Structural geology algorithms :: vectors and tensors /

"State-of-the-art analysis of geological structures has become increasingly quantitative but traditionally, graphical methods are used in teaching. This innovative lab book provides a unified methodology for problem-solving in structural geology using linear algebra and computation. Assuming on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Allmendinger, Richard Waldron (VerfasserIn), Cardozo, Nestor (VerfasserIn), Fisher, Donald M., 1961- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge ; New York : Cambridge University Press, 2012.
Schlagworte:
Online-Zugang:Volltext
Zusammenfassung:"State-of-the-art analysis of geological structures has become increasingly quantitative but traditionally, graphical methods are used in teaching. This innovative lab book provides a unified methodology for problem-solving in structural geology using linear algebra and computation. Assuming only limited mathematical training, the book begins with classic orientation problems and progresses to more fundamental topics of stress, strain and error propagation. It introduces linear algebra methods as the foundation for understanding vectors and tensors, and demonstrates the application of geometry and kinematics in geoscience without requiring students to take a supplementary mathematics course. All algorithms are illustrated with a suite of online MATLAB functions, allowing users to modify the code to solve their own structural problems. Containing 20 worked examples and over 60 exercises, this is the ideal lab book for advanced undergraduates or beginning graduate students. It will also provide professional structural geologists with a valuable reference and refresher for calculations"--Provided by publisher
"Structural Geology has been taught, largely unchanged, for the last 50 years or more. The lecture part of most courses introduces students to concepts such as stress and strain, as well as more descriptive material like fault and fold terminology. The lab part of the course usually focuses on practical problem solving, mostly traditional me-thods for describing quantitatively the geometry of structures. While the lecture may introduce advanced concepts such as tensors, the lab commonly trains the student to use a combination of graphical methods like orthographic or spherical projection, as well as a variety of plane trigonometry solutions to various problems. This leads to a disconnect between lecture concepts that require a very precise understanding of coor-dinate systems (e.g., tensors) and lab methods that appear to have no common spatial or mathematical foundation. Students have no chance to understand that, for example, seemingly unconnected constructions like down-plunge projections and Mohr circles share a common mathematical heritage: they are both graphical representations of coordinate transformations"--Provided by publisher
Beschreibung:1 online resource (xi, 289 pages) : illustrations, maps
Bibliographie:Includes bibliographical references.
ISBN:9781139207416
1139207415
9781139207379
1139207377
9780511920202
0511920202
9781139207393
1139207393
1139207326
9781139207324
1107229006
9781107229006
1280568518
9781280568510
1139207407
9781139207409
9786613598110
6613598119
1139207350
9781139207355

Es ist kein Print-Exemplar vorhanden.

Volltext öffnen