The lore of large numbers /:
Large numbers have always been a source of wonder and many questions are raised about them. 'What comes after billions?' or 'How do the relative sizes of an atom and a man compare to the relative sizes of a man and the sun?' The author has answered some of these questions by expl...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2012.
|
Schriftenreihe: | Anneli Lax new mathematical library.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Large numbers have always been a source of wonder and many questions are raised about them. 'What comes after billions?' or 'How do the relative sizes of an atom and a man compare to the relative sizes of a man and the sun?' The author has answered some of these questions by explaining the arithmetic and the uses of large numbers in a way which introduces the reader to the horizons of modern mathematics. Using large num bers as a unifying theme and employing only the simplest materials, the author provides the reader with an understanding for numbers, their magnitude, and their growth. The reader is introduced to exponents, computation, number theory, and to the rapidity of growth of sequences. Several historical passages reveal mathematics as a living thing that grows and changes with the generations. Tables listing interesting and useful numbers in the physical universe are appended. |
Beschreibung: | Title from publishers bibliographic system (viewed on 30 Jan 2012). |
Beschreibung: | 1 online resource (1 online resource) |
ISBN: | 9780883859872 0883859874 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn775429072 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 111006s2012 enk o 001 0 eng d | ||
040 | |a COO |b eng |e pn |c COO |d N$T |d OCLCQ |d OCLCF |d CAMBR |d YDXCP |d OCLCQ |d EBLCP |d DEBSZ |d OCLCQ |d AGLDB |d ZCU |d MERUC |d OCLCQ |d VTS |d ICG |d OCLCQ |d STF |d DKC |d OCLCQ |d AJS |d TXI |d OCLCO |d RDF |d OCLCO |d OCLCQ |d OCLCA |d OCLCO |d OCLCL | ||
019 | |a 903621779 |a 923220210 |a 929120335 |a 1087466398 |a 1264869253 |a 1297472068 |a 1297626391 | ||
020 | |a 9780883859872 |q (electronic bk.) | ||
020 | |a 0883859874 |q (electronic bk.) | ||
035 | |a (OCoLC)775429072 |z (OCoLC)903621779 |z (OCoLC)923220210 |z (OCoLC)929120335 |z (OCoLC)1087466398 |z (OCoLC)1264869253 |z (OCoLC)1297472068 |z (OCoLC)1297626391 | ||
050 | 4 | |a QA241 | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512.81 | |
049 | |a MAIN | ||
100 | 1 | |a Davis, Philip J., |d 1923-2018. |1 https://id.oclc.org/worldcat/entity/E39PBJtMkxxKC3wXfpQDpDdRKd | |
245 | 1 | 4 | |a The lore of large numbers / |c Philip J. Davis. |
260 | |a Cambridge : |b Cambridge University Press, |c 2012. | ||
300 | |a 1 online resource (1 online resource) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Anneli Lax New Mathematical Library ; |v v. 6 | |
500 | |a Title from publishers bibliographic system (viewed on 30 Jan 2012). | ||
505 | 0 | |a Front Cover -- The Lore of Large Numbers -- Copyright Page -- CONTENTS -- Preface -- PART I: LARGE NUMBERS AND THEIR ARITHMETIC -- 1. Numbers in the World -- 2. The Principal Uses of Numbers -- 3. The World of Numbers -- 4. Writing Numbers -- 5. Powers and Exponents -- 6. The Names of Really Large Numbers -- 7. The Law of Exponents -- 8. Scientific Notation -- 9. How Large Is Large? -- 10. Approximate Numbers and Orders of Magnitude -- 11. Approximate Computation -- 12. The Rough Art of Estimation -- 13. Small Numbers -- 14. Why Negative Exponents? | |
505 | 8 | |a 15. The Large and the Small16. Division by Zero: The Road to Paradox -- PART II: LARGE NUMBERS AT WORK -- 17. The Long Long Trail of π -- 18. The Long Trail Continued: Computing Machines Meet Normal Numbers -- 19. Back Over the Trail -- 20. The Personality of Numbers -- 21. Casting Out Nines; The Number Theory of Residues -- 22. The Hardest of the Simple Problems -- 23. Infinities Beyond Infinity: The Growth of Sequences -- 24. Atomic Numbers, Astronomical Numbers, and Where Is Man? -- Appendices -- I. Some Selected Magnitudes in Science | |
505 | 8 | |a II. Weights, Measures, and EquivalentsIII. Formulas for Measurement -- Answers to Selected Problems -- Bibliography | |
520 | |a Large numbers have always been a source of wonder and many questions are raised about them. 'What comes after billions?' or 'How do the relative sizes of an atom and a man compare to the relative sizes of a man and the sun?' The author has answered some of these questions by explaining the arithmetic and the uses of large numbers in a way which introduces the reader to the horizons of modern mathematics. Using large num bers as a unifying theme and employing only the simplest materials, the author provides the reader with an understanding for numbers, their magnitude, and their growth. The reader is introduced to exponents, computation, number theory, and to the rapidity of growth of sequences. Several historical passages reveal mathematics as a living thing that grows and changes with the generations. Tables listing interesting and useful numbers in the physical universe are appended. | ||
650 | 0 | |a Number theory. |0 http://id.loc.gov/authorities/subjects/sh85093222 | |
650 | 6 | |a Théorie des nombres. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Number theory |2 fast | |
758 | |i has work: |a The lore of large numbers (Work) |1 https://id.oclc.org/worldcat/entity/E39PCGmRt93pHKprgBKDvBRrD3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Davis, P.J. |t Lore of Large Numbers. |d Washington : Mathematical Association of America, ©2014 |z 9780883856062 |
830 | 0 | |a Anneli Lax new mathematical library. |0 http://id.loc.gov/authorities/names/n2002012009 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450351 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450351 |3 Volltext | |
938 | |a EBL - Ebook Library |b EBLB |n EBL3330413 | ||
938 | |a EBSCOhost |b EBSC |n 450351 | ||
938 | |a YBP Library Services |b YANK |n 7349825 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn775429072 |
---|---|
_version_ | 1813903426819457025 |
adam_text | |
any_adam_object | |
author | Davis, Philip J., 1923-2018 |
author_facet | Davis, Philip J., 1923-2018 |
author_role | |
author_sort | Davis, Philip J., 1923-2018 |
author_variant | p j d pj pjd |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA241 |
callnumber-raw | QA241 |
callnumber-search | QA241 |
callnumber-sort | QA 3241 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Front Cover -- The Lore of Large Numbers -- Copyright Page -- CONTENTS -- Preface -- PART I: LARGE NUMBERS AND THEIR ARITHMETIC -- 1. Numbers in the World -- 2. The Principal Uses of Numbers -- 3. The World of Numbers -- 4. Writing Numbers -- 5. Powers and Exponents -- 6. The Names of Really Large Numbers -- 7. The Law of Exponents -- 8. Scientific Notation -- 9. How Large Is Large? -- 10. Approximate Numbers and Orders of Magnitude -- 11. Approximate Computation -- 12. The Rough Art of Estimation -- 13. Small Numbers -- 14. Why Negative Exponents? 15. The Large and the Small16. Division by Zero: The Road to Paradox -- PART II: LARGE NUMBERS AT WORK -- 17. The Long Long Trail of π -- 18. The Long Trail Continued: Computing Machines Meet Normal Numbers -- 19. Back Over the Trail -- 20. The Personality of Numbers -- 21. Casting Out Nines; The Number Theory of Residues -- 22. The Hardest of the Simple Problems -- 23. Infinities Beyond Infinity: The Growth of Sequences -- 24. Atomic Numbers, Astronomical Numbers, and Where Is Man? -- Appendices -- I. Some Selected Magnitudes in Science II. Weights, Measures, and EquivalentsIII. Formulas for Measurement -- Answers to Selected Problems -- Bibliography |
ctrlnum | (OCoLC)775429072 |
dewey-full | 512.81 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.81 |
dewey-search | 512.81 |
dewey-sort | 3512.81 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04519cam a2200505Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn775429072</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">111006s2012 enk o 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">COO</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">COO</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">CAMBR</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">TXI</subfield><subfield code="d">OCLCO</subfield><subfield code="d">RDF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">903621779</subfield><subfield code="a">923220210</subfield><subfield code="a">929120335</subfield><subfield code="a">1087466398</subfield><subfield code="a">1264869253</subfield><subfield code="a">1297472068</subfield><subfield code="a">1297626391</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780883859872</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0883859874</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)775429072</subfield><subfield code="z">(OCoLC)903621779</subfield><subfield code="z">(OCoLC)923220210</subfield><subfield code="z">(OCoLC)929120335</subfield><subfield code="z">(OCoLC)1087466398</subfield><subfield code="z">(OCoLC)1264869253</subfield><subfield code="z">(OCoLC)1297472068</subfield><subfield code="z">(OCoLC)1297626391</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA241</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.81</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Davis, Philip J.,</subfield><subfield code="d">1923-2018.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJtMkxxKC3wXfpQDpDdRKd</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The lore of large numbers /</subfield><subfield code="c">Philip J. Davis.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 online resource)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Anneli Lax New Mathematical Library ;</subfield><subfield code="v">v. 6</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publishers bibliographic system (viewed on 30 Jan 2012).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover -- The Lore of Large Numbers -- Copyright Page -- CONTENTS -- Preface -- PART I: LARGE NUMBERS AND THEIR ARITHMETIC -- 1. Numbers in the World -- 2. The Principal Uses of Numbers -- 3. The World of Numbers -- 4. Writing Numbers -- 5. Powers and Exponents -- 6. The Names of Really Large Numbers -- 7. The Law of Exponents -- 8. Scientific Notation -- 9. How Large Is Large? -- 10. Approximate Numbers and Orders of Magnitude -- 11. Approximate Computation -- 12. The Rough Art of Estimation -- 13. Small Numbers -- 14. Why Negative Exponents?</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">15. The Large and the Small16. Division by Zero: The Road to Paradox -- PART II: LARGE NUMBERS AT WORK -- 17. The Long Long Trail of Ï€ -- 18. The Long Trail Continued: Computing Machines Meet Normal Numbers -- 19. Back Over the Trail -- 20. The Personality of Numbers -- 21. Casting Out Nines; The Number Theory of Residues -- 22. The Hardest of the Simple Problems -- 23. Infinities Beyond Infinity: The Growth of Sequences -- 24. Atomic Numbers, Astronomical Numbers, and Where Is Man? -- Appendices -- I. Some Selected Magnitudes in Science</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">II. Weights, Measures, and EquivalentsIII. Formulas for Measurement -- Answers to Selected Problems -- Bibliography</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Large numbers have always been a source of wonder and many questions are raised about them. 'What comes after billions?' or 'How do the relative sizes of an atom and a man compare to the relative sizes of a man and the sun?' The author has answered some of these questions by explaining the arithmetic and the uses of large numbers in a way which introduces the reader to the horizons of modern mathematics. Using large num bers as a unifying theme and employing only the simplest materials, the author provides the reader with an understanding for numbers, their magnitude, and their growth. The reader is introduced to exponents, computation, number theory, and to the rapidity of growth of sequences. Several historical passages reveal mathematics as a living thing that grows and changes with the generations. Tables listing interesting and useful numbers in the physical universe are appended.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Number theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85093222</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des nombres.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">The lore of large numbers (Work)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGmRt93pHKprgBKDvBRrD3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Davis, P.J.</subfield><subfield code="t">Lore of Large Numbers.</subfield><subfield code="d">Washington : Mathematical Association of America, ©2014</subfield><subfield code="z">9780883856062</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Anneli Lax new mathematical library.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2002012009</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450351</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450351</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3330413</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">450351</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7349825</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn775429072 |
illustrated | Not Illustrated |
indexdate | 2024-10-25T16:18:30Z |
institution | BVB |
isbn | 9780883859872 0883859874 |
language | English |
oclc_num | 775429072 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (1 online resource) |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge University Press, |
record_format | marc |
series | Anneli Lax new mathematical library. |
series2 | Anneli Lax New Mathematical Library ; |
spelling | Davis, Philip J., 1923-2018. https://id.oclc.org/worldcat/entity/E39PBJtMkxxKC3wXfpQDpDdRKd The lore of large numbers / Philip J. Davis. Cambridge : Cambridge University Press, 2012. 1 online resource (1 online resource) text txt rdacontent computer c rdamedia online resource cr rdacarrier Anneli Lax New Mathematical Library ; v. 6 Title from publishers bibliographic system (viewed on 30 Jan 2012). Front Cover -- The Lore of Large Numbers -- Copyright Page -- CONTENTS -- Preface -- PART I: LARGE NUMBERS AND THEIR ARITHMETIC -- 1. Numbers in the World -- 2. The Principal Uses of Numbers -- 3. The World of Numbers -- 4. Writing Numbers -- 5. Powers and Exponents -- 6. The Names of Really Large Numbers -- 7. The Law of Exponents -- 8. Scientific Notation -- 9. How Large Is Large? -- 10. Approximate Numbers and Orders of Magnitude -- 11. Approximate Computation -- 12. The Rough Art of Estimation -- 13. Small Numbers -- 14. Why Negative Exponents? 15. The Large and the Small16. Division by Zero: The Road to Paradox -- PART II: LARGE NUMBERS AT WORK -- 17. The Long Long Trail of Ï€ -- 18. The Long Trail Continued: Computing Machines Meet Normal Numbers -- 19. Back Over the Trail -- 20. The Personality of Numbers -- 21. Casting Out Nines; The Number Theory of Residues -- 22. The Hardest of the Simple Problems -- 23. Infinities Beyond Infinity: The Growth of Sequences -- 24. Atomic Numbers, Astronomical Numbers, and Where Is Man? -- Appendices -- I. Some Selected Magnitudes in Science II. Weights, Measures, and EquivalentsIII. Formulas for Measurement -- Answers to Selected Problems -- Bibliography Large numbers have always been a source of wonder and many questions are raised about them. 'What comes after billions?' or 'How do the relative sizes of an atom and a man compare to the relative sizes of a man and the sun?' The author has answered some of these questions by explaining the arithmetic and the uses of large numbers in a way which introduces the reader to the horizons of modern mathematics. Using large num bers as a unifying theme and employing only the simplest materials, the author provides the reader with an understanding for numbers, their magnitude, and their growth. The reader is introduced to exponents, computation, number theory, and to the rapidity of growth of sequences. Several historical passages reveal mathematics as a living thing that grows and changes with the generations. Tables listing interesting and useful numbers in the physical universe are appended. Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Théorie des nombres. MATHEMATICS Algebra Intermediate. bisacsh Number theory fast has work: The lore of large numbers (Work) https://id.oclc.org/worldcat/entity/E39PCGmRt93pHKprgBKDvBRrD3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Davis, P.J. Lore of Large Numbers. Washington : Mathematical Association of America, ©2014 9780883856062 Anneli Lax new mathematical library. http://id.loc.gov/authorities/names/n2002012009 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450351 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450351 Volltext |
spellingShingle | Davis, Philip J., 1923-2018 The lore of large numbers / Anneli Lax new mathematical library. Front Cover -- The Lore of Large Numbers -- Copyright Page -- CONTENTS -- Preface -- PART I: LARGE NUMBERS AND THEIR ARITHMETIC -- 1. Numbers in the World -- 2. The Principal Uses of Numbers -- 3. The World of Numbers -- 4. Writing Numbers -- 5. Powers and Exponents -- 6. The Names of Really Large Numbers -- 7. The Law of Exponents -- 8. Scientific Notation -- 9. How Large Is Large? -- 10. Approximate Numbers and Orders of Magnitude -- 11. Approximate Computation -- 12. The Rough Art of Estimation -- 13. Small Numbers -- 14. Why Negative Exponents? 15. The Large and the Small16. Division by Zero: The Road to Paradox -- PART II: LARGE NUMBERS AT WORK -- 17. The Long Long Trail of Ï€ -- 18. The Long Trail Continued: Computing Machines Meet Normal Numbers -- 19. Back Over the Trail -- 20. The Personality of Numbers -- 21. Casting Out Nines; The Number Theory of Residues -- 22. The Hardest of the Simple Problems -- 23. Infinities Beyond Infinity: The Growth of Sequences -- 24. Atomic Numbers, Astronomical Numbers, and Where Is Man? -- Appendices -- I. Some Selected Magnitudes in Science II. Weights, Measures, and EquivalentsIII. Formulas for Measurement -- Answers to Selected Problems -- Bibliography Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Théorie des nombres. MATHEMATICS Algebra Intermediate. bisacsh Number theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85093222 |
title | The lore of large numbers / |
title_auth | The lore of large numbers / |
title_exact_search | The lore of large numbers / |
title_full | The lore of large numbers / Philip J. Davis. |
title_fullStr | The lore of large numbers / Philip J. Davis. |
title_full_unstemmed | The lore of large numbers / Philip J. Davis. |
title_short | The lore of large numbers / |
title_sort | lore of large numbers |
topic | Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Théorie des nombres. MATHEMATICS Algebra Intermediate. bisacsh Number theory fast |
topic_facet | Number theory. Théorie des nombres. MATHEMATICS Algebra Intermediate. Number theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450351 |
work_keys_str_mv | AT davisphilipj theloreoflargenumbers AT davisphilipj loreoflargenumbers |