: the Properties of Selected Plant Materials, Cells, and Tissues. The plant cuticle -- A brief introduction to the primary cell wall -- Cell wall stress and expansion resulting from turgor -- The plasmalemma and cell wall deposition -- The epidermis and the tissue tension hypothesis -- Hydrostatic tissues -- Stresses in thick-walled cylinders -- Compression of spherical turgid cells -- Nonhydrostatic cells and tissues -- Cellular solids -- Tissue stresses and growth stresses -- Secondary growth and reaction wood -- Wood as an engineering material. -- Experimental Tools. Anatomical methods on a microscale -- Mechanical measuring techniques on a macroscale -- An example of applied biomechanics: Tree risk assessment -- Mechanical measuring techniques on a microscale -- Scholander pressure chamber -- Pressure probe -- Recording of electric potentials and electrical currents -- Patch clamp techniques -- Biomimetics. -- Theoretical Tools. Modeling -- Morphology: The problematic nature of structure-function relationships -- Theoretical morphology, optimization, and adaptation -- Size, proportion, and allometry -- Comparison of regression parameters -- Finite element methods (FEM) -- Optimization techniques -- Optimal allocation of biological resources -- Lagrange multipliers and Murray's law. |
ctrlnum | (OCoLC)779173734 |
dewey-full | 571.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 571 - Physiology & related subjects |
dewey-raw | 571.2 |
dewey-search | 571.2 |
dewey-sort | 3571.2 |
dewey-tens | 570 - Biology |
discipline | Biologie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>09765cam a2200709 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn779173734</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">120305s2012 ilua ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2011024765</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">CDX</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TLS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OSU</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MHW</subfield><subfield code="d">YDXCP</subfield><subfield code="d">CHVBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">D6H</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">AGLDB</subfield><subfield code="d">Z5A</subfield><subfield code="d">MOR</subfield><subfield code="d">ICA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">INT</subfield><subfield code="d">STF</subfield><subfield code="d">LOA</subfield><subfield code="d">ZCU</subfield><subfield code="d">ICG</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TKN</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">DEGRU</subfield><subfield code="d">UKCRE</subfield><subfield code="d">U9X</subfield><subfield code="d">AJS</subfield><subfield code="d">DKU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">HOPLA</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">780250613</subfield><subfield code="a">785870807</subfield><subfield code="a">786276918</subfield><subfield code="a">787844525</subfield><subfield code="a">817068278</subfield><subfield code="a">961312545</subfield><subfield code="a">988411437</subfield><subfield code="a">988498198</subfield><subfield code="a">994551994</subfield><subfield code="a">1004922095</subfield><subfield code="a">1005312098</subfield><subfield code="a">1055762845</subfield><subfield code="a">1056578354</subfield><subfield code="a">1061028013</subfield><subfield code="a">1081234806</subfield><subfield code="a">1082758418</subfield><subfield code="a">1153535640</subfield><subfield code="a">1228592824</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780226586342</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0226586340</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1280126310</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781280126314</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780226586328</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0226586324</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">9786613530172</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)779173734</subfield><subfield code="z">(OCoLC)780250613</subfield><subfield code="z">(OCoLC)785870807</subfield><subfield code="z">(OCoLC)786276918</subfield><subfield code="z">(OCoLC)787844525</subfield><subfield code="z">(OCoLC)817068278</subfield><subfield code="z">(OCoLC)961312545</subfield><subfield code="z">(OCoLC)988411437</subfield><subfield code="z">(OCoLC)988498198</subfield><subfield code="z">(OCoLC)994551994</subfield><subfield code="z">(OCoLC)1004922095</subfield><subfield code="z">(OCoLC)1005312098</subfield><subfield code="z">(OCoLC)1055762845</subfield><subfield code="z">(OCoLC)1056578354</subfield><subfield code="z">(OCoLC)1061028013</subfield><subfield code="z">(OCoLC)1081234806</subfield><subfield code="z">(OCoLC)1082758418</subfield><subfield code="z">(OCoLC)1153535640</subfield><subfield code="z">(OCoLC)1228592824</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">353017</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QK711.2</subfield><subfield code="b">.N54 2012eb</subfield></datafield><datafield tag="070" ind1=" " ind2=" "><subfield code="a">QK711.2</subfield><subfield code="b">.N54 2012</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">056000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">571.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WN 1000</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Niklas, Karl J.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJdWMmJQry3h6w9Mf3PYT3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n81014318</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plant physics /</subfield><subfield code="c">Karl J. Niklas and Hanns-Christof Spatz.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Chicago :</subfield><subfield code="b">University of Chicago Press,</subfield><subfield code="c">©2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xx, 426 pages) :</subfield><subfield code="b">illustrations, digital</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">From Galileo, who used the hollow stalks of grass to demonstrate the idea that peripherally located construction materials provide most of the resistance to bending forces, to Leonardo da Vinci, whose illustrations of the parachute are alleged to be based on his study of the dandelion's pappus and the maple tree's samara, many of our greatest physicists, mathematicians, and engineers have learned much from studying plants. A symbiotic relationship between botany and the fields of physics, mathematics, engineering, and chemistry continues today, as is revealed in Plant Physics. The result of a long-term collaboration between plant evolutionary biologist Karl J. Niklas and physicist Hanns-Christof Spatz, Plant Physics presents a detailed account of the principles of classical physics, evolutionary theory, and plant biology in order to explain the complex interrelationships among plant form, function, environment, and evolutionary history. Covering a wide range of topics-from the development and evolution of the basic plant body and the ecology of aquatic unicellular plants to mathematical treatments of light attenuation through tree canopies and the movement of water through plants' roots, stems, and leaves- Plant Physics is destined to inspire students and professionals alike to traverse disciplinary membranes.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">An Introduction to Some Basic Concepts. What is plant physics? -- The importance of plants -- The amount of organic carbon produced annually -- A brief history of plant life -- A brief review of vascular plant ontogeny -- Plant reproduction -- Compromise and adaptive evolution -- Photosynthetic efficiency versus mechanical stability -- Elucidating function from form -- The basic plant body plans -- The importance of multicellularity. Environmental Biophysics. Three transport laws -- Boundary layers -- Living in water versus air -- Passive diffusion of carbon dioxide in the boundary layer in air and in water -- Light interception and photosynthesis -- Absorption of light by chloroplasts -- Formulas for the effective light absorption cross section of some geometric objects -- Modeling light interception in canopies -- Phototropism -- Mechanoperception -- Thigmomorphogenesis -- Gravitropism -- Root growth, root anchorage, and soil properties. -- Plant Water Relations. The roles of water acquisition and conservation -- Some physical properties of water -- Vapor pressure and Raoult's law -- Chemical potential and osmotic pressure -- Water potential -- Turgor pressure and the volumetric elastic modulus -- Flow through tubes and the Hagen-Poiseuille equation -- The cohesion-tension theory and the ascent of water -- Phloem and phloem loading. -- The Mechanical Behavior of Materials. Types of forces and their components -- Strains -- Different responses to applied forces -- A note of caution about normal stresses and strains -- Extension to three dimensions -- Poisson's ratios -- Poisson's ratio for an incompressible fluid -- Poisson's ratio for a cell -- Isotropic and anisotropic materials -- Gordon mechanism. -- The Effects of Geometry, Shape, and Size. Geometry and shape are not the same things -- Pure bending -- The second moment of area -- Simple bending -- Bending of slender cantilevers -- Three-point bending of slender beams -- Bending and shearing -- Bending and shearing of a cantilever -- Bending and shearing of a simply supported beam -- The influence of the microfibrillar angle on the stiffness of a cell -- Fracture in bending -- Torsion -- Static loads -- Comparison of forces on a tree trunk resulting from self-loading with those experienced in bending -- The constant stress hypothesis -- Predictions for the geometry of a tree trunk obeying the constant stress hypothesis -- Euler buckling -- Hollow stems and Brazier buckling -- Dynamics, oscillation, and oscillation bending -- Derivation of eigenfrequencies. -- Fluid Mechanics. What are fluids? -- The Navier-Stokes equations -- The Reynolds number -- Flow and drag at small Reynolds numbers -- Derivation of the Hagen-Poiseuille equation -- Flow of ideal fluids -- Boundary layers and flow of real fluids -- Vorticity -- Turbulent flow -- Turbulent stresses and friction velocities -- Drag in real fluids -- Drag and flexibility -- Vertical velocity profiles -- Terminal settling velocity -- Fluid dispersal of reproductive structures. -- Plant Electrophysiology. The principle of electroneutrality -- The Nernst-Planck equation -- Membrane potentials -- The Goldman equation -- Ion channels and ion pumps -- The Ussing-Teorell equation -- Electrical currents and gravisensitivity -- Action potentials -- Electrical signaling in plants. -- A Synthesis: the Properties of Selected Plant Materials, Cells, and Tissues. The plant cuticle -- A brief introduction to the primary cell wall -- Cell wall stress and expansion resulting from turgor -- The plasmalemma and cell wall deposition -- The epidermis and the tissue tension hypothesis -- Hydrostatic tissues -- Stresses in thick-walled cylinders -- Compression of spherical turgid cells -- Nonhydrostatic cells and tissues -- Cellular solids -- Tissue stresses and growth stresses -- Secondary growth and reaction wood -- Wood as an engineering material. -- Experimental Tools. Anatomical methods on a microscale -- Mechanical measuring techniques on a macroscale -- An example of applied biomechanics: Tree risk assessment -- Mechanical measuring techniques on a microscale -- Scholander pressure chamber -- Pressure probe -- Recording of electric potentials and electrical currents -- Patch clamp techniques -- Biomimetics. -- Theoretical Tools. Modeling -- Morphology: The problematic nature of structure-function relationships -- Theoretical morphology, optimization, and adaptation -- Size, proportion, and allometry -- Comparison of regression parameters -- Finite element methods (FEM) -- Optimization techniques -- Optimal allocation of biological resources -- Lagrange multipliers and Murray's law.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Plant physiology.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85102796</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Botanical chemistry.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85015961</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Physiologie végétale.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Chimie végétale.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Life Sciences</subfield><subfield code="x">Anatomy & Physiology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Botanical chemistry</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Plant physiology</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Spatz, Hanns-Christof.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjvFC937FcTVXvkyFQT6YX</subfield><subfield code="0">http://id.loc.gov/authorities/names/n88051908</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Plant physics (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGt4xhDCxwdW9C7YrbhHBX</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Niklas, Karl J.</subfield><subfield code="t">Plant physics.</subfield><subfield code="d">Chicago : University of Chicago Press, 2012</subfield><subfield code="z">9780226586328</subfield><subfield code="w">(DLC) 2011024765</subfield><subfield code="w">(OCoLC)730906535</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=438288</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">hoopla Digital</subfield><subfield code="b">HOPL</subfield><subfield code="n">MWT16976575</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26872404</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9780226586342</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">21892294</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10537820</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">438288</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">353017</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7475266</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL867820</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn779173734 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:18:17Z |
institution | BVB |
isbn | 9780226586342 0226586340 1280126310 9781280126314 |
language | English |
oclc_num | 779173734 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xx, 426 pages) : illustrations, digital |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | University of Chicago Press, |
record_format | marc |
spelling | Niklas, Karl J. https://id.oclc.org/worldcat/entity/E39PBJdWMmJQry3h6w9Mf3PYT3 http://id.loc.gov/authorities/names/n81014318 Plant physics / Karl J. Niklas and Hanns-Christof Spatz. Chicago : University of Chicago Press, ©2012. 1 online resource (xx, 426 pages) : illustrations, digital text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda Includes bibliographical references and index. Print version record. From Galileo, who used the hollow stalks of grass to demonstrate the idea that peripherally located construction materials provide most of the resistance to bending forces, to Leonardo da Vinci, whose illustrations of the parachute are alleged to be based on his study of the dandelion's pappus and the maple tree's samara, many of our greatest physicists, mathematicians, and engineers have learned much from studying plants. A symbiotic relationship between botany and the fields of physics, mathematics, engineering, and chemistry continues today, as is revealed in Plant Physics. The result of a long-term collaboration between plant evolutionary biologist Karl J. Niklas and physicist Hanns-Christof Spatz, Plant Physics presents a detailed account of the principles of classical physics, evolutionary theory, and plant biology in order to explain the complex interrelationships among plant form, function, environment, and evolutionary history. Covering a wide range of topics-from the development and evolution of the basic plant body and the ecology of aquatic unicellular plants to mathematical treatments of light attenuation through tree canopies and the movement of water through plants' roots, stems, and leaves- Plant Physics is destined to inspire students and professionals alike to traverse disciplinary membranes. An Introduction to Some Basic Concepts. What is plant physics? -- The importance of plants -- The amount of organic carbon produced annually -- A brief history of plant life -- A brief review of vascular plant ontogeny -- Plant reproduction -- Compromise and adaptive evolution -- Photosynthetic efficiency versus mechanical stability -- Elucidating function from form -- The basic plant body plans -- The importance of multicellularity. Environmental Biophysics. Three transport laws -- Boundary layers -- Living in water versus air -- Passive diffusion of carbon dioxide in the boundary layer in air and in water -- Light interception and photosynthesis -- Absorption of light by chloroplasts -- Formulas for the effective light absorption cross section of some geometric objects -- Modeling light interception in canopies -- Phototropism -- Mechanoperception -- Thigmomorphogenesis -- Gravitropism -- Root growth, root anchorage, and soil properties. -- Plant Water Relations. The roles of water acquisition and conservation -- Some physical properties of water -- Vapor pressure and Raoult's law -- Chemical potential and osmotic pressure -- Water potential -- Turgor pressure and the volumetric elastic modulus -- Flow through tubes and the Hagen-Poiseuille equation -- The cohesion-tension theory and the ascent of water -- Phloem and phloem loading. -- The Mechanical Behavior of Materials. Types of forces and their components -- Strains -- Different responses to applied forces -- A note of caution about normal stresses and strains -- Extension to three dimensions -- Poisson's ratios -- Poisson's ratio for an incompressible fluid -- Poisson's ratio for a cell -- Isotropic and anisotropic materials -- Gordon mechanism. -- The Effects of Geometry, Shape, and Size. Geometry and shape are not the same things -- Pure bending -- The second moment of area -- Simple bending -- Bending of slender cantilevers -- Three-point bending of slender beams -- Bending and shearing -- Bending and shearing of a cantilever -- Bending and shearing of a simply supported beam -- The influence of the microfibrillar angle on the stiffness of a cell -- Fracture in bending -- Torsion -- Static loads -- Comparison of forces on a tree trunk resulting from self-loading with those experienced in bending -- The constant stress hypothesis -- Predictions for the geometry of a tree trunk obeying the constant stress hypothesis -- Euler buckling -- Hollow stems and Brazier buckling -- Dynamics, oscillation, and oscillation bending -- Derivation of eigenfrequencies. -- Fluid Mechanics. What are fluids? -- The Navier-Stokes equations -- The Reynolds number -- Flow and drag at small Reynolds numbers -- Derivation of the Hagen-Poiseuille equation -- Flow of ideal fluids -- Boundary layers and flow of real fluids -- Vorticity -- Turbulent flow -- Turbulent stresses and friction velocities -- Drag in real fluids -- Drag and flexibility -- Vertical velocity profiles -- Terminal settling velocity -- Fluid dispersal of reproductive structures. -- Plant Electrophysiology. The principle of electroneutrality -- The Nernst-Planck equation -- Membrane potentials -- The Goldman equation -- Ion channels and ion pumps -- The Ussing-Teorell equation -- Electrical currents and gravisensitivity -- Action potentials -- Electrical signaling in plants. -- A Synthesis: the Properties of Selected Plant Materials, Cells, and Tissues. The plant cuticle -- A brief introduction to the primary cell wall -- Cell wall stress and expansion resulting from turgor -- The plasmalemma and cell wall deposition -- The epidermis and the tissue tension hypothesis -- Hydrostatic tissues -- Stresses in thick-walled cylinders -- Compression of spherical turgid cells -- Nonhydrostatic cells and tissues -- Cellular solids -- Tissue stresses and growth stresses -- Secondary growth and reaction wood -- Wood as an engineering material. -- Experimental Tools. Anatomical methods on a microscale -- Mechanical measuring techniques on a macroscale -- An example of applied biomechanics: Tree risk assessment -- Mechanical measuring techniques on a microscale -- Scholander pressure chamber -- Pressure probe -- Recording of electric potentials and electrical currents -- Patch clamp techniques -- Biomimetics. -- Theoretical Tools. Modeling -- Morphology: The problematic nature of structure-function relationships -- Theoretical morphology, optimization, and adaptation -- Size, proportion, and allometry -- Comparison of regression parameters -- Finite element methods (FEM) -- Optimization techniques -- Optimal allocation of biological resources -- Lagrange multipliers and Murray's law. Plant physiology. http://id.loc.gov/authorities/subjects/sh85102796 Botanical chemistry. http://id.loc.gov/authorities/subjects/sh85015961 Physiologie végétale. Chimie végétale. SCIENCE Life Sciences Anatomy & Physiology. bisacsh Botanical chemistry fast Plant physiology fast Spatz, Hanns-Christof. https://id.oclc.org/worldcat/entity/E39PCjvFC937FcTVXvkyFQT6YX http://id.loc.gov/authorities/names/n88051908 has work: Plant physics (Text) https://id.oclc.org/worldcat/entity/E39PCGt4xhDCxwdW9C7YrbhHBX https://id.oclc.org/worldcat/ontology/hasWork Print version: Niklas, Karl J. Plant physics. Chicago : University of Chicago Press, 2012 9780226586328 (DLC) 2011024765 (OCoLC)730906535 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=438288 Volltext |
spellingShingle | Niklas, Karl J. Plant physics / An Introduction to Some Basic Concepts. What is plant physics? -- The importance of plants -- The amount of organic carbon produced annually -- A brief history of plant life -- A brief review of vascular plant ontogeny -- Plant reproduction -- Compromise and adaptive evolution -- Photosynthetic efficiency versus mechanical stability -- Elucidating function from form -- The basic plant body plans -- The importance of multicellularity. Environmental Biophysics. Three transport laws -- Boundary layers -- Living in water versus air -- Passive diffusion of carbon dioxide in the boundary layer in air and in water -- Light interception and photosynthesis -- Absorption of light by chloroplasts -- Formulas for the effective light absorption cross section of some geometric objects -- Modeling light interception in canopies -- Phototropism -- Mechanoperception -- Thigmomorphogenesis -- Gravitropism -- Root growth, root anchorage, and soil properties. -- Plant Water Relations. The roles of water acquisition and conservation -- Some physical properties of water -- Vapor pressure and Raoult's law -- Chemical potential and osmotic pressure -- Water potential -- Turgor pressure and the volumetric elastic modulus -- Flow through tubes and the Hagen-Poiseuille equation -- The cohesion-tension theory and the ascent of water -- Phloem and phloem loading. -- The Mechanical Behavior of Materials. Types of forces and their components -- Strains -- Different responses to applied forces -- A note of caution about normal stresses and strains -- Extension to three dimensions -- Poisson's ratios -- Poisson's ratio for an incompressible fluid -- Poisson's ratio for a cell -- Isotropic and anisotropic materials -- Gordon mechanism. -- The Effects of Geometry, Shape, and Size. Geometry and shape are not the same things -- Pure bending -- The second moment of area -- Simple bending -- Bending of slender cantilevers -- Three-point bending of slender beams -- Bending and shearing -- Bending and shearing of a cantilever -- Bending and shearing of a simply supported beam -- The influence of the microfibrillar angle on the stiffness of a cell -- Fracture in bending -- Torsion -- Static loads -- Comparison of forces on a tree trunk resulting from self-loading with those experienced in bending -- The constant stress hypothesis -- Predictions for the geometry of a tree trunk obeying the constant stress hypothesis -- Euler buckling -- Hollow stems and Brazier buckling -- Dynamics, oscillation, and oscillation bending -- Derivation of eigenfrequencies. -- Fluid Mechanics. What are fluids? -- The Navier-Stokes equations -- The Reynolds number -- Flow and drag at small Reynolds numbers -- Derivation of the Hagen-Poiseuille equation -- Flow of ideal fluids -- Boundary layers and flow of real fluids -- Vorticity -- Turbulent flow -- Turbulent stresses and friction velocities -- Drag in real fluids -- Drag and flexibility -- Vertical velocity profiles -- Terminal settling velocity -- Fluid dispersal of reproductive structures. -- Plant Electrophysiology. The principle of electroneutrality -- The Nernst-Planck equation -- Membrane potentials -- The Goldman equation -- Ion channels and ion pumps -- The Ussing-Teorell equation -- Electrical currents and gravisensitivity -- Action potentials -- Electrical signaling in plants. -- A Synthesis: the Properties of Selected Plant Materials, Cells, and Tissues. The plant cuticle -- A brief introduction to the primary cell wall -- Cell wall stress and expansion resulting from turgor -- The plasmalemma and cell wall deposition -- The epidermis and the tissue tension hypothesis -- Hydrostatic tissues -- Stresses in thick-walled cylinders -- Compression of spherical turgid cells -- Nonhydrostatic cells and tissues -- Cellular solids -- Tissue stresses and growth stresses -- Secondary growth and reaction wood -- Wood as an engineering material. -- Experimental Tools. Anatomical methods on a microscale -- Mechanical measuring techniques on a macroscale -- An example of applied biomechanics: Tree risk assessment -- Mechanical measuring techniques on a microscale -- Scholander pressure chamber -- Pressure probe -- Recording of electric potentials and electrical currents -- Patch clamp techniques -- Biomimetics. -- Theoretical Tools. Modeling -- Morphology: The problematic nature of structure-function relationships -- Theoretical morphology, optimization, and adaptation -- Size, proportion, and allometry -- Comparison of regression parameters -- Finite element methods (FEM) -- Optimization techniques -- Optimal allocation of biological resources -- Lagrange multipliers and Murray's law. Plant physiology. http://id.loc.gov/authorities/subjects/sh85102796 Botanical chemistry. http://id.loc.gov/authorities/subjects/sh85015961 Physiologie végétale. Chimie végétale. SCIENCE Life Sciences Anatomy & Physiology. bisacsh Botanical chemistry fast Plant physiology fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85102796 http://id.loc.gov/authorities/subjects/sh85015961 |
title | Plant physics / |
title_auth | Plant physics / |
title_exact_search | Plant physics / |
title_full | Plant physics / Karl J. Niklas and Hanns-Christof Spatz. |
title_fullStr | Plant physics / Karl J. Niklas and Hanns-Christof Spatz. |
title_full_unstemmed | Plant physics / Karl J. Niklas and Hanns-Christof Spatz. |
title_short | Plant physics / |
title_sort | plant physics |
topic | Plant physiology. http://id.loc.gov/authorities/subjects/sh85102796 Botanical chemistry. http://id.loc.gov/authorities/subjects/sh85015961 Physiologie végétale. Chimie végétale. SCIENCE Life Sciences Anatomy & Physiology. bisacsh Botanical chemistry fast Plant physiology fast |
topic_facet | Plant physiology. Botanical chemistry. Physiologie végétale. Chimie végétale. SCIENCE Life Sciences Anatomy & Physiology. Botanical chemistry Plant physiology |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=438288 |
work_keys_str_mv | AT niklaskarlj plantphysics AT spatzhannschristof plantphysics |