A Guide to Elementary Number Theory /:
"A Guide to Elementary Number Theory is a 140-page exposition of the topics considered in a first course in number theory. It is intended for those who may have seen the material before but have half-forgotten it, and also for those who may have misspent their youth by not having a course in nu...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2012.
|
Schriftenreihe: | Dolciani mathematical expositions.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "A Guide to Elementary Number Theory is a 140-page exposition of the topics considered in a first course in number theory. It is intended for those who may have seen the material before but have half-forgotten it, and also for those who may have misspent their youth by not having a course in number theory and who want to see what it is about without having to wade through traditional texts, some of which approach 500 pages in length. It will be especially useful to graduate students preparing for qualifying exams. Though Plato did not quite say, "He is unworthy of the name of man who does not know which integers are the sums of two squares," he came close. This guide can make everyone more worthy"--Page 4 of cover. |
Beschreibung: | Title from publishers bibliographic system (viewed on 30 Jan 2012). |
Beschreibung: | 1 online resource |
ISBN: | 9780883859186 0883859181 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn775428970 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 111104s2012 enk o 001 0 eng d | ||
040 | |a COO |b eng |e pn |c COO |d N$T |d YDXCP |d OCLCQ |d OCLCF |d CAMBR |d JSTOR |d OCLCQ |d EBLCP |d DEBSZ |d OCLCQ |d AGLDB |d ZCU |d MERUC |d OCLCQ |d VTS |d ICG |d OCLCQ |d JBG |d OCLCQ |d STF |d DKC |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 923220342 |a 929120455 |a 1010980441 |a 1087350019 |a 1264810188 |a 1297376446 |a 1297597677 | ||
020 | |a 9780883859186 |q (electronic bk.) | ||
020 | |a 0883859181 |q (electronic bk.) | ||
035 | |a (OCoLC)775428970 |z (OCoLC)923220342 |z (OCoLC)929120455 |z (OCoLC)1010980441 |z (OCoLC)1087350019 |z (OCoLC)1264810188 |z (OCoLC)1297376446 |z (OCoLC)1297597677 | ||
037 | |a 22573/ctt69rh83 |b JSTOR | ||
050 | 4 | |a QA241 | |
072 | 7 | |a MAT |x 022000 |2 bisacsh | |
072 | 7 | |a MAT022000 |2 bisacsh | |
082 | 7 | |a 512.7 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Dudley, Underwood. | |
245 | 1 | 2 | |a A Guide to Elementary Number Theory / |c Underwood Dudley. |
260 | |a Cambridge : |b Cambridge University Press, |c 2012. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Dolciani Mathematical Expositions ; |v v. 41 | |
500 | |a Title from publishers bibliographic system (viewed on 30 Jan 2012). | ||
505 | 0 | |a Introduction -- Contents -- 1 Greatest CommonDivisors -- 2 Unique Factorization -- 3 Linear DiophantineEquations -- 4 Congruences -- 5 Linear Congruences -- 6 The Chinese Remainder Theorem -- 7 Fermat�s Theorem -- 8 Wilson�s Theorem -- 9 The Number of Divisors of an Integer -- 10 The Sum of the Divisors of an Integer -- 11 Amicable Numbers -- 12 Perfect Numbers -- 13 Euler�s Theorem and Function -- 14 Primitive Rootsand Orders -- 15 Decimals -- 16 Quadratic Congruences -- 17 Gauss�s Lemma | |
505 | 8 | |a 18 The Quadratic Reciprocity Theorem19 The Jacobi Symbol -- 20 Pythagorean Triangles -- 21 x^4 + y*4 not= z^4 -- 22 Sums of Two Squares -- 23 Sums of Three Squares -- 24 Sums of Four Squares -- 25 Waring�s Problem -- 26 Pell�s Equation -- 27 Continued Fractions -- 28 Multigrades -- 29 Carmichael Numbers -- 30 Sophie Germain Primes -- 31 The Group of Multiplicative Functions -- 32 Bounds for pi(x) -- 33 The Sum of the Reciprocals of the Primes -- 34 The Riemann Hypothesis -- 35 The Prime Number Theorem -- 36 The abc Conjecture | |
505 | 8 | |a 37 Factorization and Testing for Primes38 Algebraic and Transcendental Numbers -- 39 Unsolved Problems -- Index -- About the Author | |
520 | |a "A Guide to Elementary Number Theory is a 140-page exposition of the topics considered in a first course in number theory. It is intended for those who may have seen the material before but have half-forgotten it, and also for those who may have misspent their youth by not having a course in number theory and who want to see what it is about without having to wade through traditional texts, some of which approach 500 pages in length. It will be especially useful to graduate students preparing for qualifying exams. Though Plato did not quite say, "He is unworthy of the name of man who does not know which integers are the sums of two squares," he came close. This guide can make everyone more worthy"--Page 4 of cover. | ||
650 | 0 | |a Number theory. |0 http://id.loc.gov/authorities/subjects/sh85093222 | |
650 | 6 | |a Théorie des nombres. | |
650 | 7 | |a MATHEMATICS |x Number Theory. |2 bisacsh | |
650 | 7 | |a Number theory |2 fast | |
776 | 0 | 8 | |i Print version: |a Dudley, Underwood. |t Guide to Elementary Number Theory. |d Washington : Mathematical Association of America, ©2014 |z 9780883853474 |
830 | 0 | |a Dolciani mathematical expositions. |0 http://id.loc.gov/authorities/names/n42009859 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450276 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL3330366 | ||
938 | |a EBSCOhost |b EBSC |n 450276 | ||
938 | |a YBP Library Services |b YANK |n 7349789 | ||
936 | |a BATCHLOAD | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn775428970 |
---|---|
_version_ | 1816881785368215552 |
adam_text | |
any_adam_object | |
author | Dudley, Underwood |
author_facet | Dudley, Underwood |
author_role | |
author_sort | Dudley, Underwood |
author_variant | u d ud |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA241 |
callnumber-raw | QA241 |
callnumber-search | QA241 |
callnumber-sort | QA 3241 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Introduction -- Contents -- 1 Greatest CommonDivisors -- 2 Unique Factorization -- 3 Linear DiophantineEquations -- 4 Congruences -- 5 Linear Congruences -- 6 The Chinese Remainder Theorem -- 7 Fermat�s Theorem -- 8 Wilson�s Theorem -- 9 The Number of Divisors of an Integer -- 10 The Sum of the Divisors of an Integer -- 11 Amicable Numbers -- 12 Perfect Numbers -- 13 Euler�s Theorem and Function -- 14 Primitive Rootsand Orders -- 15 Decimals -- 16 Quadratic Congruences -- 17 Gauss�s Lemma 18 The Quadratic Reciprocity Theorem19 The Jacobi Symbol -- 20 Pythagorean Triangles -- 21 x^4 + y*4 not= z^4 -- 22 Sums of Two Squares -- 23 Sums of Three Squares -- 24 Sums of Four Squares -- 25 Waring�s Problem -- 26 Pell�s Equation -- 27 Continued Fractions -- 28 Multigrades -- 29 Carmichael Numbers -- 30 Sophie Germain Primes -- 31 The Group of Multiplicative Functions -- 32 Bounds for pi(x) -- 33 The Sum of the Reciprocals of the Primes -- 34 The Riemann Hypothesis -- 35 The Prime Number Theorem -- 36 The abc Conjecture 37 Factorization and Testing for Primes38 Algebraic and Transcendental Numbers -- 39 Unsolved Problems -- Index -- About the Author |
ctrlnum | (OCoLC)775428970 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04177cam a2200529 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn775428970</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">111104s2012 enk o 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">COO</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">COO</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">CAMBR</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">923220342</subfield><subfield code="a">929120455</subfield><subfield code="a">1010980441</subfield><subfield code="a">1087350019</subfield><subfield code="a">1264810188</subfield><subfield code="a">1297376446</subfield><subfield code="a">1297597677</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780883859186</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0883859181</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)775428970</subfield><subfield code="z">(OCoLC)923220342</subfield><subfield code="z">(OCoLC)929120455</subfield><subfield code="z">(OCoLC)1010980441</subfield><subfield code="z">(OCoLC)1087350019</subfield><subfield code="z">(OCoLC)1264810188</subfield><subfield code="z">(OCoLC)1297376446</subfield><subfield code="z">(OCoLC)1297597677</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/ctt69rh83</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA241</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">022000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT022000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dudley, Underwood.</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Guide to Elementary Number Theory /</subfield><subfield code="c">Underwood Dudley.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Dolciani Mathematical Expositions ;</subfield><subfield code="v">v. 41</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publishers bibliographic system (viewed on 30 Jan 2012).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Introduction -- Contents -- 1 Greatest CommonDivisors -- 2 Unique Factorization -- 3 Linear DiophantineEquations -- 4 Congruences -- 5 Linear Congruences -- 6 The Chinese Remainder Theorem -- 7 Fermatâ€?s Theorem -- 8 Wilsonâ€?s Theorem -- 9 The Number of Divisors of an Integer -- 10 The Sum of the Divisors of an Integer -- 11 Amicable Numbers -- 12 Perfect Numbers -- 13 Eulerâ€?s Theorem and Function -- 14 Primitive Rootsand Orders -- 15 Decimals -- 16 Quadratic Congruences -- 17 Gaussâ€?s Lemma</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">18 The Quadratic Reciprocity Theorem19 The Jacobi Symbol -- 20 Pythagorean Triangles -- 21 x^4 + y*4 not= z^4 -- 22 Sums of Two Squares -- 23 Sums of Three Squares -- 24 Sums of Four Squares -- 25 Waringâ€?s Problem -- 26 Pellâ€?s Equation -- 27 Continued Fractions -- 28 Multigrades -- 29 Carmichael Numbers -- 30 Sophie Germain Primes -- 31 The Group of Multiplicative Functions -- 32 Bounds for pi(x) -- 33 The Sum of the Reciprocals of the Primes -- 34 The Riemann Hypothesis -- 35 The Prime Number Theorem -- 36 The abc Conjecture</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">37 Factorization and Testing for Primes38 Algebraic and Transcendental Numbers -- 39 Unsolved Problems -- Index -- About the Author</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"A Guide to Elementary Number Theory is a 140-page exposition of the topics considered in a first course in number theory. It is intended for those who may have seen the material before but have half-forgotten it, and also for those who may have misspent their youth by not having a course in number theory and who want to see what it is about without having to wade through traditional texts, some of which approach 500 pages in length. It will be especially useful to graduate students preparing for qualifying exams. Though Plato did not quite say, "He is unworthy of the name of man who does not know which integers are the sums of two squares," he came close. This guide can make everyone more worthy"--Page 4 of cover.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Number theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85093222</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des nombres.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Number Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Dudley, Underwood.</subfield><subfield code="t">Guide to Elementary Number Theory.</subfield><subfield code="d">Washington : Mathematical Association of America, ©2014</subfield><subfield code="z">9780883853474</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Dolciani mathematical expositions.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42009859</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450276</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3330366</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">450276</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7349789</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn775428970 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:18:14Z |
institution | BVB |
isbn | 9780883859186 0883859181 |
language | English |
oclc_num | 775428970 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge University Press, |
record_format | marc |
series | Dolciani mathematical expositions. |
series2 | Dolciani Mathematical Expositions ; |
spelling | Dudley, Underwood. A Guide to Elementary Number Theory / Underwood Dudley. Cambridge : Cambridge University Press, 2012. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Dolciani Mathematical Expositions ; v. 41 Title from publishers bibliographic system (viewed on 30 Jan 2012). Introduction -- Contents -- 1 Greatest CommonDivisors -- 2 Unique Factorization -- 3 Linear DiophantineEquations -- 4 Congruences -- 5 Linear Congruences -- 6 The Chinese Remainder Theorem -- 7 Fermatâ€?s Theorem -- 8 Wilsonâ€?s Theorem -- 9 The Number of Divisors of an Integer -- 10 The Sum of the Divisors of an Integer -- 11 Amicable Numbers -- 12 Perfect Numbers -- 13 Eulerâ€?s Theorem and Function -- 14 Primitive Rootsand Orders -- 15 Decimals -- 16 Quadratic Congruences -- 17 Gaussâ€?s Lemma 18 The Quadratic Reciprocity Theorem19 The Jacobi Symbol -- 20 Pythagorean Triangles -- 21 x^4 + y*4 not= z^4 -- 22 Sums of Two Squares -- 23 Sums of Three Squares -- 24 Sums of Four Squares -- 25 Waringâ€?s Problem -- 26 Pellâ€?s Equation -- 27 Continued Fractions -- 28 Multigrades -- 29 Carmichael Numbers -- 30 Sophie Germain Primes -- 31 The Group of Multiplicative Functions -- 32 Bounds for pi(x) -- 33 The Sum of the Reciprocals of the Primes -- 34 The Riemann Hypothesis -- 35 The Prime Number Theorem -- 36 The abc Conjecture 37 Factorization and Testing for Primes38 Algebraic and Transcendental Numbers -- 39 Unsolved Problems -- Index -- About the Author "A Guide to Elementary Number Theory is a 140-page exposition of the topics considered in a first course in number theory. It is intended for those who may have seen the material before but have half-forgotten it, and also for those who may have misspent their youth by not having a course in number theory and who want to see what it is about without having to wade through traditional texts, some of which approach 500 pages in length. It will be especially useful to graduate students preparing for qualifying exams. Though Plato did not quite say, "He is unworthy of the name of man who does not know which integers are the sums of two squares," he came close. This guide can make everyone more worthy"--Page 4 of cover. Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Théorie des nombres. MATHEMATICS Number Theory. bisacsh Number theory fast Print version: Dudley, Underwood. Guide to Elementary Number Theory. Washington : Mathematical Association of America, ©2014 9780883853474 Dolciani mathematical expositions. http://id.loc.gov/authorities/names/n42009859 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450276 Volltext |
spellingShingle | Dudley, Underwood A Guide to Elementary Number Theory / Dolciani mathematical expositions. Introduction -- Contents -- 1 Greatest CommonDivisors -- 2 Unique Factorization -- 3 Linear DiophantineEquations -- 4 Congruences -- 5 Linear Congruences -- 6 The Chinese Remainder Theorem -- 7 Fermatâ€?s Theorem -- 8 Wilsonâ€?s Theorem -- 9 The Number of Divisors of an Integer -- 10 The Sum of the Divisors of an Integer -- 11 Amicable Numbers -- 12 Perfect Numbers -- 13 Eulerâ€?s Theorem and Function -- 14 Primitive Rootsand Orders -- 15 Decimals -- 16 Quadratic Congruences -- 17 Gaussâ€?s Lemma 18 The Quadratic Reciprocity Theorem19 The Jacobi Symbol -- 20 Pythagorean Triangles -- 21 x^4 + y*4 not= z^4 -- 22 Sums of Two Squares -- 23 Sums of Three Squares -- 24 Sums of Four Squares -- 25 Waringâ€?s Problem -- 26 Pellâ€?s Equation -- 27 Continued Fractions -- 28 Multigrades -- 29 Carmichael Numbers -- 30 Sophie Germain Primes -- 31 The Group of Multiplicative Functions -- 32 Bounds for pi(x) -- 33 The Sum of the Reciprocals of the Primes -- 34 The Riemann Hypothesis -- 35 The Prime Number Theorem -- 36 The abc Conjecture 37 Factorization and Testing for Primes38 Algebraic and Transcendental Numbers -- 39 Unsolved Problems -- Index -- About the Author Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Théorie des nombres. MATHEMATICS Number Theory. bisacsh Number theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85093222 |
title | A Guide to Elementary Number Theory / |
title_auth | A Guide to Elementary Number Theory / |
title_exact_search | A Guide to Elementary Number Theory / |
title_full | A Guide to Elementary Number Theory / Underwood Dudley. |
title_fullStr | A Guide to Elementary Number Theory / Underwood Dudley. |
title_full_unstemmed | A Guide to Elementary Number Theory / Underwood Dudley. |
title_short | A Guide to Elementary Number Theory / |
title_sort | guide to elementary number theory |
topic | Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Théorie des nombres. MATHEMATICS Number Theory. bisacsh Number theory fast |
topic_facet | Number theory. Théorie des nombres. MATHEMATICS Number Theory. Number theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450276 |
work_keys_str_mv | AT dudleyunderwood aguidetoelementarynumbertheory AT dudleyunderwood guidetoelementarynumbertheory |