Several complex variables and complex manifolds.: II /
This self-contained and relatively elementary introduction to functions of several complex variables and complex (especially compact) manifolds is intended to be a synthesis of those topics and a broad introduction to the field. Part I is suitable for advanced undergraduates and beginning postgradua...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
1982.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
no. 66. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This self-contained and relatively elementary introduction to functions of several complex variables and complex (especially compact) manifolds is intended to be a synthesis of those topics and a broad introduction to the field. Part I is suitable for advanced undergraduates and beginning postgraduates whilst Part II is written more for the graduate student. The work as a whole will be useful to professional mathematicians or mathematical physicists who wish to acquire a working knowledge of this area of mathematics. Many exercises have been included and indeed they form an integral part of the text. The prerequisites for understanding Part I would be met by any mathematics student with a first degree and together the two parts provide an introduction to the more advanced works in the subject. |
Beschreibung: | Title from publishers bibliographic system (viewed on 22 Dec 2011). |
Beschreibung: | 1 online resource (1 online resource) |
Bibliographie: | Includes bibliographical references and indexes. |
ISBN: | 9781107361218 1107361214 9780511629327 051162932X 9781139884099 1139884093 1107366127 9781107366121 1107368677 9781107368675 1299403921 9781299403925 1107363667 9781107363663 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn776951102 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 090918s1982 enk ob 001 0 eng d | ||
040 | |a UkCbUP |b eng |e pn |c AUD |d OCLCO |d OCLCQ |d N$T |d E7B |d IDEBK |d OCLCF |d OCLCQ |d AGLDB |d OCLCQ |d COO |d OCLCQ |d VTS |d REC |d STF |d M8D |d UKAHL |d OCLCQ |d VLY |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL |d SFB | ||
019 | |a 797842188 |a 1020574636 |a 1030082187 |a 1030136264 |a 1097163074 |a 1100668610 |a 1117487963 |a 1125798012 |a 1136290981 |a 1144311623 |a 1170447419 |a 1172410121 | ||
020 | |a 9781107361218 |q (electronic bk.) | ||
020 | |a 1107361214 |q (electronic bk.) | ||
020 | |a 9780511629327 |q (ebook) | ||
020 | |a 051162932X |q (ebook) | ||
020 | |a 9781139884099 |q (e-book) | ||
020 | |a 1139884093 | ||
020 | |z 9780521288880 |q (paperback) | ||
020 | |z 0521288886 |q (paperback) | ||
020 | |a 1107366127 | ||
020 | |a 9781107366121 | ||
020 | |a 1107368677 | ||
020 | |a 9781107368675 | ||
020 | |a 1299403921 | ||
020 | |a 9781299403925 | ||
020 | |a 1107363667 | ||
020 | |a 9781107363663 | ||
035 | |a (OCoLC)776951102 |z (OCoLC)797842188 |z (OCoLC)1020574636 |z (OCoLC)1030082187 |z (OCoLC)1030136264 |z (OCoLC)1097163074 |z (OCoLC)1100668610 |z (OCoLC)1117487963 |z (OCoLC)1125798012 |z (OCoLC)1136290981 |z (OCoLC)1144311623 |z (OCoLC)1170447419 |z (OCoLC)1172410121 | ||
050 | 4 | |a QA331 | |
072 | 7 | |a MAT |x 040000 |2 bisacsh | |
082 | 7 | |a 515.9/4 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Field, Mike. |0 http://id.loc.gov/authorities/names/n81138123 | |
245 | 1 | 0 | |a Several complex variables and complex manifolds. |n II / |c Mike Field. |
260 | |a Cambridge : |b Cambridge University Press, |c 1982. | ||
300 | |a 1 online resource (1 online resource) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society Lecture Note Series ; |v no. 66 | |
500 | |a Title from publishers bibliographic system (viewed on 22 Dec 2011). | ||
588 | 0 | |a Print version record. | |
504 | |a Includes bibliographical references and indexes. | ||
520 | |a This self-contained and relatively elementary introduction to functions of several complex variables and complex (especially compact) manifolds is intended to be a synthesis of those topics and a broad introduction to the field. Part I is suitable for advanced undergraduates and beginning postgraduates whilst Part II is written more for the graduate student. The work as a whole will be useful to professional mathematicians or mathematical physicists who wish to acquire a working knowledge of this area of mathematics. Many exercises have been included and indeed they form an integral part of the text. The prerequisites for understanding Part I would be met by any mathematics student with a first degree and together the two parts provide an introduction to the more advanced works in the subject. | ||
505 | 0 | |a Cover; Title; Copyright; Preface; Contents; Chapter 5. Calculus on Complex Manifolds; Introduction.; 1. Review of Linear Algebra; 2. Calculus on Differential Manifolds; 3. Complexification; 4. Complex Linear Algebra; 5. Generalities on Complex Vector Bundles; 6. Tangent and Cotangent Bundles of a Complex Manifold; 7. Calculus on a Complex Manifold; 8. The Dolbeault-Grothendieck Lemma; 9. Holomorphic Vector Bundles on Compact Complex Manifolds; 10. Pseudoconvexivity and Stein Manifolds; Chapter 6. Sheaf Theory; Introduction; 1. Sheaves and Presheaves; 2. Envelope of Holomorphy | |
505 | 8 | |a 3. Sheaf CohomologyChapter 7. Coherent Sheaves; Introduction.; 1. Coherent Sheaves; 2. Coherent Sheaves on a Stein Manifold; 3. The Finiteness Theorem of Cartan and Serre; 4. The Finiteness Theorem of Grauert; 5. Coherent Sheaves on Protective Space; 6. The Kodaira Embedding Theorem; Bibliography; Index | |
546 | |a English. | ||
650 | 0 | |a Functions of several complex variables. |0 http://id.loc.gov/authorities/subjects/sh85052358 | |
650 | 0 | |a Manifolds (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85080549 | |
650 | 6 | |a Fonctions de plusieurs variables complexes. | |
650 | 6 | |a Variétés (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Complex Analysis. |2 bisacsh | |
650 | 7 | |a Functions of several complex variables |2 fast | |
650 | 7 | |a Manifolds (Mathematics) |2 fast | |
758 | |i has work: |a Several complex variables and complex manifolds II (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG4FYJbMqMBXFhdw8WMVYd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Field, Mike. |t Several Complex Variables and Complex Manifolds II. |d Cambridge : Cambridge University Press, 1982 |z 9780521288880 |
830 | 0 | |a London Mathematical Society lecture note series ; |v no. 66. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552483 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552483 |3 Volltext | |
938 | |a Askews and Holts Library Services |b ASKH |n AH13428044 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26385267 | ||
938 | |a ebrary |b EBRY |n ebr10562213 | ||
938 | |a EBSCOhost |b EBSC |n 552483 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25154489 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn776951102 |
---|---|
_version_ | 1813903428146954242 |
adam_text | |
any_adam_object | |
author | Field, Mike |
author_GND | http://id.loc.gov/authorities/names/n81138123 |
author_facet | Field, Mike |
author_role | |
author_sort | Field, Mike |
author_variant | m f mf |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA331 |
callnumber-raw | QA331 |
callnumber-search | QA331 |
callnumber-sort | QA 3331 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Preface; Contents; Chapter 5. Calculus on Complex Manifolds; Introduction.; 1. Review of Linear Algebra; 2. Calculus on Differential Manifolds; 3. Complexification; 4. Complex Linear Algebra; 5. Generalities on Complex Vector Bundles; 6. Tangent and Cotangent Bundles of a Complex Manifold; 7. Calculus on a Complex Manifold; 8. The Dolbeault-Grothendieck Lemma; 9. Holomorphic Vector Bundles on Compact Complex Manifolds; 10. Pseudoconvexivity and Stein Manifolds; Chapter 6. Sheaf Theory; Introduction; 1. Sheaves and Presheaves; 2. Envelope of Holomorphy 3. Sheaf CohomologyChapter 7. Coherent Sheaves; Introduction.; 1. Coherent Sheaves; 2. Coherent Sheaves on a Stein Manifold; 3. The Finiteness Theorem of Cartan and Serre; 4. The Finiteness Theorem of Grauert; 5. Coherent Sheaves on Protective Space; 6. The Kodaira Embedding Theorem; Bibliography; Index |
ctrlnum | (OCoLC)776951102 |
dewey-full | 515.9/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.9/4 |
dewey-search | 515.9/4 |
dewey-sort | 3515.9 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05269cam a2200757 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn776951102</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">090918s1982 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UkCbUP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">AUD</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VLY</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">797842188</subfield><subfield code="a">1020574636</subfield><subfield code="a">1030082187</subfield><subfield code="a">1030136264</subfield><subfield code="a">1097163074</subfield><subfield code="a">1100668610</subfield><subfield code="a">1117487963</subfield><subfield code="a">1125798012</subfield><subfield code="a">1136290981</subfield><subfield code="a">1144311623</subfield><subfield code="a">1170447419</subfield><subfield code="a">1172410121</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107361218</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107361214</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511629327</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">051162932X</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139884099</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139884093</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521288880</subfield><subfield code="q">(paperback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521288886</subfield><subfield code="q">(paperback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107366127</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107366121</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107368677</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107368675</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1299403921</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781299403925</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107363667</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107363663</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)776951102</subfield><subfield code="z">(OCoLC)797842188</subfield><subfield code="z">(OCoLC)1020574636</subfield><subfield code="z">(OCoLC)1030082187</subfield><subfield code="z">(OCoLC)1030136264</subfield><subfield code="z">(OCoLC)1097163074</subfield><subfield code="z">(OCoLC)1100668610</subfield><subfield code="z">(OCoLC)1117487963</subfield><subfield code="z">(OCoLC)1125798012</subfield><subfield code="z">(OCoLC)1136290981</subfield><subfield code="z">(OCoLC)1144311623</subfield><subfield code="z">(OCoLC)1170447419</subfield><subfield code="z">(OCoLC)1172410121</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA331</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">040000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.9/4</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Field, Mike.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n81138123</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Several complex variables and complex manifolds.</subfield><subfield code="n">II /</subfield><subfield code="c">Mike Field.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1982.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 online resource)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society Lecture Note Series ;</subfield><subfield code="v">no. 66</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publishers bibliographic system (viewed on 22 Dec 2011).</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This self-contained and relatively elementary introduction to functions of several complex variables and complex (especially compact) manifolds is intended to be a synthesis of those topics and a broad introduction to the field. Part I is suitable for advanced undergraduates and beginning postgraduates whilst Part II is written more for the graduate student. The work as a whole will be useful to professional mathematicians or mathematical physicists who wish to acquire a working knowledge of this area of mathematics. Many exercises have been included and indeed they form an integral part of the text. The prerequisites for understanding Part I would be met by any mathematics student with a first degree and together the two parts provide an introduction to the more advanced works in the subject.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Preface; Contents; Chapter 5. Calculus on Complex Manifolds; Introduction.; 1. Review of Linear Algebra; 2. Calculus on Differential Manifolds; 3. Complexification; 4. Complex Linear Algebra; 5. Generalities on Complex Vector Bundles; 6. Tangent and Cotangent Bundles of a Complex Manifold; 7. Calculus on a Complex Manifold; 8. The Dolbeault-Grothendieck Lemma; 9. Holomorphic Vector Bundles on Compact Complex Manifolds; 10. Pseudoconvexivity and Stein Manifolds; Chapter 6. Sheaf Theory; Introduction; 1. Sheaves and Presheaves; 2. Envelope of Holomorphy</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3. Sheaf CohomologyChapter 7. Coherent Sheaves; Introduction.; 1. Coherent Sheaves; 2. Coherent Sheaves on a Stein Manifold; 3. The Finiteness Theorem of Cartan and Serre; 4. The Finiteness Theorem of Grauert; 5. Coherent Sheaves on Protective Space; 6. The Kodaira Embedding Theorem; Bibliography; Index</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Functions of several complex variables.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052358</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85080549</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Fonctions de plusieurs variables complexes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variétés (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Complex Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functions of several complex variables</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Several complex variables and complex manifolds II (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG4FYJbMqMBXFhdw8WMVYd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Field, Mike.</subfield><subfield code="t">Several Complex Variables and Complex Manifolds II.</subfield><subfield code="d">Cambridge : Cambridge University Press, 1982</subfield><subfield code="z">9780521288880</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">no. 66.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552483</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552483</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH13428044</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26385267</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10562213</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552483</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25154489</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn776951102 |
illustrated | Not Illustrated |
indexdate | 2024-10-25T16:18:31Z |
institution | BVB |
isbn | 9781107361218 1107361214 9780511629327 051162932X 9781139884099 1139884093 1107366127 9781107366121 1107368677 9781107368675 1299403921 9781299403925 1107363667 9781107363663 |
language | English |
oclc_num | 776951102 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (1 online resource) |
psigel | ZDB-4-EBA |
publishDate | 1982 |
publishDateSearch | 1982 |
publishDateSort | 1982 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society Lecture Note Series ; |
spelling | Field, Mike. http://id.loc.gov/authorities/names/n81138123 Several complex variables and complex manifolds. II / Mike Field. Cambridge : Cambridge University Press, 1982. 1 online resource (1 online resource) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society Lecture Note Series ; no. 66 Title from publishers bibliographic system (viewed on 22 Dec 2011). Print version record. Includes bibliographical references and indexes. This self-contained and relatively elementary introduction to functions of several complex variables and complex (especially compact) manifolds is intended to be a synthesis of those topics and a broad introduction to the field. Part I is suitable for advanced undergraduates and beginning postgraduates whilst Part II is written more for the graduate student. The work as a whole will be useful to professional mathematicians or mathematical physicists who wish to acquire a working knowledge of this area of mathematics. Many exercises have been included and indeed they form an integral part of the text. The prerequisites for understanding Part I would be met by any mathematics student with a first degree and together the two parts provide an introduction to the more advanced works in the subject. Cover; Title; Copyright; Preface; Contents; Chapter 5. Calculus on Complex Manifolds; Introduction.; 1. Review of Linear Algebra; 2. Calculus on Differential Manifolds; 3. Complexification; 4. Complex Linear Algebra; 5. Generalities on Complex Vector Bundles; 6. Tangent and Cotangent Bundles of a Complex Manifold; 7. Calculus on a Complex Manifold; 8. The Dolbeault-Grothendieck Lemma; 9. Holomorphic Vector Bundles on Compact Complex Manifolds; 10. Pseudoconvexivity and Stein Manifolds; Chapter 6. Sheaf Theory; Introduction; 1. Sheaves and Presheaves; 2. Envelope of Holomorphy 3. Sheaf CohomologyChapter 7. Coherent Sheaves; Introduction.; 1. Coherent Sheaves; 2. Coherent Sheaves on a Stein Manifold; 3. The Finiteness Theorem of Cartan and Serre; 4. The Finiteness Theorem of Grauert; 5. Coherent Sheaves on Protective Space; 6. The Kodaira Embedding Theorem; Bibliography; Index English. Functions of several complex variables. http://id.loc.gov/authorities/subjects/sh85052358 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Fonctions de plusieurs variables complexes. Variétés (Mathématiques) MATHEMATICS Complex Analysis. bisacsh Functions of several complex variables fast Manifolds (Mathematics) fast has work: Several complex variables and complex manifolds II (Text) https://id.oclc.org/worldcat/entity/E39PCG4FYJbMqMBXFhdw8WMVYd https://id.oclc.org/worldcat/ontology/hasWork Print version: Field, Mike. Several Complex Variables and Complex Manifolds II. Cambridge : Cambridge University Press, 1982 9780521288880 London Mathematical Society lecture note series ; no. 66. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552483 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552483 Volltext |
spellingShingle | Field, Mike Several complex variables and complex manifolds. London Mathematical Society lecture note series ; Cover; Title; Copyright; Preface; Contents; Chapter 5. Calculus on Complex Manifolds; Introduction.; 1. Review of Linear Algebra; 2. Calculus on Differential Manifolds; 3. Complexification; 4. Complex Linear Algebra; 5. Generalities on Complex Vector Bundles; 6. Tangent and Cotangent Bundles of a Complex Manifold; 7. Calculus on a Complex Manifold; 8. The Dolbeault-Grothendieck Lemma; 9. Holomorphic Vector Bundles on Compact Complex Manifolds; 10. Pseudoconvexivity and Stein Manifolds; Chapter 6. Sheaf Theory; Introduction; 1. Sheaves and Presheaves; 2. Envelope of Holomorphy 3. Sheaf CohomologyChapter 7. Coherent Sheaves; Introduction.; 1. Coherent Sheaves; 2. Coherent Sheaves on a Stein Manifold; 3. The Finiteness Theorem of Cartan and Serre; 4. The Finiteness Theorem of Grauert; 5. Coherent Sheaves on Protective Space; 6. The Kodaira Embedding Theorem; Bibliography; Index Functions of several complex variables. http://id.loc.gov/authorities/subjects/sh85052358 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Fonctions de plusieurs variables complexes. Variétés (Mathématiques) MATHEMATICS Complex Analysis. bisacsh Functions of several complex variables fast Manifolds (Mathematics) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85052358 http://id.loc.gov/authorities/subjects/sh85080549 |
title | Several complex variables and complex manifolds. |
title_auth | Several complex variables and complex manifolds. |
title_exact_search | Several complex variables and complex manifolds. |
title_full | Several complex variables and complex manifolds. II / Mike Field. |
title_fullStr | Several complex variables and complex manifolds. II / Mike Field. |
title_full_unstemmed | Several complex variables and complex manifolds. II / Mike Field. |
title_short | Several complex variables and complex manifolds. |
title_sort | several complex variables and complex manifolds |
topic | Functions of several complex variables. http://id.loc.gov/authorities/subjects/sh85052358 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Fonctions de plusieurs variables complexes. Variétés (Mathématiques) MATHEMATICS Complex Analysis. bisacsh Functions of several complex variables fast Manifolds (Mathematics) fast |
topic_facet | Functions of several complex variables. Manifolds (Mathematics) Fonctions de plusieurs variables complexes. Variétés (Mathématiques) MATHEMATICS Complex Analysis. Functions of several complex variables |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552483 |
work_keys_str_mv | AT fieldmike severalcomplexvariablesandcomplexmanifoldsii |