When Less is More :: Visualizing Basic Inequalities /
The proofs in When Less is More are in the spirit of proofs without words, though most require at least a few words. The first inequalities presented in the book, such as the inequalities between the harmonic, geometric, and arithmetic mean, are familiar from analysis, but are given geometric proofs...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2012.
|
Schriftenreihe: | Dolciani mathematical expositions.
|
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | The proofs in When Less is More are in the spirit of proofs without words, though most require at least a few words. The first inequalities presented in the book, such as the inequalities between the harmonic, geometric, and arithmetic mean, are familiar from analysis, but are given geometric proofs. The second and largest set of inequalities are geometric both in their statements and in their proofs. Toward the end of the book some inequalities are more analytical in their statements as well as their proofs--From publisher description. |
Beschreibung: | Title from publishers bibliographic system (viewed on 30 Jan 2012). |
Beschreibung: | 1 online resource |
ISBN: | 9781614442028 1614442029 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn775429168 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 111104s2012 enk o 001 0 eng d | ||
040 | |a COO |b eng |e pn |c COO |d N$T |d OCLCQ |d YDXCP |d OCLCQ |d OCLCF |d CAMBR |d JSTOR |d OCLCQ |d EBLCP |d DEBSZ |d OCLCQ |d AGLDB |d ZCU |d MERUC |d OCLCQ |d VTS |d ICG |d JBG |d OCLCQ |d STF |d DKC |d REC |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d OCLCO | ||
019 | |a 923220486 |a 929120460 | ||
020 | |a 9781614442028 |q (electronic bk.) | ||
020 | |a 1614442029 |q (electronic bk.) | ||
035 | |a (OCoLC)775429168 |z (OCoLC)923220486 |z (OCoLC)929120460 | ||
037 | |a 22573/ctt69tzbq |b JSTOR | ||
050 | 4 | |a QA295 | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
072 | 7 | |a MAT012000 |2 bisacsh | |
082 | 7 | |a 515.26 |2 22 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a When Less is More : |b Visualizing Basic Inequalities / |c Claudi Alsina, Roger B. Nelsen. |
260 | |a Cambridge : |b Cambridge University Press, |c 2012. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Dolciani Mathematical Expositions ; |v v. 36 | |
500 | |a Title from publishers bibliographic system (viewed on 30 Jan 2012). | ||
505 | 0 | |a Cover -- copyright page -- title page -- Contents -- Preface -- Introduction -- Inequalities as a field of study -- Inequalities in the classroom -- CHAPTER 1 Representing positive numbers as lengths of segments -- 1.1 Inequalities associated with triangles -- 1.2 Polygonal paths -- 1.3 n-gons inside m-gons -- 1.4 The arithmetic mean-geometric mean inequality -- 1.5 More inequalities for means -- 1.6 The Ravi substitution -- 1.7 Comparing graphs of functions -- 1.8 Challenges -- CHAPTER 2 Representing positive numbers as areas or volumes | |
505 | 8 | |a 2.1 Three examples2.2 Chebyshev�s inequality -- 2.3 The AM-GM inequality for three numbers -- 2.4 Guha�s inequality -- 2.5 The AM-GM inequality for n numbers -- 2.6 The HM-AM-GM-RMS inequality for nnumbers -- 2.7 The mediant property and Simpson�s paradox -- 2.8 Chebyshev�s inequality revisited -- 2.9 Schur�s inequality -- 2.10 Challenges -- CHAPTER 3 Inequalities and the existence of triangles -- 3.1 Inequalities and the altitudes of a triangle -- A triangle and its altitudes -- Existence of a triangle given a, b, and h_a | |
505 | 8 | |a Existence of a triangle given a, h_b, and h_cMore inequalities for the three altitudes -- Altitudes, sides and angles -- 3.2 Inequalities and the medians of a triangle -- Existence of a triangle given m_a, m_b, and m_c -- Existence of a triangle given a, b, and m_a -- Existence of a triangle given a, b, and m_c -- Existence of a triangle given a, m_a, and m_b -- 3.3 Inequalities and the angle-bisectors of a triangle -- Existence of a triangle given a, h_a, and w_a -- Existence of a triangle given a, h_b, and w_c -- Ordering of sides and angle-bisectors | |
505 | 8 | |a 3.4 The Steiner-Lehmus theorem3.5 Challenges -- CHAPTER 4 Using incircles and circumcircles | |
520 | |a The proofs in When Less is More are in the spirit of proofs without words, though most require at least a few words. The first inequalities presented in the book, such as the inequalities between the harmonic, geometric, and arithmetic mean, are familiar from analysis, but are given geometric proofs. The second and largest set of inequalities are geometric both in their statements and in their proofs. Toward the end of the book some inequalities are more analytical in their statements as well as their proofs--From publisher description. | ||
650 | 0 | |a Inequalities (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85065985 | |
650 | 0 | |a Visualization. |0 http://id.loc.gov/authorities/subjects/sh85143939 | |
650 | 0 | |a Geometrical drawing. |0 http://id.loc.gov/authorities/subjects/sh85054129 | |
650 | 6 | |a Inégalités (Mathématiques) | |
650 | 6 | |a Visualisation. | |
650 | 6 | |a Dessin géométrique. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Geometry |x General. |2 bisacsh | |
650 | 7 | |a Geometrical drawing |2 fast | |
650 | 7 | |a Inequalities (Mathematics) |2 fast | |
650 | 7 | |a Visualization |2 fast | |
700 | 1 | |a Alsina, Claudi. | |
700 | 1 | |a Nelsen, Roger B. | |
776 | 0 | 8 | |i Print version: |a Alsina, Claudi. |t When Less Is More : Visualizing Basic Inequalities. |d Washington : Mathematical Association of America, ©2014 |z 9780883853429 |
830 | 0 | |a Dolciani mathematical expositions. |0 http://id.loc.gov/authorities/names/n42009859 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450272 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450272 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL3330372 | ||
938 | |a EBSCOhost |b EBSC |n 450272 | ||
938 | |a YBP Library Services |b YANK |n 7349881 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn775429168 |
---|---|
_version_ | 1829094717872144384 |
adam_text | |
any_adam_object | |
author2 | Alsina, Claudi Nelsen, Roger B. |
author2_role | |
author2_variant | c a ca r b n rb rbn |
author_facet | Alsina, Claudi Nelsen, Roger B. |
author_sort | Alsina, Claudi |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA295 |
callnumber-raw | QA295 |
callnumber-search | QA295 |
callnumber-sort | QA 3295 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover -- copyright page -- title page -- Contents -- Preface -- Introduction -- Inequalities as a field of study -- Inequalities in the classroom -- CHAPTER 1 Representing positive numbers as lengths of segments -- 1.1 Inequalities associated with triangles -- 1.2 Polygonal paths -- 1.3 n-gons inside m-gons -- 1.4 The arithmetic mean-geometric mean inequality -- 1.5 More inequalities for means -- 1.6 The Ravi substitution -- 1.7 Comparing graphs of functions -- 1.8 Challenges -- CHAPTER 2 Representing positive numbers as areas or volumes 2.1 Three examples2.2 Chebyshev�s inequality -- 2.3 The AM-GM inequality for three numbers -- 2.4 Guha�s inequality -- 2.5 The AM-GM inequality for n numbers -- 2.6 The HM-AM-GM-RMS inequality for nnumbers -- 2.7 The mediant property and Simpson�s paradox -- 2.8 Chebyshev�s inequality revisited -- 2.9 Schur�s inequality -- 2.10 Challenges -- CHAPTER 3 Inequalities and the existence of triangles -- 3.1 Inequalities and the altitudes of a triangle -- A triangle and its altitudes -- Existence of a triangle given a, b, and h_a Existence of a triangle given a, h_b, and h_cMore inequalities for the three altitudes -- Altitudes, sides and angles -- 3.2 Inequalities and the medians of a triangle -- Existence of a triangle given m_a, m_b, and m_c -- Existence of a triangle given a, b, and m_a -- Existence of a triangle given a, b, and m_c -- Existence of a triangle given a, m_a, and m_b -- 3.3 Inequalities and the angle-bisectors of a triangle -- Existence of a triangle given a, h_a, and w_a -- Existence of a triangle given a, h_b, and w_c -- Ordering of sides and angle-bisectors 3.4 The Steiner-Lehmus theorem3.5 Challenges -- CHAPTER 4 Using incircles and circumcircles |
ctrlnum | (OCoLC)775429168 |
dewey-full | 515.26 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.26 |
dewey-search | 515.26 |
dewey-sort | 3515.26 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04960cam a2200649Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn775429168</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">111104s2012 enk o 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">COO</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">COO</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">CAMBR</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">923220486</subfield><subfield code="a">929120460</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781614442028</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1614442029</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)775429168</subfield><subfield code="z">(OCoLC)923220486</subfield><subfield code="z">(OCoLC)929120460</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/ctt69tzbq</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA295</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT012000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.26</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">When Less is More :</subfield><subfield code="b">Visualizing Basic Inequalities /</subfield><subfield code="c">Claudi Alsina, Roger B. Nelsen.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Dolciani Mathematical Expositions ;</subfield><subfield code="v">v. 36</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publishers bibliographic system (viewed on 30 Jan 2012).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- copyright page -- title page -- Contents -- Preface -- Introduction -- Inequalities as a field of study -- Inequalities in the classroom -- CHAPTER 1 Representing positive numbers as lengths of segments -- 1.1 Inequalities associated with triangles -- 1.2 Polygonal paths -- 1.3 n-gons inside m-gons -- 1.4 The arithmetic mean-geometric mean inequality -- 1.5 More inequalities for means -- 1.6 The Ravi substitution -- 1.7 Comparing graphs of functions -- 1.8 Challenges -- CHAPTER 2 Representing positive numbers as areas or volumes</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.1 Three examples2.2 Chebyshevâ€?s inequality -- 2.3 The AM-GM inequality for three numbers -- 2.4 Guhaâ€?s inequality -- 2.5 The AM-GM inequality for n numbers -- 2.6 The HM-AM-GM-RMS inequality for nnumbers -- 2.7 The mediant property and Simpsonâ€?s paradox -- 2.8 Chebyshevâ€?s inequality revisited -- 2.9 Schurâ€?s inequality -- 2.10 Challenges -- CHAPTER 3 Inequalities and the existence of triangles -- 3.1 Inequalities and the altitudes of a triangle -- A triangle and its altitudes -- Existence of a triangle given a, b, and h_a</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Existence of a triangle given a, h_b, and h_cMore inequalities for the three altitudes -- Altitudes, sides and angles -- 3.2 Inequalities and the medians of a triangle -- Existence of a triangle given m_a, m_b, and m_c -- Existence of a triangle given a, b, and m_a -- Existence of a triangle given a, b, and m_c -- Existence of a triangle given a, m_a, and m_b -- 3.3 Inequalities and the angle-bisectors of a triangle -- Existence of a triangle given a, h_a, and w_a -- Existence of a triangle given a, h_b, and w_c -- Ordering of sides and angle-bisectors</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4 The Steiner-Lehmus theorem3.5 Challenges -- CHAPTER 4 Using incircles and circumcircles</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The proofs in When Less is More are in the spirit of proofs without words, though most require at least a few words. The first inequalities presented in the book, such as the inequalities between the harmonic, geometric, and arithmetic mean, are familiar from analysis, but are given geometric proofs. The second and largest set of inequalities are geometric both in their statements and in their proofs. Toward the end of the book some inequalities are more analytical in their statements as well as their proofs--From publisher description.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Inequalities (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85065985</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Visualization.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85143939</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometrical drawing.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054129</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Inégalités (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Visualisation.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Dessin géométrique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometrical drawing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inequalities (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Visualization</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alsina, Claudi.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nelsen, Roger B.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Alsina, Claudi.</subfield><subfield code="t">When Less Is More : Visualizing Basic Inequalities.</subfield><subfield code="d">Washington : Mathematical Association of America, ©2014</subfield><subfield code="z">9780883853429</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Dolciani mathematical expositions.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42009859</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450272</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450272</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3330372</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">450272</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7349881</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn775429168 |
illustrated | Not Illustrated |
indexdate | 2025-04-11T08:37:34Z |
institution | BVB |
isbn | 9781614442028 1614442029 |
language | English |
oclc_num | 775429168 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge University Press, |
record_format | marc |
series | Dolciani mathematical expositions. |
series2 | Dolciani Mathematical Expositions ; |
spelling | When Less is More : Visualizing Basic Inequalities / Claudi Alsina, Roger B. Nelsen. Cambridge : Cambridge University Press, 2012. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Dolciani Mathematical Expositions ; v. 36 Title from publishers bibliographic system (viewed on 30 Jan 2012). Cover -- copyright page -- title page -- Contents -- Preface -- Introduction -- Inequalities as a field of study -- Inequalities in the classroom -- CHAPTER 1 Representing positive numbers as lengths of segments -- 1.1 Inequalities associated with triangles -- 1.2 Polygonal paths -- 1.3 n-gons inside m-gons -- 1.4 The arithmetic mean-geometric mean inequality -- 1.5 More inequalities for means -- 1.6 The Ravi substitution -- 1.7 Comparing graphs of functions -- 1.8 Challenges -- CHAPTER 2 Representing positive numbers as areas or volumes 2.1 Three examples2.2 Chebyshevâ€?s inequality -- 2.3 The AM-GM inequality for three numbers -- 2.4 Guhaâ€?s inequality -- 2.5 The AM-GM inequality for n numbers -- 2.6 The HM-AM-GM-RMS inequality for nnumbers -- 2.7 The mediant property and Simpsonâ€?s paradox -- 2.8 Chebyshevâ€?s inequality revisited -- 2.9 Schurâ€?s inequality -- 2.10 Challenges -- CHAPTER 3 Inequalities and the existence of triangles -- 3.1 Inequalities and the altitudes of a triangle -- A triangle and its altitudes -- Existence of a triangle given a, b, and h_a Existence of a triangle given a, h_b, and h_cMore inequalities for the three altitudes -- Altitudes, sides and angles -- 3.2 Inequalities and the medians of a triangle -- Existence of a triangle given m_a, m_b, and m_c -- Existence of a triangle given a, b, and m_a -- Existence of a triangle given a, b, and m_c -- Existence of a triangle given a, m_a, and m_b -- 3.3 Inequalities and the angle-bisectors of a triangle -- Existence of a triangle given a, h_a, and w_a -- Existence of a triangle given a, h_b, and w_c -- Ordering of sides and angle-bisectors 3.4 The Steiner-Lehmus theorem3.5 Challenges -- CHAPTER 4 Using incircles and circumcircles The proofs in When Less is More are in the spirit of proofs without words, though most require at least a few words. The first inequalities presented in the book, such as the inequalities between the harmonic, geometric, and arithmetic mean, are familiar from analysis, but are given geometric proofs. The second and largest set of inequalities are geometric both in their statements and in their proofs. Toward the end of the book some inequalities are more analytical in their statements as well as their proofs--From publisher description. Inequalities (Mathematics) http://id.loc.gov/authorities/subjects/sh85065985 Visualization. http://id.loc.gov/authorities/subjects/sh85143939 Geometrical drawing. http://id.loc.gov/authorities/subjects/sh85054129 Inégalités (Mathématiques) Visualisation. Dessin géométrique. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh MATHEMATICS Geometry General. bisacsh Geometrical drawing fast Inequalities (Mathematics) fast Visualization fast Alsina, Claudi. Nelsen, Roger B. Print version: Alsina, Claudi. When Less Is More : Visualizing Basic Inequalities. Washington : Mathematical Association of America, ©2014 9780883853429 Dolciani mathematical expositions. http://id.loc.gov/authorities/names/n42009859 |
spellingShingle | When Less is More : Visualizing Basic Inequalities / Dolciani mathematical expositions. Cover -- copyright page -- title page -- Contents -- Preface -- Introduction -- Inequalities as a field of study -- Inequalities in the classroom -- CHAPTER 1 Representing positive numbers as lengths of segments -- 1.1 Inequalities associated with triangles -- 1.2 Polygonal paths -- 1.3 n-gons inside m-gons -- 1.4 The arithmetic mean-geometric mean inequality -- 1.5 More inequalities for means -- 1.6 The Ravi substitution -- 1.7 Comparing graphs of functions -- 1.8 Challenges -- CHAPTER 2 Representing positive numbers as areas or volumes 2.1 Three examples2.2 Chebyshevâ€?s inequality -- 2.3 The AM-GM inequality for three numbers -- 2.4 Guhaâ€?s inequality -- 2.5 The AM-GM inequality for n numbers -- 2.6 The HM-AM-GM-RMS inequality for nnumbers -- 2.7 The mediant property and Simpsonâ€?s paradox -- 2.8 Chebyshevâ€?s inequality revisited -- 2.9 Schurâ€?s inequality -- 2.10 Challenges -- CHAPTER 3 Inequalities and the existence of triangles -- 3.1 Inequalities and the altitudes of a triangle -- A triangle and its altitudes -- Existence of a triangle given a, b, and h_a Existence of a triangle given a, h_b, and h_cMore inequalities for the three altitudes -- Altitudes, sides and angles -- 3.2 Inequalities and the medians of a triangle -- Existence of a triangle given m_a, m_b, and m_c -- Existence of a triangle given a, b, and m_a -- Existence of a triangle given a, b, and m_c -- Existence of a triangle given a, m_a, and m_b -- 3.3 Inequalities and the angle-bisectors of a triangle -- Existence of a triangle given a, h_a, and w_a -- Existence of a triangle given a, h_b, and w_c -- Ordering of sides and angle-bisectors 3.4 The Steiner-Lehmus theorem3.5 Challenges -- CHAPTER 4 Using incircles and circumcircles Inequalities (Mathematics) http://id.loc.gov/authorities/subjects/sh85065985 Visualization. http://id.loc.gov/authorities/subjects/sh85143939 Geometrical drawing. http://id.loc.gov/authorities/subjects/sh85054129 Inégalités (Mathématiques) Visualisation. Dessin géométrique. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh MATHEMATICS Geometry General. bisacsh Geometrical drawing fast Inequalities (Mathematics) fast Visualization fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85065985 http://id.loc.gov/authorities/subjects/sh85143939 http://id.loc.gov/authorities/subjects/sh85054129 |
title | When Less is More : Visualizing Basic Inequalities / |
title_auth | When Less is More : Visualizing Basic Inequalities / |
title_exact_search | When Less is More : Visualizing Basic Inequalities / |
title_full | When Less is More : Visualizing Basic Inequalities / Claudi Alsina, Roger B. Nelsen. |
title_fullStr | When Less is More : Visualizing Basic Inequalities / Claudi Alsina, Roger B. Nelsen. |
title_full_unstemmed | When Less is More : Visualizing Basic Inequalities / Claudi Alsina, Roger B. Nelsen. |
title_short | When Less is More : |
title_sort | when less is more visualizing basic inequalities |
title_sub | Visualizing Basic Inequalities / |
topic | Inequalities (Mathematics) http://id.loc.gov/authorities/subjects/sh85065985 Visualization. http://id.loc.gov/authorities/subjects/sh85143939 Geometrical drawing. http://id.loc.gov/authorities/subjects/sh85054129 Inégalités (Mathématiques) Visualisation. Dessin géométrique. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh MATHEMATICS Geometry General. bisacsh Geometrical drawing fast Inequalities (Mathematics) fast Visualization fast |
topic_facet | Inequalities (Mathematics) Visualization. Geometrical drawing. Inégalités (Mathématiques) Visualisation. Dessin géométrique. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. MATHEMATICS Geometry General. Geometrical drawing Visualization |
work_keys_str_mv | AT alsinaclaudi whenlessismorevisualizingbasicinequalities AT nelsenrogerb whenlessismorevisualizingbasicinequalities |