Mathematical Methods in Science /:
If you have ever wondered how the laws of nature were worked out mathematically, this is the book for you. Above all, it captures some of Pólya's excitement and vision.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2012.
|
Schriftenreihe: | Anneli Lax new mathematical library.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | If you have ever wondered how the laws of nature were worked out mathematically, this is the book for you. Above all, it captures some of Pólya's excitement and vision. |
Beschreibung: | Title from publishers bibliographic system (viewed on 30 Jan 2012). |
Beschreibung: | 1 online resource |
ISBN: | 9780883859414 0883859416 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn775428871 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 111024s2012 enk o 001 0 eng d | ||
040 | |a COO |b eng |e pn |c COO |d N$T |d OCLCQ |d OCLCF |d CAMBR |d YDXCP |d OCLCQ |d OCLCO |d EBLCP |d OCLCO |d DEBSZ |d OCLCQ |d OCLCO |d AGLDB |d ZCU |d MERUC |d OCLCQ |d VTS |d ICG |d OCLCQ |d STF |d DKC |d OCLCQ |d AJS |d RDF |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 903621684 |a 923220022 |a 929120300 | ||
020 | |a 9780883859414 |q (electronic bk.) | ||
020 | |a 0883859416 |q (electronic bk.) | ||
035 | |a (OCoLC)775428871 |z (OCoLC)903621684 |z (OCoLC)923220022 |z (OCoLC)929120300 | ||
050 | 4 | |a QA37.2 | |
072 | 7 | |a SCI |x 040000 |2 bisacsh | |
082 | 7 | |a 530.1/5 |2 19 | |
049 | |a MAIN | ||
100 | 1 | |a Pólya, George. | |
245 | 1 | 0 | |a Mathematical Methods in Science / |c George Pólya. |
260 | |a Cambridge : |b Cambridge University Press, |c 2012. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Anneli Lax New Mathematical Library ; |v v. 26 | |
500 | |a Title from publishers bibliographic system (viewed on 30 Jan 2012). | ||
505 | 0 | |a Front Cover -- Mathematical Methods in Science -- Copyright Page -- Contents -- INTRODUCTION -- CHAPTER 1. From the History of Astronomy: Measurement and Successive Approximation -- SECTION 1 MEASUREMENT -- 1 The Tunnel -- 2 Measuring: Triangulating -- 3 How Far Away is the Moon? -- 4 Why Teach Triangulation? -- SECTION 2 ASTRONOMICAL MEASUREMENTS -- 1 Aristarchus of Samos -- 2 Radius of Earth: Eratosthenes -- 3 Rival Cosmologies -- 4 The Orbit of Venus -- 5 Tycho Brahe and Kepler -- 6 The Mars Year -- 7 The Orbit of Mars | |
505 | 8 | |a 8 A Word to the Perceptive Reader9 Newton�s Problem of a Comet�s Path -- SECTION 3 SUCCESSIVE APPROXIMATION -- 1 First Application -- 2 Extraction of Square Roots -- SECTION 4 NEWTON�S METHOD OF SUCCESSIVE APPROXIMATION -- 1 The General Method of Newton -- 2 Newton�s Formula -- 3 �a -- 4 3�a -- 5 5�a -- CHAPTER 2. From the History of Statics -- SECTION 1 STEVINUS AND ARCHIMEDES -- 1 Inclined Plane -- 2 Lever -- SECTION 2 VECTORS -- 1 Inclined Plane -- 2 Pulley -- 3 Lever -- 4 Archimedes' Application of his Law of the Lever | |
505 | 8 | |a 5 (�) · (�) = (+)6 Von Mises' Flight Triangle -- CHAPTER 3. From the History of Dynamics -- SECTION 1 GALILEO -- 1 Heavier Bodies Fall Faster? -- 2 Not Why?, But How? -- 3 How do Heavy Bodies Fall? -- 4 Dynamics of the Inclined Plane -- 5 Conservation of Energy -- 6 Law of Inertia -- 7 A Cannon Ball's Trajectory -- SECTION 2 NEWTON -- 1 Apples, Cannon Balls, and the Moon -- 2 Never Smoke Without Fire -- 3 That the Planets do Accelerate Towards the Sun -- 4 What is the Law of Universal Gravitation? | |
505 | 8 | |a 5 Uniform Circular Motion: Hamilton's Hodograph6 On Newton's Discovery of the Law of Universal Gravitation -- 7 Scientific Attitude: Verification -- 8 Hindsight and Foresight -- SECTION 3 THE PENDULUM -- 1 The Dimensions Test -- 2 Simple Pendulum's Time of Swing -- 3 Determination of g by Pendulum Experiment -- 4 The Conical Pendulum -- SECTION 4 ESCAPE VELOCITY -- 1 Go-Around Velocity -- 2 Apropos Go-Away Velocity -- 3 The Force of Gravity -- 4 That Kepler's Third Law is a Consequence of Newton's Law of Gravitation -- 5 Planetary Mass -- 6 Go-Away Velocity | |
505 | 8 | |a 7 Ratio of Escape and Orbital VelocitiesCHAPTER 4. Physical Reasoning in Mathematics -- CHAPTER 5. Differential Equations and Their Use in Science -- SECTION 1 FIRST EXAMPLES -- 1 Rotating Fluid -- 2 Galileo: Free Fall -- 3 Catenary -- 4 Fall with Friction -- SECTION 2 APPROXIMATE FORMULAE: POWER SERIES -- Introduction -- 1 Calculation of 3â?š28 -- 2 Fall with Friction Again -- 3 How Deep is a Well? -- 4 Pendulum: Small Oscillations -- SECTION 3 PHYSICAL ANALOGY -- SECTION 4 WHAT IS A DIFFERENTIAL EQUATION? -- 1 Example -- 2 Vector Fields | |
520 | |a If you have ever wondered how the laws of nature were worked out mathematically, this is the book for you. Above all, it captures some of Pólya's excitement and vision. | ||
650 | 0 | |a Mathematics. |0 http://id.loc.gov/authorities/subjects/sh85082139 | |
650 | 0 | |a Science |x Mathematics. | |
650 | 2 | |a Mathematics |0 https://id.nlm.nih.gov/mesh/D008433 | |
650 | 6 | |a Mathématiques. | |
650 | 6 | |a Sciences |x Mathématiques. | |
650 | 7 | |a SCIENCE |x Physics |x Mathematical & Computational. |2 bisacsh | |
650 | 7 | |a Mathematics |2 fast | |
650 | 7 | |a Science |x Mathematics |2 fast | |
776 | 0 | 8 | |i Print version: |a Pólya, George. |t Mathematical Methods in Science. |d Washington : Mathematical Association of America, ©2014 |z 9780883856260 |
830 | 0 | |a Anneli Lax new mathematical library. |0 http://id.loc.gov/authorities/names/n2002012009 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=452155 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL3330396 | ||
938 | |a EBSCOhost |b EBSC |n 452155 | ||
938 | |a YBP Library Services |b YANK |n 7349808 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn775428871 |
---|---|
_version_ | 1816881785342001152 |
adam_text | |
any_adam_object | |
author | Pólya, George |
author_facet | Pólya, George |
author_role | |
author_sort | Pólya, George |
author_variant | g p gp |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA37 |
callnumber-raw | QA37.2 |
callnumber-search | QA37.2 |
callnumber-sort | QA 237.2 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Front Cover -- Mathematical Methods in Science -- Copyright Page -- Contents -- INTRODUCTION -- CHAPTER 1. From the History of Astronomy: Measurement and Successive Approximation -- SECTION 1 MEASUREMENT -- 1 The Tunnel -- 2 Measuring: Triangulating -- 3 How Far Away is the Moon? -- 4 Why Teach Triangulation? -- SECTION 2 ASTRONOMICAL MEASUREMENTS -- 1 Aristarchus of Samos -- 2 Radius of Earth: Eratosthenes -- 3 Rival Cosmologies -- 4 The Orbit of Venus -- 5 Tycho Brahe and Kepler -- 6 The Mars Year -- 7 The Orbit of Mars 8 A Word to the Perceptive Reader9 Newton�s Problem of a Comet�s Path -- SECTION 3 SUCCESSIVE APPROXIMATION -- 1 First Application -- 2 Extraction of Square Roots -- SECTION 4 NEWTON�S METHOD OF SUCCESSIVE APPROXIMATION -- 1 The General Method of Newton -- 2 Newton�s Formula -- 3 �a -- 4 3�a -- 5 5�a -- CHAPTER 2. From the History of Statics -- SECTION 1 STEVINUS AND ARCHIMEDES -- 1 Inclined Plane -- 2 Lever -- SECTION 2 VECTORS -- 1 Inclined Plane -- 2 Pulley -- 3 Lever -- 4 Archimedes' Application of his Law of the Lever 5 (�) · (�) = (+)6 Von Mises' Flight Triangle -- CHAPTER 3. From the History of Dynamics -- SECTION 1 GALILEO -- 1 Heavier Bodies Fall Faster? -- 2 Not Why?, But How? -- 3 How do Heavy Bodies Fall? -- 4 Dynamics of the Inclined Plane -- 5 Conservation of Energy -- 6 Law of Inertia -- 7 A Cannon Ball's Trajectory -- SECTION 2 NEWTON -- 1 Apples, Cannon Balls, and the Moon -- 2 Never Smoke Without Fire -- 3 That the Planets do Accelerate Towards the Sun -- 4 What is the Law of Universal Gravitation? 5 Uniform Circular Motion: Hamilton's Hodograph6 On Newton's Discovery of the Law of Universal Gravitation -- 7 Scientific Attitude: Verification -- 8 Hindsight and Foresight -- SECTION 3 THE PENDULUM -- 1 The Dimensions Test -- 2 Simple Pendulum's Time of Swing -- 3 Determination of g by Pendulum Experiment -- 4 The Conical Pendulum -- SECTION 4 ESCAPE VELOCITY -- 1 Go-Around Velocity -- 2 Apropos Go-Away Velocity -- 3 The Force of Gravity -- 4 That Kepler's Third Law is a Consequence of Newton's Law of Gravitation -- 5 Planetary Mass -- 6 Go-Away Velocity 7 Ratio of Escape and Orbital VelocitiesCHAPTER 4. Physical Reasoning in Mathematics -- CHAPTER 5. Differential Equations and Their Use in Science -- SECTION 1 FIRST EXAMPLES -- 1 Rotating Fluid -- 2 Galileo: Free Fall -- 3 Catenary -- 4 Fall with Friction -- SECTION 2 APPROXIMATE FORMULAE: POWER SERIES -- Introduction -- 1 Calculation of 3�28 -- 2 Fall with Friction Again -- 3 How Deep is a Well? -- 4 Pendulum: Small Oscillations -- SECTION 3 PHYSICAL ANALOGY -- SECTION 4 WHAT IS A DIFFERENTIAL EQUATION? -- 1 Example -- 2 Vector Fields |
ctrlnum | (OCoLC)775428871 |
dewey-full | 530.1/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1/5 |
dewey-search | 530.1/5 |
dewey-sort | 3530.1 15 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05169cam a2200565Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn775428871</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">111024s2012 enk o 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">COO</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">COO</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">CAMBR</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AGLDB</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">RDF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">903621684</subfield><subfield code="a">923220022</subfield><subfield code="a">929120300</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780883859414</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0883859416</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)775428871</subfield><subfield code="z">(OCoLC)903621684</subfield><subfield code="z">(OCoLC)923220022</subfield><subfield code="z">(OCoLC)929120300</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA37.2</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">040000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.1/5</subfield><subfield code="2">19</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pólya, George.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical Methods in Science /</subfield><subfield code="c">George Pólya.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Anneli Lax New Mathematical Library ;</subfield><subfield code="v">v. 26</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publishers bibliographic system (viewed on 30 Jan 2012).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover -- Mathematical Methods in Science -- Copyright Page -- Contents -- INTRODUCTION -- CHAPTER 1. From the History of Astronomy: Measurement and Successive Approximation -- SECTION 1 MEASUREMENT -- 1 The Tunnel -- 2 Measuring: Triangulating -- 3 How Far Away is the Moon? -- 4 Why Teach Triangulation? -- SECTION 2 ASTRONOMICAL MEASUREMENTS -- 1 Aristarchus of Samos -- 2 Radius of Earth: Eratosthenes -- 3 Rival Cosmologies -- 4 The Orbit of Venus -- 5 Tycho Brahe and Kepler -- 6 The Mars Year -- 7 The Orbit of Mars</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8 A Word to the Perceptive Reader9 Newtonâ€?s Problem of a Cometâ€?s Path -- SECTION 3 SUCCESSIVE APPROXIMATION -- 1 First Application -- 2 Extraction of Square Roots -- SECTION 4 NEWTONâ€?S METHOD OF SUCCESSIVE APPROXIMATION -- 1 The General Method of Newton -- 2 Newtonâ€?s Formula -- 3 â?ša -- 4 3â?ša -- 5 5â?ša -- CHAPTER 2. From the History of Statics -- SECTION 1 STEVINUS AND ARCHIMEDES -- 1 Inclined Plane -- 2 Lever -- SECTION 2 VECTORS -- 1 Inclined Plane -- 2 Pulley -- 3 Lever -- 4 Archimedes' Application of his Law of the Lever</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5 (â€?) · (â€?) = (+)6 Von Mises' Flight Triangle -- CHAPTER 3. From the History of Dynamics -- SECTION 1 GALILEO -- 1 Heavier Bodies Fall Faster? -- 2 Not Why?, But How? -- 3 How do Heavy Bodies Fall? -- 4 Dynamics of the Inclined Plane -- 5 Conservation of Energy -- 6 Law of Inertia -- 7 A Cannon Ball's Trajectory -- SECTION 2 NEWTON -- 1 Apples, Cannon Balls, and the Moon -- 2 Never Smoke Without Fire -- 3 That the Planets do Accelerate Towards the Sun -- 4 What is the Law of Universal Gravitation?</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5 Uniform Circular Motion: Hamilton's Hodograph6 On Newton's Discovery of the Law of Universal Gravitation -- 7 Scientific Attitude: Verification -- 8 Hindsight and Foresight -- SECTION 3 THE PENDULUM -- 1 The Dimensions Test -- 2 Simple Pendulum's Time of Swing -- 3 Determination of g by Pendulum Experiment -- 4 The Conical Pendulum -- SECTION 4 ESCAPE VELOCITY -- 1 Go-Around Velocity -- 2 Apropos Go-Away Velocity -- 3 The Force of Gravity -- 4 That Kepler's Third Law is a Consequence of Newton's Law of Gravitation -- 5 Planetary Mass -- 6 Go-Away Velocity</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7 Ratio of Escape and Orbital VelocitiesCHAPTER 4. Physical Reasoning in Mathematics -- CHAPTER 5. Differential Equations and Their Use in Science -- SECTION 1 FIRST EXAMPLES -- 1 Rotating Fluid -- 2 Galileo: Free Fall -- 3 Catenary -- 4 Fall with Friction -- SECTION 2 APPROXIMATE FORMULAE: POWER SERIES -- Introduction -- 1 Calculation of 3â?š28 -- 2 Fall with Friction Again -- 3 How Deep is a Well? -- 4 Pendulum: Small Oscillations -- SECTION 3 PHYSICAL ANALOGY -- SECTION 4 WHAT IS A DIFFERENTIAL EQUATION? -- 1 Example -- 2 Vector Fields</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">If you have ever wondered how the laws of nature were worked out mathematically, this is the book for you. Above all, it captures some of Pólya's excitement and vision.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082139</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Science</subfield><subfield code="x">Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Mathematics</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D008433</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Sciences</subfield><subfield code="x">Mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Mathematical & Computational.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Science</subfield><subfield code="x">Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Pólya, George.</subfield><subfield code="t">Mathematical Methods in Science.</subfield><subfield code="d">Washington : Mathematical Association of America, ©2014</subfield><subfield code="z">9780883856260</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Anneli Lax new mathematical library.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2002012009</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=452155</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3330396</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">452155</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7349808</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn775428871 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:18:14Z |
institution | BVB |
isbn | 9780883859414 0883859416 |
language | English |
oclc_num | 775428871 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge University Press, |
record_format | marc |
series | Anneli Lax new mathematical library. |
series2 | Anneli Lax New Mathematical Library ; |
spelling | Pólya, George. Mathematical Methods in Science / George Pólya. Cambridge : Cambridge University Press, 2012. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Anneli Lax New Mathematical Library ; v. 26 Title from publishers bibliographic system (viewed on 30 Jan 2012). Front Cover -- Mathematical Methods in Science -- Copyright Page -- Contents -- INTRODUCTION -- CHAPTER 1. From the History of Astronomy: Measurement and Successive Approximation -- SECTION 1 MEASUREMENT -- 1 The Tunnel -- 2 Measuring: Triangulating -- 3 How Far Away is the Moon? -- 4 Why Teach Triangulation? -- SECTION 2 ASTRONOMICAL MEASUREMENTS -- 1 Aristarchus of Samos -- 2 Radius of Earth: Eratosthenes -- 3 Rival Cosmologies -- 4 The Orbit of Venus -- 5 Tycho Brahe and Kepler -- 6 The Mars Year -- 7 The Orbit of Mars 8 A Word to the Perceptive Reader9 Newtonâ€?s Problem of a Cometâ€?s Path -- SECTION 3 SUCCESSIVE APPROXIMATION -- 1 First Application -- 2 Extraction of Square Roots -- SECTION 4 NEWTONâ€?S METHOD OF SUCCESSIVE APPROXIMATION -- 1 The General Method of Newton -- 2 Newtonâ€?s Formula -- 3 â?ša -- 4 3â?ša -- 5 5â?ša -- CHAPTER 2. From the History of Statics -- SECTION 1 STEVINUS AND ARCHIMEDES -- 1 Inclined Plane -- 2 Lever -- SECTION 2 VECTORS -- 1 Inclined Plane -- 2 Pulley -- 3 Lever -- 4 Archimedes' Application of his Law of the Lever 5 (â€?) · (â€?) = (+)6 Von Mises' Flight Triangle -- CHAPTER 3. From the History of Dynamics -- SECTION 1 GALILEO -- 1 Heavier Bodies Fall Faster? -- 2 Not Why?, But How? -- 3 How do Heavy Bodies Fall? -- 4 Dynamics of the Inclined Plane -- 5 Conservation of Energy -- 6 Law of Inertia -- 7 A Cannon Ball's Trajectory -- SECTION 2 NEWTON -- 1 Apples, Cannon Balls, and the Moon -- 2 Never Smoke Without Fire -- 3 That the Planets do Accelerate Towards the Sun -- 4 What is the Law of Universal Gravitation? 5 Uniform Circular Motion: Hamilton's Hodograph6 On Newton's Discovery of the Law of Universal Gravitation -- 7 Scientific Attitude: Verification -- 8 Hindsight and Foresight -- SECTION 3 THE PENDULUM -- 1 The Dimensions Test -- 2 Simple Pendulum's Time of Swing -- 3 Determination of g by Pendulum Experiment -- 4 The Conical Pendulum -- SECTION 4 ESCAPE VELOCITY -- 1 Go-Around Velocity -- 2 Apropos Go-Away Velocity -- 3 The Force of Gravity -- 4 That Kepler's Third Law is a Consequence of Newton's Law of Gravitation -- 5 Planetary Mass -- 6 Go-Away Velocity 7 Ratio of Escape and Orbital VelocitiesCHAPTER 4. Physical Reasoning in Mathematics -- CHAPTER 5. Differential Equations and Their Use in Science -- SECTION 1 FIRST EXAMPLES -- 1 Rotating Fluid -- 2 Galileo: Free Fall -- 3 Catenary -- 4 Fall with Friction -- SECTION 2 APPROXIMATE FORMULAE: POWER SERIES -- Introduction -- 1 Calculation of 3â?š28 -- 2 Fall with Friction Again -- 3 How Deep is a Well? -- 4 Pendulum: Small Oscillations -- SECTION 3 PHYSICAL ANALOGY -- SECTION 4 WHAT IS A DIFFERENTIAL EQUATION? -- 1 Example -- 2 Vector Fields If you have ever wondered how the laws of nature were worked out mathematically, this is the book for you. Above all, it captures some of Pólya's excitement and vision. Mathematics. http://id.loc.gov/authorities/subjects/sh85082139 Science Mathematics. Mathematics https://id.nlm.nih.gov/mesh/D008433 Mathématiques. Sciences Mathématiques. SCIENCE Physics Mathematical & Computational. bisacsh Mathematics fast Science Mathematics fast Print version: Pólya, George. Mathematical Methods in Science. Washington : Mathematical Association of America, ©2014 9780883856260 Anneli Lax new mathematical library. http://id.loc.gov/authorities/names/n2002012009 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=452155 Volltext |
spellingShingle | Pólya, George Mathematical Methods in Science / Anneli Lax new mathematical library. Front Cover -- Mathematical Methods in Science -- Copyright Page -- Contents -- INTRODUCTION -- CHAPTER 1. From the History of Astronomy: Measurement and Successive Approximation -- SECTION 1 MEASUREMENT -- 1 The Tunnel -- 2 Measuring: Triangulating -- 3 How Far Away is the Moon? -- 4 Why Teach Triangulation? -- SECTION 2 ASTRONOMICAL MEASUREMENTS -- 1 Aristarchus of Samos -- 2 Radius of Earth: Eratosthenes -- 3 Rival Cosmologies -- 4 The Orbit of Venus -- 5 Tycho Brahe and Kepler -- 6 The Mars Year -- 7 The Orbit of Mars 8 A Word to the Perceptive Reader9 Newtonâ€?s Problem of a Cometâ€?s Path -- SECTION 3 SUCCESSIVE APPROXIMATION -- 1 First Application -- 2 Extraction of Square Roots -- SECTION 4 NEWTONâ€?S METHOD OF SUCCESSIVE APPROXIMATION -- 1 The General Method of Newton -- 2 Newtonâ€?s Formula -- 3 â?ša -- 4 3â?ša -- 5 5â?ša -- CHAPTER 2. From the History of Statics -- SECTION 1 STEVINUS AND ARCHIMEDES -- 1 Inclined Plane -- 2 Lever -- SECTION 2 VECTORS -- 1 Inclined Plane -- 2 Pulley -- 3 Lever -- 4 Archimedes' Application of his Law of the Lever 5 (â€?) · (â€?) = (+)6 Von Mises' Flight Triangle -- CHAPTER 3. From the History of Dynamics -- SECTION 1 GALILEO -- 1 Heavier Bodies Fall Faster? -- 2 Not Why?, But How? -- 3 How do Heavy Bodies Fall? -- 4 Dynamics of the Inclined Plane -- 5 Conservation of Energy -- 6 Law of Inertia -- 7 A Cannon Ball's Trajectory -- SECTION 2 NEWTON -- 1 Apples, Cannon Balls, and the Moon -- 2 Never Smoke Without Fire -- 3 That the Planets do Accelerate Towards the Sun -- 4 What is the Law of Universal Gravitation? 5 Uniform Circular Motion: Hamilton's Hodograph6 On Newton's Discovery of the Law of Universal Gravitation -- 7 Scientific Attitude: Verification -- 8 Hindsight and Foresight -- SECTION 3 THE PENDULUM -- 1 The Dimensions Test -- 2 Simple Pendulum's Time of Swing -- 3 Determination of g by Pendulum Experiment -- 4 The Conical Pendulum -- SECTION 4 ESCAPE VELOCITY -- 1 Go-Around Velocity -- 2 Apropos Go-Away Velocity -- 3 The Force of Gravity -- 4 That Kepler's Third Law is a Consequence of Newton's Law of Gravitation -- 5 Planetary Mass -- 6 Go-Away Velocity 7 Ratio of Escape and Orbital VelocitiesCHAPTER 4. Physical Reasoning in Mathematics -- CHAPTER 5. Differential Equations and Their Use in Science -- SECTION 1 FIRST EXAMPLES -- 1 Rotating Fluid -- 2 Galileo: Free Fall -- 3 Catenary -- 4 Fall with Friction -- SECTION 2 APPROXIMATE FORMULAE: POWER SERIES -- Introduction -- 1 Calculation of 3â?š28 -- 2 Fall with Friction Again -- 3 How Deep is a Well? -- 4 Pendulum: Small Oscillations -- SECTION 3 PHYSICAL ANALOGY -- SECTION 4 WHAT IS A DIFFERENTIAL EQUATION? -- 1 Example -- 2 Vector Fields Mathematics. http://id.loc.gov/authorities/subjects/sh85082139 Science Mathematics. Mathematics https://id.nlm.nih.gov/mesh/D008433 Mathématiques. Sciences Mathématiques. SCIENCE Physics Mathematical & Computational. bisacsh Mathematics fast Science Mathematics fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85082139 https://id.nlm.nih.gov/mesh/D008433 |
title | Mathematical Methods in Science / |
title_auth | Mathematical Methods in Science / |
title_exact_search | Mathematical Methods in Science / |
title_full | Mathematical Methods in Science / George Pólya. |
title_fullStr | Mathematical Methods in Science / George Pólya. |
title_full_unstemmed | Mathematical Methods in Science / George Pólya. |
title_short | Mathematical Methods in Science / |
title_sort | mathematical methods in science |
topic | Mathematics. http://id.loc.gov/authorities/subjects/sh85082139 Science Mathematics. Mathematics https://id.nlm.nih.gov/mesh/D008433 Mathématiques. Sciences Mathématiques. SCIENCE Physics Mathematical & Computational. bisacsh Mathematics fast Science Mathematics fast |
topic_facet | Mathematics. Science Mathematics. Mathematics Mathématiques. Sciences Mathématiques. SCIENCE Physics Mathematical & Computational. Science Mathematics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=452155 |
work_keys_str_mv | AT polyageorge mathematicalmethodsinscience |