Non-abelian Fundamental Groups and Iwasawa Theory.:
Displays the intricate interplay between different foundations of non-commutative number theory.
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , , , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2011.
|
Schriftenreihe: | London Mathematical Society lecture note series.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Displays the intricate interplay between different foundations of non-commutative number theory. |
Beschreibung: | 1 online resource (322 pages) |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9781139221580 1139221582 9786613580474 6613580473 9781139225014 1139225014 1139218492 9781139218498 9780511984440 0511984448 |
Internformat
MARC
LEADER | 00000cam a2200000Mu 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn775870071 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 120209s2011 enk ob 000 0 eng d | ||
040 | |a MHW |b eng |e pn |c MHW |d EBLCP |d YDXCP |d MERUC |d IDEBK |d OCLCQ |d DEBSZ |d OCLCQ |d OCLCO |d OCLCF |d N$T |d E7B |d OSU |d OCLCQ |d S3O |d OCLCQ |d OCLCO |d ZCU |d ICG |d OCLCQ |d TKN |d OCLCA |d DKC |d AGLDB |d SNK |d BTN |d MHW |d INTCL |d AUW |d AU@ |d OCLCO |d OCLCQ |d M8D |d A6Q |d S8J |d G3B |d OCLCQ |d LUN |d AJS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO | ||
066 | |c (S | ||
019 | |a 776897016 |a 785782050 |a 794544467 |a 1167015643 |a 1264820925 | ||
020 | |a 9781139221580 | ||
020 | |a 1139221582 | ||
020 | |a 9786613580474 | ||
020 | |a 6613580473 | ||
020 | |a 9781139225014 |q (electronic bk.) | ||
020 | |a 1139225014 |q (electronic bk.) | ||
020 | |a 1139218492 | ||
020 | |a 9781139218498 | ||
020 | |z 9781107648852 | ||
020 | |z 1107648858 | ||
020 | |a 9780511984440 |q (ebook) | ||
020 | |a 0511984448 | ||
035 | |a (OCoLC)775870071 |z (OCoLC)776897016 |z (OCoLC)785782050 |z (OCoLC)794544467 |z (OCoLC)1167015643 |z (OCoLC)1264820925 | ||
050 | 4 | |a QA247 .N56 2011 | |
072 | 7 | |a PBH |2 bicssc | |
072 | 7 | |a MAT |x 022000 |2 bisacsh | |
082 | 7 | |a 512.2 | |
049 | |a MAIN | ||
100 | 1 | |a Coates, John. | |
245 | 1 | 0 | |a Non-abelian Fundamental Groups and Iwasawa Theory. |
260 | |a Cambridge : |b Cambridge University Press, |c 2011. | ||
300 | |a 1 online resource (322 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society Lecture Note Series | |
588 | 0 | |a Print version record. | |
520 | |a Displays the intricate interplay between different foundations of non-commutative number theory. | ||
505 | 0 | |6 880-01 |a Cover; LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES; Title; Copyright; Contents; Contributors; Preface; Lectures on anabelian phenomena in geometry and arithmetic; Part I. Introduction and motivation; A. First examples; B. Galois characterization of global fields; Part II. Grothendieck's anabelian geometry; A. Warm-up: birational anabelian conjectures; B. Anabelian conjectures for curves; C. The section conjectures; Part III. Beyond the arithmetical action; A. Small Galois groups and valuations; B. Variation of fundamental groups in families of curves. | |
504 | |a Includes bibliographical references. | ||
650 | 0 | |a Iwasawa theory. |0 http://id.loc.gov/authorities/subjects/sh2002004431 | |
650 | 0 | |a Non-Abelian groups. |0 http://id.loc.gov/authorities/subjects/sh85092216 | |
650 | 4 | |a Iwasawa theory. | |
650 | 4 | |a Non-Abelian groups. | |
650 | 6 | |a Théorie d'Iwasawa. | |
650 | 6 | |a Groupes non abéliens. | |
650 | 7 | |a MATHEMATICS |x Number Theory. |2 bisacsh | |
650 | 7 | |a Iwasawa theory |2 fast | |
650 | 7 | |a Non-Abelian groups |2 fast | |
650 | 7 | |a Aufsatzsammlung |2 gnd | |
650 | 7 | |a Iwasawa-Theorie |2 gnd |0 http://d-nb.info/gnd/4384573-3 | |
650 | 7 | |a Nichtabelsche Gruppe |2 gnd |0 http://d-nb.info/gnd/4340007-3 | |
700 | 1 | |a Kim, Minhyong. | |
700 | 1 | |a Pop, Florian. | |
700 | 1 | |a Saïdi, Mohamed. | |
700 | 1 | |a Schneider, Peter. | |
776 | 0 | 8 | |i Print version: |z 9781107648852 |
830 | 0 | |a London Mathematical Society lecture note series. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=416715 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=416715 |3 Volltext | |
880 | 8 | |6 505-01/(S |a 5 Analogue of the MH(G) conjecture for Hida families -- 6 Vanishing of the R-torsion -- References -- Galois theory and Diophantine geometry -- 1 The deficiency of abelian motives -- 2 Motivic fundamental groups and Selmer varieties -- 3 Diophantine finiteness -- 4 An explicit formula and speculations -- References -- Potential modularity -- a survey -- 1 Introduction -- 2 Semistable elliptic curves over Q are modular -- 3 Why the semistability assumption-- 4 All elliptic curves over Q are modular -- 5 Kisin's modularity lifting theorems -- 6 Generalisations to totally real fields -- 7 Potential modularity pre-Kisin and the p-λ trick -- 8 Potential modularity after Kisin -- 9 Some final remarks -- References -- Remarks on some locally Qp-analyticrep resentations of GL2(F) in the crystalline case -- 1 Introduction and notations -- 2 Quick review of the GL2(Qp)-case -- 3 Quick review of weakly admissible filtered φ-modules -- 4 Some locally Qp-analytic representations of GL2(F) -- 5 Weak admissibility and GL2(F)-unitarity I -- 6 Amice-Vélu and Vishik revisited -- 7 Weak admissibility and GL2(F)-unitarity II -- 8 Local-global considerations -- 9 The case where the Galois representation is reducible -- References -- Completed cohomology -- a survey -- 1 Definitions -- 2 Non-commutative Iwasawa theory -- 3 Poincaré duality -- 4 A simple example of everything so far -- 5 Congruence quotients of symmetric spaces -- 6 Conjectures on codimensions -- 7 Mod p analogues -- 8 Heuristics related to the p-adic Langlands programme -- References -- Tensor and homotopy criteria for functional equations of ℓ-adic and classical iterated integrals -- 1 Introduction -- 2 Multi-Kummer characters -- 3 Multi-Kummer duals -- 4 Iterated integrals and their functional equations -- 5 Case of polylogarithms -- 6 Examples -- References. | |
938 | |a ProQuest Ebook Central |b EBLB |n EBL833518 | ||
938 | |a ebrary |b EBRY |n ebr10533304 | ||
938 | |a EBSCOhost |b EBSC |n 416715 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 358047 | ||
938 | |a YBP Library Services |b YANK |n 7430546 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn775870071 |
---|---|
_version_ | 1813903427258810368 |
adam_text | |
any_adam_object | |
author | Coates, John |
author2 | Kim, Minhyong Pop, Florian Saïdi, Mohamed Schneider, Peter |
author2_role | |
author2_variant | m k mk f p fp m s ms p s ps |
author_facet | Coates, John Kim, Minhyong Pop, Florian Saïdi, Mohamed Schneider, Peter |
author_role | |
author_sort | Coates, John |
author_variant | j c jc |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA247 |
callnumber-raw | QA247 .N56 2011 |
callnumber-search | QA247 .N56 2011 |
callnumber-sort | QA 3247 N56 42011 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES; Title; Copyright; Contents; Contributors; Preface; Lectures on anabelian phenomena in geometry and arithmetic; Part I. Introduction and motivation; A. First examples; B. Galois characterization of global fields; Part II. Grothendieck's anabelian geometry; A. Warm-up: birational anabelian conjectures; B. Anabelian conjectures for curves; C. The section conjectures; Part III. Beyond the arithmetical action; A. Small Galois groups and valuations; B. Variation of fundamental groups in families of curves. |
ctrlnum | (OCoLC)775870071 |
dewey-full | 512.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 |
dewey-search | 512.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05604cam a2200805Mu 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn775870071</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|---|||||</controlfield><controlfield tag="008">120209s2011 enk ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MHW</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">MHW</subfield><subfield code="d">EBLCP</subfield><subfield code="d">YDXCP</subfield><subfield code="d">MERUC</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OSU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S3O</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">ZCU</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCA</subfield><subfield code="d">DKC</subfield><subfield code="d">AGLDB</subfield><subfield code="d">SNK</subfield><subfield code="d">BTN</subfield><subfield code="d">MHW</subfield><subfield code="d">INTCL</subfield><subfield code="d">AUW</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">A6Q</subfield><subfield code="d">S8J</subfield><subfield code="d">G3B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LUN</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">776897016</subfield><subfield code="a">785782050</subfield><subfield code="a">794544467</subfield><subfield code="a">1167015643</subfield><subfield code="a">1264820925</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139221580</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139221582</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786613580474</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6613580473</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139225014</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139225014</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139218492</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139218498</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107648852</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1107648858</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511984440</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511984448</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)775870071</subfield><subfield code="z">(OCoLC)776897016</subfield><subfield code="z">(OCoLC)785782050</subfield><subfield code="z">(OCoLC)794544467</subfield><subfield code="z">(OCoLC)1167015643</subfield><subfield code="z">(OCoLC)1264820925</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA247 .N56 2011</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBH</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">022000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.2</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Coates, John.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-abelian Fundamental Groups and Iwasawa Theory.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (322 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society Lecture Note Series</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Displays the intricate interplay between different foundations of non-commutative number theory.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="6">880-01</subfield><subfield code="a">Cover; LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES; Title; Copyright; Contents; Contributors; Preface; Lectures on anabelian phenomena in geometry and arithmetic; Part I. Introduction and motivation; A. First examples; B. Galois characterization of global fields; Part II. Grothendieck's anabelian geometry; A. Warm-up: birational anabelian conjectures; B. Anabelian conjectures for curves; C. The section conjectures; Part III. Beyond the arithmetical action; A. Small Galois groups and valuations; B. Variation of fundamental groups in families of curves.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Iwasawa theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2002004431</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Non-Abelian groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85092216</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iwasawa theory.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-Abelian groups.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie d'Iwasawa.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes non abéliens.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Number Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Iwasawa theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Non-Abelian groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Iwasawa-Theorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4384573-3</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nichtabelsche Gruppe</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4340007-3</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Minhyong.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pop, Florian.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saïdi, Mohamed.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schneider, Peter.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9781107648852</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=416715</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=416715</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="8" ind2=" "><subfield code="6">505-01/(S</subfield><subfield code="a">5 Analogue of the MH(G) conjecture for Hida families -- 6 Vanishing of the R-torsion -- References -- Galois theory and Diophantine geometry -- 1 The deficiency of abelian motives -- 2 Motivic fundamental groups and Selmer varieties -- 3 Diophantine finiteness -- 4 An explicit formula and speculations -- References -- Potential modularity -- a survey -- 1 Introduction -- 2 Semistable elliptic curves over Q are modular -- 3 Why the semistability assumption-- 4 All elliptic curves over Q are modular -- 5 Kisin's modularity lifting theorems -- 6 Generalisations to totally real fields -- 7 Potential modularity pre-Kisin and the p-λ trick -- 8 Potential modularity after Kisin -- 9 Some final remarks -- References -- Remarks on some locally Qp-analyticrep resentations of GL2(F) in the crystalline case -- 1 Introduction and notations -- 2 Quick review of the GL2(Qp)-case -- 3 Quick review of weakly admissible filtered φ-modules -- 4 Some locally Qp-analytic representations of GL2(F) -- 5 Weak admissibility and GL2(F)-unitarity I -- 6 Amice-Vélu and Vishik revisited -- 7 Weak admissibility and GL2(F)-unitarity II -- 8 Local-global considerations -- 9 The case where the Galois representation is reducible -- References -- Completed cohomology -- a survey -- 1 Definitions -- 2 Non-commutative Iwasawa theory -- 3 Poincaré duality -- 4 A simple example of everything so far -- 5 Congruence quotients of symmetric spaces -- 6 Conjectures on codimensions -- 7 Mod p analogues -- 8 Heuristics related to the p-adic Langlands programme -- References -- Tensor and homotopy criteria for functional equations of ℓ-adic and classical iterated integrals -- 1 Introduction -- 2 Multi-Kummer characters -- 3 Multi-Kummer duals -- 4 Iterated integrals and their functional equations -- 5 Case of polylogarithms -- 6 Examples -- References.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL833518</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10533304</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">416715</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">358047</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7430546</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn775870071 |
illustrated | Not Illustrated |
indexdate | 2024-10-25T16:18:30Z |
institution | BVB |
isbn | 9781139221580 1139221582 9786613580474 6613580473 9781139225014 1139225014 1139218492 9781139218498 9780511984440 0511984448 |
language | English |
oclc_num | 775870071 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (322 pages) |
psigel | ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series. |
series2 | London Mathematical Society Lecture Note Series |
spelling | Coates, John. Non-abelian Fundamental Groups and Iwasawa Theory. Cambridge : Cambridge University Press, 2011. 1 online resource (322 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society Lecture Note Series Print version record. Displays the intricate interplay between different foundations of non-commutative number theory. 880-01 Cover; LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES; Title; Copyright; Contents; Contributors; Preface; Lectures on anabelian phenomena in geometry and arithmetic; Part I. Introduction and motivation; A. First examples; B. Galois characterization of global fields; Part II. Grothendieck's anabelian geometry; A. Warm-up: birational anabelian conjectures; B. Anabelian conjectures for curves; C. The section conjectures; Part III. Beyond the arithmetical action; A. Small Galois groups and valuations; B. Variation of fundamental groups in families of curves. Includes bibliographical references. Iwasawa theory. http://id.loc.gov/authorities/subjects/sh2002004431 Non-Abelian groups. http://id.loc.gov/authorities/subjects/sh85092216 Iwasawa theory. Non-Abelian groups. Théorie d'Iwasawa. Groupes non abéliens. MATHEMATICS Number Theory. bisacsh Iwasawa theory fast Non-Abelian groups fast Aufsatzsammlung gnd Iwasawa-Theorie gnd http://d-nb.info/gnd/4384573-3 Nichtabelsche Gruppe gnd http://d-nb.info/gnd/4340007-3 Kim, Minhyong. Pop, Florian. Saïdi, Mohamed. Schneider, Peter. Print version: 9781107648852 London Mathematical Society lecture note series. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=416715 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=416715 Volltext 505-01/(S 5 Analogue of the MH(G) conjecture for Hida families -- 6 Vanishing of the R-torsion -- References -- Galois theory and Diophantine geometry -- 1 The deficiency of abelian motives -- 2 Motivic fundamental groups and Selmer varieties -- 3 Diophantine finiteness -- 4 An explicit formula and speculations -- References -- Potential modularity -- a survey -- 1 Introduction -- 2 Semistable elliptic curves over Q are modular -- 3 Why the semistability assumption-- 4 All elliptic curves over Q are modular -- 5 Kisin's modularity lifting theorems -- 6 Generalisations to totally real fields -- 7 Potential modularity pre-Kisin and the p-λ trick -- 8 Potential modularity after Kisin -- 9 Some final remarks -- References -- Remarks on some locally Qp-analyticrep resentations of GL2(F) in the crystalline case -- 1 Introduction and notations -- 2 Quick review of the GL2(Qp)-case -- 3 Quick review of weakly admissible filtered φ-modules -- 4 Some locally Qp-analytic representations of GL2(F) -- 5 Weak admissibility and GL2(F)-unitarity I -- 6 Amice-Vélu and Vishik revisited -- 7 Weak admissibility and GL2(F)-unitarity II -- 8 Local-global considerations -- 9 The case where the Galois representation is reducible -- References -- Completed cohomology -- a survey -- 1 Definitions -- 2 Non-commutative Iwasawa theory -- 3 Poincaré duality -- 4 A simple example of everything so far -- 5 Congruence quotients of symmetric spaces -- 6 Conjectures on codimensions -- 7 Mod p analogues -- 8 Heuristics related to the p-adic Langlands programme -- References -- Tensor and homotopy criteria for functional equations of ℓ-adic and classical iterated integrals -- 1 Introduction -- 2 Multi-Kummer characters -- 3 Multi-Kummer duals -- 4 Iterated integrals and their functional equations -- 5 Case of polylogarithms -- 6 Examples -- References. |
spellingShingle | Coates, John Non-abelian Fundamental Groups and Iwasawa Theory. London Mathematical Society lecture note series. Cover; LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES; Title; Copyright; Contents; Contributors; Preface; Lectures on anabelian phenomena in geometry and arithmetic; Part I. Introduction and motivation; A. First examples; B. Galois characterization of global fields; Part II. Grothendieck's anabelian geometry; A. Warm-up: birational anabelian conjectures; B. Anabelian conjectures for curves; C. The section conjectures; Part III. Beyond the arithmetical action; A. Small Galois groups and valuations; B. Variation of fundamental groups in families of curves. Iwasawa theory. http://id.loc.gov/authorities/subjects/sh2002004431 Non-Abelian groups. http://id.loc.gov/authorities/subjects/sh85092216 Iwasawa theory. Non-Abelian groups. Théorie d'Iwasawa. Groupes non abéliens. MATHEMATICS Number Theory. bisacsh Iwasawa theory fast Non-Abelian groups fast Aufsatzsammlung gnd Iwasawa-Theorie gnd http://d-nb.info/gnd/4384573-3 Nichtabelsche Gruppe gnd http://d-nb.info/gnd/4340007-3 |
subject_GND | http://id.loc.gov/authorities/subjects/sh2002004431 http://id.loc.gov/authorities/subjects/sh85092216 http://d-nb.info/gnd/4384573-3 http://d-nb.info/gnd/4340007-3 |
title | Non-abelian Fundamental Groups and Iwasawa Theory. |
title_auth | Non-abelian Fundamental Groups and Iwasawa Theory. |
title_exact_search | Non-abelian Fundamental Groups and Iwasawa Theory. |
title_full | Non-abelian Fundamental Groups and Iwasawa Theory. |
title_fullStr | Non-abelian Fundamental Groups and Iwasawa Theory. |
title_full_unstemmed | Non-abelian Fundamental Groups and Iwasawa Theory. |
title_short | Non-abelian Fundamental Groups and Iwasawa Theory. |
title_sort | non abelian fundamental groups and iwasawa theory |
topic | Iwasawa theory. http://id.loc.gov/authorities/subjects/sh2002004431 Non-Abelian groups. http://id.loc.gov/authorities/subjects/sh85092216 Iwasawa theory. Non-Abelian groups. Théorie d'Iwasawa. Groupes non abéliens. MATHEMATICS Number Theory. bisacsh Iwasawa theory fast Non-Abelian groups fast Aufsatzsammlung gnd Iwasawa-Theorie gnd http://d-nb.info/gnd/4384573-3 Nichtabelsche Gruppe gnd http://d-nb.info/gnd/4340007-3 |
topic_facet | Iwasawa theory. Non-Abelian groups. Théorie d'Iwasawa. Groupes non abéliens. MATHEMATICS Number Theory. Iwasawa theory Non-Abelian groups Aufsatzsammlung Iwasawa-Theorie Nichtabelsche Gruppe |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=416715 |
work_keys_str_mv | AT coatesjohn nonabelianfundamentalgroupsandiwasawatheory AT kimminhyong nonabelianfundamentalgroupsandiwasawatheory AT popflorian nonabelianfundamentalgroupsandiwasawatheory AT saidimohamed nonabelianfundamentalgroupsandiwasawatheory AT schneiderpeter nonabelianfundamentalgroupsandiwasawatheory |