A Guide to Complex Variables /:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2012.
|
Schriftenreihe: | Dolciani mathematical expositions.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Title from publishers bibliographic system (viewed on 30 Jan 2012). |
Beschreibung: | 1 online resource |
ISBN: | 9780883859148 0883859149 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn775429107 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 111104s2012 enk o 001 0 eng d | ||
040 | |a COO |b eng |e pn |c COO |d N$T |d OCLCQ |d OCLCF |d CAMBR |d JSTOR |d OCLCQ |d EBLCP |d DEBSZ |d OCLCQ |d AGLDB |d ZCU |d MERUC |d BNG |d JBG |d OCLCQ |d VTS |d ICG |d OCLCQ |d STF |d DKC |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 923220341 |a 929120418 |a 1010991834 |a 1087371918 |a 1264916752 |a 1297457404 |a 1332973874 | ||
020 | |a 9780883859148 |q (electronic bk.) | ||
020 | |a 0883859149 |q (electronic bk.) | ||
035 | |a (OCoLC)775429107 |z (OCoLC)923220341 |z (OCoLC)929120418 |z (OCoLC)1010991834 |z (OCoLC)1087371918 |z (OCoLC)1264916752 |z (OCoLC)1297457404 |z (OCoLC)1332973874 | ||
037 | |a 22573/ctt69rhjz |b JSTOR | ||
050 | 4 | |a QA331.7 | |
072 | 7 | |a MAT |x 040000 |2 bisacsh | |
072 | 7 | |a MAT040000 |2 bisacsh | |
082 | 7 | |a 515.9 | |
049 | |a MAIN | ||
100 | 1 | |a Krantz, Steven G. |q (Steven George), |d 1951- |1 https://id.oclc.org/worldcat/entity/E39PBJw8VQ7cxG48KCfPym3RKd |0 http://id.loc.gov/authorities/names/n81051364 | |
245 | 1 | 2 | |a A Guide to Complex Variables / |c Steven G. Krantz. |
260 | |a Cambridge : |b Cambridge University Press, |c 2012. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Dolciani Mathematical Expositions ; |v v. 32 | |
500 | |a Title from publishers bibliographic system (viewed on 30 Jan 2012). | ||
505 | 0 | |a A Guide to Complex Variables -- Preface -- Contents -- 1 The Complex Plane -- 1.1 Complex Arithmetic -- 1.1.1 The Real Numbers -- 1.1.2 The Complex Numbers -- 1.1.3 Complex Conjugate -- 1.1.4 Modulus of a Complex Number -- 1.1.5 The Topology of the Complex Plane -- 1.1.6 The Complex Numbers as a Field -- 1.1.7 The Fundamental Theorem of Algebra -- 1.2 The Exponential and Applications -- 1.2.1 The Exponential Function -- 1.2.2 The Exponential Using Power Series -- 1.2.3 Laws of Exponentiation -- 1.2.4 Polar Form of a Complex Number | |
505 | 8 | |a 1.2.5 Roots of Complex Numbers1.2.6 The Argument of a Complex Number -- 1.2.7 Fundamental Inequalities -- 1.3 Holomorphic Functions -- 1.3.1 Continuously Differentiable and Ck Functions -- 1.3.2 The Cauchy-Riemann Equations -- 1.3.3 Derivatives -- 1.3.4 Definition of Holomorphic Function -- 1.3.5 The Complex Derivative -- 1.3.6 Alternative Terminology for Holomorphic Functions -- 1.4 Holomorphic and Harmonic Functions -- 1.4.1 Harmonic Functions -- 1.4.2 How They are Related -- 2 Complex Line Integrals -- 2.1 Real and Complex Line Integrals -- 2.1.1 Curves | |
505 | 8 | |a 2.1.2 Closed Curves2.1.3 Differentiable and C^k Curves -- 2.1.4 Integrals on Curves -- 2.1.5 The Fundamental Theorem of Calculus along Curves -- 2.1.6 The Complex Line Integral -- 2.1.7 Properties of Integrals -- 2.2 Complex Differentiabilityand Conformality -- 2.2.1 Limits -- 2.2.2 Holomorphicity and the Complex Derivative -- 2.2.3 Conformality -- 2.3 The Cauchy Integral Formula and Theorem -- 2.3.1 The Cauchy Integral Theorem, Basic Form -- 2.3.2 The Cauchy Integral Formula -- 2.3.3 More General Forms of the Cauchy Theorems -- 2.3.4 Deformability of Curves | |
505 | 8 | |a 2.4 A Coda on the Limitations of The Cauchy Integral Formula3 Applications of the Cauchy Theory -- 3.1 The Derivatives of a Holomorphic Function -- 3.1.1 A Formula for the Derivative -- 3.1.2 The Cauchy Estimates -- 3.1.3 Entire Functions and Liouville�s Theorem -- 3.1.4 The Fundamental Theorem of Algebra -- 3.1.5 Sequences of Holomorphic Functions and their Derivatives -- 3.1.6 The Power Series Representation of a Holomorphic Function -- 3.2 The Zeros of a Holomorphic Function -- 3.2.1 The Zero Set of a Holomorphic Function | |
505 | 8 | |a 3.2.2 Discreteness of the Zeros of a Holomorphic Function3.2.3 Discrete Sets and Zero Sets -- 3.2.4 Uniqueness of Analytic Continuation -- 4 Isolated Singularities and Laurent Series -- 4.1 The Behavior of a Holomorphic Function near an Isolated Singularity -- 4.1.1 Isolated Singularities -- 4.1.2 A Holomorphic Function on a Punctured Domain -- 4.1.3 Classification of Singularities -- 4.1.4 Removable Singularities, Poles, and Essential Singularities -- 4.1.5 The Riemann Removable Singularities Theorem -- 4.1.6 The Casorati-Weierstrass Theorem | |
650 | 0 | |a Functions of complex variables. |0 http://id.loc.gov/authorities/subjects/sh85052356 | |
650 | 6 | |a Fonctions d'une variable complexe. | |
650 | 7 | |a MATHEMATICS |x Complex Analysis. |2 bisacsh | |
650 | 7 | |a Functions of complex variables |2 fast | |
776 | 0 | 8 | |i Print version: |a Krantz, Steven G. |t Guide to Complex Variables. |d Washington : Mathematical Association of America, ©2014 |z 9780883853382 |
830 | 0 | |a Dolciani mathematical expositions. |0 http://id.loc.gov/authorities/names/n42009859 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450270 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL3330365 | ||
938 | |a EBSCOhost |b EBSC |n 450270 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn775429107 |
---|---|
_version_ | 1816881785397575680 |
adam_text | |
any_adam_object | |
author | Krantz, Steven G. (Steven George), 1951- |
author_GND | http://id.loc.gov/authorities/names/n81051364 |
author_facet | Krantz, Steven G. (Steven George), 1951- |
author_role | |
author_sort | Krantz, Steven G. 1951- |
author_variant | s g k sg sgk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA331 |
callnumber-raw | QA331.7 |
callnumber-search | QA331.7 |
callnumber-sort | QA 3331.7 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | A Guide to Complex Variables -- Preface -- Contents -- 1 The Complex Plane -- 1.1 Complex Arithmetic -- 1.1.1 The Real Numbers -- 1.1.2 The Complex Numbers -- 1.1.3 Complex Conjugate -- 1.1.4 Modulus of a Complex Number -- 1.1.5 The Topology of the Complex Plane -- 1.1.6 The Complex Numbers as a Field -- 1.1.7 The Fundamental Theorem of Algebra -- 1.2 The Exponential and Applications -- 1.2.1 The Exponential Function -- 1.2.2 The Exponential Using Power Series -- 1.2.3 Laws of Exponentiation -- 1.2.4 Polar Form of a Complex Number 1.2.5 Roots of Complex Numbers1.2.6 The Argument of a Complex Number -- 1.2.7 Fundamental Inequalities -- 1.3 Holomorphic Functions -- 1.3.1 Continuously Differentiable and Ck Functions -- 1.3.2 The Cauchy-Riemann Equations -- 1.3.3 Derivatives -- 1.3.4 Definition of Holomorphic Function -- 1.3.5 The Complex Derivative -- 1.3.6 Alternative Terminology for Holomorphic Functions -- 1.4 Holomorphic and Harmonic Functions -- 1.4.1 Harmonic Functions -- 1.4.2 How They are Related -- 2 Complex Line Integrals -- 2.1 Real and Complex Line Integrals -- 2.1.1 Curves 2.1.2 Closed Curves2.1.3 Differentiable and C^k Curves -- 2.1.4 Integrals on Curves -- 2.1.5 The Fundamental Theorem of Calculus along Curves -- 2.1.6 The Complex Line Integral -- 2.1.7 Properties of Integrals -- 2.2 Complex Differentiabilityand Conformality -- 2.2.1 Limits -- 2.2.2 Holomorphicity and the Complex Derivative -- 2.2.3 Conformality -- 2.3 The Cauchy Integral Formula and Theorem -- 2.3.1 The Cauchy Integral Theorem, Basic Form -- 2.3.2 The Cauchy Integral Formula -- 2.3.3 More General Forms of the Cauchy Theorems -- 2.3.4 Deformability of Curves 2.4 A Coda on the Limitations of The Cauchy Integral Formula3 Applications of the Cauchy Theory -- 3.1 The Derivatives of a Holomorphic Function -- 3.1.1 A Formula for the Derivative -- 3.1.2 The Cauchy Estimates -- 3.1.3 Entire Functions and Liouville�s Theorem -- 3.1.4 The Fundamental Theorem of Algebra -- 3.1.5 Sequences of Holomorphic Functions and their Derivatives -- 3.1.6 The Power Series Representation of a Holomorphic Function -- 3.2 The Zeros of a Holomorphic Function -- 3.2.1 The Zero Set of a Holomorphic Function 3.2.2 Discreteness of the Zeros of a Holomorphic Function3.2.3 Discrete Sets and Zero Sets -- 3.2.4 Uniqueness of Analytic Continuation -- 4 Isolated Singularities and Laurent Series -- 4.1 The Behavior of a Holomorphic Function near an Isolated Singularity -- 4.1.1 Isolated Singularities -- 4.1.2 A Holomorphic Function on a Punctured Domain -- 4.1.3 Classification of Singularities -- 4.1.4 Removable Singularities, Poles, and Essential Singularities -- 4.1.5 The Riemann Removable Singularities Theorem -- 4.1.6 The Casorati-Weierstrass Theorem |
ctrlnum | (OCoLC)775429107 |
dewey-full | 515.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.9 |
dewey-search | 515.9 |
dewey-sort | 3515.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05131cam a2200529 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn775429107</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">111104s2012 enk o 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">COO</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">COO</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">CAMBR</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">BNG</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">923220341</subfield><subfield code="a">929120418</subfield><subfield code="a">1010991834</subfield><subfield code="a">1087371918</subfield><subfield code="a">1264916752</subfield><subfield code="a">1297457404</subfield><subfield code="a">1332973874</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780883859148</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0883859149</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)775429107</subfield><subfield code="z">(OCoLC)923220341</subfield><subfield code="z">(OCoLC)929120418</subfield><subfield code="z">(OCoLC)1010991834</subfield><subfield code="z">(OCoLC)1087371918</subfield><subfield code="z">(OCoLC)1264916752</subfield><subfield code="z">(OCoLC)1297457404</subfield><subfield code="z">(OCoLC)1332973874</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/ctt69rhjz</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA331.7</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">040000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT040000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.9</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krantz, Steven G.</subfield><subfield code="q">(Steven George),</subfield><subfield code="d">1951-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJw8VQ7cxG48KCfPym3RKd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n81051364</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Guide to Complex Variables /</subfield><subfield code="c">Steven G. Krantz.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Dolciani Mathematical Expositions ;</subfield><subfield code="v">v. 32</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publishers bibliographic system (viewed on 30 Jan 2012).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">A Guide to Complex Variables -- Preface -- Contents -- 1 The Complex Plane -- 1.1 Complex Arithmetic -- 1.1.1 The Real Numbers -- 1.1.2 The Complex Numbers -- 1.1.3 Complex Conjugate -- 1.1.4 Modulus of a Complex Number -- 1.1.5 The Topology of the Complex Plane -- 1.1.6 The Complex Numbers as a Field -- 1.1.7 The Fundamental Theorem of Algebra -- 1.2 The Exponential and Applications -- 1.2.1 The Exponential Function -- 1.2.2 The Exponential Using Power Series -- 1.2.3 Laws of Exponentiation -- 1.2.4 Polar Form of a Complex Number</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.2.5 Roots of Complex Numbers1.2.6 The Argument of a Complex Number -- 1.2.7 Fundamental Inequalities -- 1.3 Holomorphic Functions -- 1.3.1 Continuously Differentiable and Ck Functions -- 1.3.2 The Cauchy-Riemann Equations -- 1.3.3 Derivatives -- 1.3.4 Definition of Holomorphic Function -- 1.3.5 The Complex Derivative -- 1.3.6 Alternative Terminology for Holomorphic Functions -- 1.4 Holomorphic and Harmonic Functions -- 1.4.1 Harmonic Functions -- 1.4.2 How They are Related -- 2 Complex Line Integrals -- 2.1 Real and Complex Line Integrals -- 2.1.1 Curves</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.1.2 Closed Curves2.1.3 Differentiable and C^k Curves -- 2.1.4 Integrals on Curves -- 2.1.5 The Fundamental Theorem of Calculus along Curves -- 2.1.6 The Complex Line Integral -- 2.1.7 Properties of Integrals -- 2.2 Complex Differentiabilityand Conformality -- 2.2.1 Limits -- 2.2.2 Holomorphicity and the Complex Derivative -- 2.2.3 Conformality -- 2.3 The Cauchy Integral Formula and Theorem -- 2.3.1 The Cauchy Integral Theorem, Basic Form -- 2.3.2 The Cauchy Integral Formula -- 2.3.3 More General Forms of the Cauchy Theorems -- 2.3.4 Deformability of Curves</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.4 A Coda on the Limitations of The Cauchy Integral Formula3 Applications of the Cauchy Theory -- 3.1 The Derivatives of a Holomorphic Function -- 3.1.1 A Formula for the Derivative -- 3.1.2 The Cauchy Estimates -- 3.1.3 Entire Functions and Liouvilleâ€?s Theorem -- 3.1.4 The Fundamental Theorem of Algebra -- 3.1.5 Sequences of Holomorphic Functions and their Derivatives -- 3.1.6 The Power Series Representation of a Holomorphic Function -- 3.2 The Zeros of a Holomorphic Function -- 3.2.1 The Zero Set of a Holomorphic Function</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2.2 Discreteness of the Zeros of a Holomorphic Function3.2.3 Discrete Sets and Zero Sets -- 3.2.4 Uniqueness of Analytic Continuation -- 4 Isolated Singularities and Laurent Series -- 4.1 The Behavior of a Holomorphic Function near an Isolated Singularity -- 4.1.1 Isolated Singularities -- 4.1.2 A Holomorphic Function on a Punctured Domain -- 4.1.3 Classification of Singularities -- 4.1.4 Removable Singularities, Poles, and Essential Singularities -- 4.1.5 The Riemann Removable Singularities Theorem -- 4.1.6 The Casorati-Weierstrass Theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Functions of complex variables.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052356</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Fonctions d'une variable complexe.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Complex Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functions of complex variables</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Krantz, Steven G.</subfield><subfield code="t">Guide to Complex Variables.</subfield><subfield code="d">Washington : Mathematical Association of America, ©2014</subfield><subfield code="z">9780883853382</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Dolciani mathematical expositions.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42009859</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450270</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3330365</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">450270</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn775429107 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:18:14Z |
institution | BVB |
isbn | 9780883859148 0883859149 |
language | English |
oclc_num | 775429107 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge University Press, |
record_format | marc |
series | Dolciani mathematical expositions. |
series2 | Dolciani Mathematical Expositions ; |
spelling | Krantz, Steven G. (Steven George), 1951- https://id.oclc.org/worldcat/entity/E39PBJw8VQ7cxG48KCfPym3RKd http://id.loc.gov/authorities/names/n81051364 A Guide to Complex Variables / Steven G. Krantz. Cambridge : Cambridge University Press, 2012. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Dolciani Mathematical Expositions ; v. 32 Title from publishers bibliographic system (viewed on 30 Jan 2012). A Guide to Complex Variables -- Preface -- Contents -- 1 The Complex Plane -- 1.1 Complex Arithmetic -- 1.1.1 The Real Numbers -- 1.1.2 The Complex Numbers -- 1.1.3 Complex Conjugate -- 1.1.4 Modulus of a Complex Number -- 1.1.5 The Topology of the Complex Plane -- 1.1.6 The Complex Numbers as a Field -- 1.1.7 The Fundamental Theorem of Algebra -- 1.2 The Exponential and Applications -- 1.2.1 The Exponential Function -- 1.2.2 The Exponential Using Power Series -- 1.2.3 Laws of Exponentiation -- 1.2.4 Polar Form of a Complex Number 1.2.5 Roots of Complex Numbers1.2.6 The Argument of a Complex Number -- 1.2.7 Fundamental Inequalities -- 1.3 Holomorphic Functions -- 1.3.1 Continuously Differentiable and Ck Functions -- 1.3.2 The Cauchy-Riemann Equations -- 1.3.3 Derivatives -- 1.3.4 Definition of Holomorphic Function -- 1.3.5 The Complex Derivative -- 1.3.6 Alternative Terminology for Holomorphic Functions -- 1.4 Holomorphic and Harmonic Functions -- 1.4.1 Harmonic Functions -- 1.4.2 How They are Related -- 2 Complex Line Integrals -- 2.1 Real and Complex Line Integrals -- 2.1.1 Curves 2.1.2 Closed Curves2.1.3 Differentiable and C^k Curves -- 2.1.4 Integrals on Curves -- 2.1.5 The Fundamental Theorem of Calculus along Curves -- 2.1.6 The Complex Line Integral -- 2.1.7 Properties of Integrals -- 2.2 Complex Differentiabilityand Conformality -- 2.2.1 Limits -- 2.2.2 Holomorphicity and the Complex Derivative -- 2.2.3 Conformality -- 2.3 The Cauchy Integral Formula and Theorem -- 2.3.1 The Cauchy Integral Theorem, Basic Form -- 2.3.2 The Cauchy Integral Formula -- 2.3.3 More General Forms of the Cauchy Theorems -- 2.3.4 Deformability of Curves 2.4 A Coda on the Limitations of The Cauchy Integral Formula3 Applications of the Cauchy Theory -- 3.1 The Derivatives of a Holomorphic Function -- 3.1.1 A Formula for the Derivative -- 3.1.2 The Cauchy Estimates -- 3.1.3 Entire Functions and Liouvilleâ€?s Theorem -- 3.1.4 The Fundamental Theorem of Algebra -- 3.1.5 Sequences of Holomorphic Functions and their Derivatives -- 3.1.6 The Power Series Representation of a Holomorphic Function -- 3.2 The Zeros of a Holomorphic Function -- 3.2.1 The Zero Set of a Holomorphic Function 3.2.2 Discreteness of the Zeros of a Holomorphic Function3.2.3 Discrete Sets and Zero Sets -- 3.2.4 Uniqueness of Analytic Continuation -- 4 Isolated Singularities and Laurent Series -- 4.1 The Behavior of a Holomorphic Function near an Isolated Singularity -- 4.1.1 Isolated Singularities -- 4.1.2 A Holomorphic Function on a Punctured Domain -- 4.1.3 Classification of Singularities -- 4.1.4 Removable Singularities, Poles, and Essential Singularities -- 4.1.5 The Riemann Removable Singularities Theorem -- 4.1.6 The Casorati-Weierstrass Theorem Functions of complex variables. http://id.loc.gov/authorities/subjects/sh85052356 Fonctions d'une variable complexe. MATHEMATICS Complex Analysis. bisacsh Functions of complex variables fast Print version: Krantz, Steven G. Guide to Complex Variables. Washington : Mathematical Association of America, ©2014 9780883853382 Dolciani mathematical expositions. http://id.loc.gov/authorities/names/n42009859 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450270 Volltext |
spellingShingle | Krantz, Steven G. (Steven George), 1951- A Guide to Complex Variables / Dolciani mathematical expositions. A Guide to Complex Variables -- Preface -- Contents -- 1 The Complex Plane -- 1.1 Complex Arithmetic -- 1.1.1 The Real Numbers -- 1.1.2 The Complex Numbers -- 1.1.3 Complex Conjugate -- 1.1.4 Modulus of a Complex Number -- 1.1.5 The Topology of the Complex Plane -- 1.1.6 The Complex Numbers as a Field -- 1.1.7 The Fundamental Theorem of Algebra -- 1.2 The Exponential and Applications -- 1.2.1 The Exponential Function -- 1.2.2 The Exponential Using Power Series -- 1.2.3 Laws of Exponentiation -- 1.2.4 Polar Form of a Complex Number 1.2.5 Roots of Complex Numbers1.2.6 The Argument of a Complex Number -- 1.2.7 Fundamental Inequalities -- 1.3 Holomorphic Functions -- 1.3.1 Continuously Differentiable and Ck Functions -- 1.3.2 The Cauchy-Riemann Equations -- 1.3.3 Derivatives -- 1.3.4 Definition of Holomorphic Function -- 1.3.5 The Complex Derivative -- 1.3.6 Alternative Terminology for Holomorphic Functions -- 1.4 Holomorphic and Harmonic Functions -- 1.4.1 Harmonic Functions -- 1.4.2 How They are Related -- 2 Complex Line Integrals -- 2.1 Real and Complex Line Integrals -- 2.1.1 Curves 2.1.2 Closed Curves2.1.3 Differentiable and C^k Curves -- 2.1.4 Integrals on Curves -- 2.1.5 The Fundamental Theorem of Calculus along Curves -- 2.1.6 The Complex Line Integral -- 2.1.7 Properties of Integrals -- 2.2 Complex Differentiabilityand Conformality -- 2.2.1 Limits -- 2.2.2 Holomorphicity and the Complex Derivative -- 2.2.3 Conformality -- 2.3 The Cauchy Integral Formula and Theorem -- 2.3.1 The Cauchy Integral Theorem, Basic Form -- 2.3.2 The Cauchy Integral Formula -- 2.3.3 More General Forms of the Cauchy Theorems -- 2.3.4 Deformability of Curves 2.4 A Coda on the Limitations of The Cauchy Integral Formula3 Applications of the Cauchy Theory -- 3.1 The Derivatives of a Holomorphic Function -- 3.1.1 A Formula for the Derivative -- 3.1.2 The Cauchy Estimates -- 3.1.3 Entire Functions and Liouville�s Theorem -- 3.1.4 The Fundamental Theorem of Algebra -- 3.1.5 Sequences of Holomorphic Functions and their Derivatives -- 3.1.6 The Power Series Representation of a Holomorphic Function -- 3.2 The Zeros of a Holomorphic Function -- 3.2.1 The Zero Set of a Holomorphic Function 3.2.2 Discreteness of the Zeros of a Holomorphic Function3.2.3 Discrete Sets and Zero Sets -- 3.2.4 Uniqueness of Analytic Continuation -- 4 Isolated Singularities and Laurent Series -- 4.1 The Behavior of a Holomorphic Function near an Isolated Singularity -- 4.1.1 Isolated Singularities -- 4.1.2 A Holomorphic Function on a Punctured Domain -- 4.1.3 Classification of Singularities -- 4.1.4 Removable Singularities, Poles, and Essential Singularities -- 4.1.5 The Riemann Removable Singularities Theorem -- 4.1.6 The Casorati-Weierstrass Theorem Functions of complex variables. http://id.loc.gov/authorities/subjects/sh85052356 Fonctions d'une variable complexe. MATHEMATICS Complex Analysis. bisacsh Functions of complex variables fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85052356 |
title | A Guide to Complex Variables / |
title_auth | A Guide to Complex Variables / |
title_exact_search | A Guide to Complex Variables / |
title_full | A Guide to Complex Variables / Steven G. Krantz. |
title_fullStr | A Guide to Complex Variables / Steven G. Krantz. |
title_full_unstemmed | A Guide to Complex Variables / Steven G. Krantz. |
title_short | A Guide to Complex Variables / |
title_sort | guide to complex variables |
topic | Functions of complex variables. http://id.loc.gov/authorities/subjects/sh85052356 Fonctions d'une variable complexe. MATHEMATICS Complex Analysis. bisacsh Functions of complex variables fast |
topic_facet | Functions of complex variables. Fonctions d'une variable complexe. MATHEMATICS Complex Analysis. Functions of complex variables |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450270 |
work_keys_str_mv | AT krantzsteveng aguidetocomplexvariables AT krantzsteveng guidetocomplexvariables |