Groups and Their Graphs /:
The abstract nature of group theory makes its exposition, at an elementary level, difficult. The authors of the present volume have overcome this obstacle by leading the reader slowly from the concrete to the abstract, from the simple to the complex, employing effectively graphs or Cayley diagrams t...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2012.
|
Schriftenreihe: | Anneli Lax new mathematical library.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The abstract nature of group theory makes its exposition, at an elementary level, difficult. The authors of the present volume have overcome this obstacle by leading the reader slowly from the concrete to the abstract, from the simple to the complex, employing effectively graphs or Cayley diagrams to hlep the student visualize some of the structural properties of groups. Among the concrete examples of groups, the authors include groups of congruence motions and groups of permutations. A conscientious reader will acquire a good intuitive grasp of this pwerful subject. |
Beschreibung: | Title from publishers bibliographic system (viewed on 30 Jan 2012). |
Beschreibung: | 1 online resource |
ISBN: | 9780883859292 0883859297 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn775428803 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 111006s2012 enk o 001 0 eng d | ||
040 | |a COO |b eng |e pn |c COO |d N$T |d OCLCQ |d OCLCF |d CAMBR |d YDXCP |d OCLCQ |d EBLCP |d DEBSZ |d OCLCQ |d AGLDB |d ZCU |d MERUC |d OCLCQ |d VTS |d ICG |d OCLCQ |d STF |d DKC |d CUF |d OCLCQ |d AJS |d OCLCO |d RDF |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d VGM | ||
019 | |a 903621713 |a 923220023 |a 929120301 |a 1086959954 |a 1264738496 |a 1297745412 | ||
020 | |a 9780883859292 |q (electronic bk.) | ||
020 | |a 0883859297 |q (electronic bk.) | ||
035 | |a (OCoLC)775428803 |z (OCoLC)903621713 |z (OCoLC)923220023 |z (OCoLC)929120301 |z (OCoLC)1086959954 |z (OCoLC)1264738496 |z (OCoLC)1297745412 | ||
050 | 4 | |a QA171 | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512.86 | |
049 | |a MAIN | ||
100 | 1 | |a Grossman, Israel, |d 1909-2006, |e author. |0 http://id.loc.gov/authorities/names/no2010201677 | |
245 | 1 | 0 | |a Groups and Their Graphs / |c Israel Grossman, Wilhelm Magnus. |
260 | |a Cambridge : |b Cambridge University Press, |c 2012. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Anneli Lax New Mathematical Library ; |v v. 14 | |
500 | |a Title from publishers bibliographic system (viewed on 30 Jan 2012). | ||
505 | 0 | |a Front Cover -- Groups and Their Graphs -- Copyright Page -- Contents -- Preface -- Chapter 1. Introduction to Groups -- Chapter 2. Group Axioms -- Chapter 3. Examples of Groups -- Chapter 4. Multiplication Table of a Group -- Chapter 5. Generators of a Group -- Chapter 6. Graph of a Group -- Chapter 7. Definition of a Group by Generators and Relations -- Chapter 8. Subgroups -- Chapter 9. Mappings -- Chapter 10. Permutation Groups -- Chapter 11. Normal Subgroups -- Chapter 12. The Quaternion Group -- Chapter 13. Symmetric and Alternating Groups | |
505 | 8 | |a Chapter 14. Path GroupsChapter 15. Groups and Wallpaper Designs -- Appendix: Group of the Dodecahedron and the Icosahedron -- Solutions -- Bibliography -- Index | |
520 | |a The abstract nature of group theory makes its exposition, at an elementary level, difficult. The authors of the present volume have overcome this obstacle by leading the reader slowly from the concrete to the abstract, from the simple to the complex, employing effectively graphs or Cayley diagrams to hlep the student visualize some of the structural properties of groups. Among the concrete examples of groups, the authors include groups of congruence motions and groups of permutations. A conscientious reader will acquire a good intuitive grasp of this pwerful subject. | ||
650 | 0 | |a Group theory. |0 http://id.loc.gov/authorities/subjects/sh85057512 | |
650 | 0 | |a Graph theory. |0 http://id.loc.gov/authorities/subjects/sh85056471 | |
650 | 6 | |a Théorie des groupes. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Graph theory |2 fast | |
650 | 7 | |a Group theory |2 fast | |
700 | 1 | |a Grossman, Israel, |d 1909-2006. |1 https://id.oclc.org/worldcat/entity/E39PCjDgwQVY8Tf6cM7vbWYCHC |0 http://id.loc.gov/authorities/names/no2010201677 | |
700 | 1 | |a Magnus, Wilhelm, |d 1907-1990. |1 https://id.oclc.org/worldcat/entity/E39PBJfh6kPfThbhxtxcyGfg8C |0 http://id.loc.gov/authorities/names/n79055982 | |
776 | 0 | 8 | |i Print version: |a Grossman, I. |t Groups and Their Graphs. |d Washington : Mathematical Association of America, ©2014 |z 9780883856147 |
830 | 0 | |a Anneli Lax new mathematical library. |0 http://id.loc.gov/authorities/names/n2002012009 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450355 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL3330397 | ||
938 | |a EBSCOhost |b EBSC |n 450355 | ||
938 | |a YBP Library Services |b YANK |n 7349799 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn775428803 |
---|---|
_version_ | 1816881785384992768 |
adam_text | |
any_adam_object | |
author | Grossman, Israel, 1909-2006 |
author2 | Grossman, Israel, 1909-2006 Magnus, Wilhelm, 1907-1990 |
author2_role | |
author2_variant | i g ig w m wm |
author_GND | http://id.loc.gov/authorities/names/no2010201677 http://id.loc.gov/authorities/names/n79055982 |
author_facet | Grossman, Israel, 1909-2006 Grossman, Israel, 1909-2006 Magnus, Wilhelm, 1907-1990 |
author_role | aut |
author_sort | Grossman, Israel, 1909-2006 |
author_variant | i g ig |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA171 |
callnumber-raw | QA171 |
callnumber-search | QA171 |
callnumber-sort | QA 3171 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Front Cover -- Groups and Their Graphs -- Copyright Page -- Contents -- Preface -- Chapter 1. Introduction to Groups -- Chapter 2. Group Axioms -- Chapter 3. Examples of Groups -- Chapter 4. Multiplication Table of a Group -- Chapter 5. Generators of a Group -- Chapter 6. Graph of a Group -- Chapter 7. Definition of a Group by Generators and Relations -- Chapter 8. Subgroups -- Chapter 9. Mappings -- Chapter 10. Permutation Groups -- Chapter 11. Normal Subgroups -- Chapter 12. The Quaternion Group -- Chapter 13. Symmetric and Alternating Groups Chapter 14. Path GroupsChapter 15. Groups and Wallpaper Designs -- Appendix: Group of the Dodecahedron and the Icosahedron -- Solutions -- Bibliography -- Index |
ctrlnum | (OCoLC)775428803 |
dewey-full | 512.86 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.86 |
dewey-search | 512.86 |
dewey-sort | 3512.86 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03889cam a2200529Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn775428803</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">111006s2012 enk o 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">COO</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">COO</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">CAMBR</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">CUF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">RDF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">VGM</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">903621713</subfield><subfield code="a">923220023</subfield><subfield code="a">929120301</subfield><subfield code="a">1086959954</subfield><subfield code="a">1264738496</subfield><subfield code="a">1297745412</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780883859292</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0883859297</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)775428803</subfield><subfield code="z">(OCoLC)903621713</subfield><subfield code="z">(OCoLC)923220023</subfield><subfield code="z">(OCoLC)929120301</subfield><subfield code="z">(OCoLC)1086959954</subfield><subfield code="z">(OCoLC)1264738496</subfield><subfield code="z">(OCoLC)1297745412</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA171</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.86</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grossman, Israel,</subfield><subfield code="d">1909-2006,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2010201677</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Groups and Their Graphs /</subfield><subfield code="c">Israel Grossman, Wilhelm Magnus.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Anneli Lax New Mathematical Library ;</subfield><subfield code="v">v. 14</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publishers bibliographic system (viewed on 30 Jan 2012).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover -- Groups and Their Graphs -- Copyright Page -- Contents -- Preface -- Chapter 1. Introduction to Groups -- Chapter 2. Group Axioms -- Chapter 3. Examples of Groups -- Chapter 4. Multiplication Table of a Group -- Chapter 5. Generators of a Group -- Chapter 6. Graph of a Group -- Chapter 7. Definition of a Group by Generators and Relations -- Chapter 8. Subgroups -- Chapter 9. Mappings -- Chapter 10. Permutation Groups -- Chapter 11. Normal Subgroups -- Chapter 12. The Quaternion Group -- Chapter 13. Symmetric and Alternating Groups</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 14. Path GroupsChapter 15. Groups and Wallpaper Designs -- Appendix: Group of the Dodecahedron and the Icosahedron -- Solutions -- Bibliography -- Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The abstract nature of group theory makes its exposition, at an elementary level, difficult. The authors of the present volume have overcome this obstacle by leading the reader slowly from the concrete to the abstract, from the simple to the complex, employing effectively graphs or Cayley diagrams to hlep the student visualize some of the structural properties of groups. Among the concrete examples of groups, the authors include groups of congruence motions and groups of permutations. A conscientious reader will acquire a good intuitive grasp of this pwerful subject.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Group theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85057512</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Graph theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85056471</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des groupes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Graph theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Group theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grossman, Israel,</subfield><subfield code="d">1909-2006.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjDgwQVY8Tf6cM7vbWYCHC</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2010201677</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Magnus, Wilhelm,</subfield><subfield code="d">1907-1990.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJfh6kPfThbhxtxcyGfg8C</subfield><subfield code="0">http://id.loc.gov/authorities/names/n79055982</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Grossman, I.</subfield><subfield code="t">Groups and Their Graphs.</subfield><subfield code="d">Washington : Mathematical Association of America, ©2014</subfield><subfield code="z">9780883856147</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Anneli Lax new mathematical library.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2002012009</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450355</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3330397</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">450355</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7349799</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn775428803 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:18:14Z |
institution | BVB |
isbn | 9780883859292 0883859297 |
language | English |
oclc_num | 775428803 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge University Press, |
record_format | marc |
series | Anneli Lax new mathematical library. |
series2 | Anneli Lax New Mathematical Library ; |
spelling | Grossman, Israel, 1909-2006, author. http://id.loc.gov/authorities/names/no2010201677 Groups and Their Graphs / Israel Grossman, Wilhelm Magnus. Cambridge : Cambridge University Press, 2012. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Anneli Lax New Mathematical Library ; v. 14 Title from publishers bibliographic system (viewed on 30 Jan 2012). Front Cover -- Groups and Their Graphs -- Copyright Page -- Contents -- Preface -- Chapter 1. Introduction to Groups -- Chapter 2. Group Axioms -- Chapter 3. Examples of Groups -- Chapter 4. Multiplication Table of a Group -- Chapter 5. Generators of a Group -- Chapter 6. Graph of a Group -- Chapter 7. Definition of a Group by Generators and Relations -- Chapter 8. Subgroups -- Chapter 9. Mappings -- Chapter 10. Permutation Groups -- Chapter 11. Normal Subgroups -- Chapter 12. The Quaternion Group -- Chapter 13. Symmetric and Alternating Groups Chapter 14. Path GroupsChapter 15. Groups and Wallpaper Designs -- Appendix: Group of the Dodecahedron and the Icosahedron -- Solutions -- Bibliography -- Index The abstract nature of group theory makes its exposition, at an elementary level, difficult. The authors of the present volume have overcome this obstacle by leading the reader slowly from the concrete to the abstract, from the simple to the complex, employing effectively graphs or Cayley diagrams to hlep the student visualize some of the structural properties of groups. Among the concrete examples of groups, the authors include groups of congruence motions and groups of permutations. A conscientious reader will acquire a good intuitive grasp of this pwerful subject. Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Graph theory. http://id.loc.gov/authorities/subjects/sh85056471 Théorie des groupes. MATHEMATICS Algebra Intermediate. bisacsh Graph theory fast Group theory fast Grossman, Israel, 1909-2006. https://id.oclc.org/worldcat/entity/E39PCjDgwQVY8Tf6cM7vbWYCHC http://id.loc.gov/authorities/names/no2010201677 Magnus, Wilhelm, 1907-1990. https://id.oclc.org/worldcat/entity/E39PBJfh6kPfThbhxtxcyGfg8C http://id.loc.gov/authorities/names/n79055982 Print version: Grossman, I. Groups and Their Graphs. Washington : Mathematical Association of America, ©2014 9780883856147 Anneli Lax new mathematical library. http://id.loc.gov/authorities/names/n2002012009 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450355 Volltext |
spellingShingle | Grossman, Israel, 1909-2006 Groups and Their Graphs / Anneli Lax new mathematical library. Front Cover -- Groups and Their Graphs -- Copyright Page -- Contents -- Preface -- Chapter 1. Introduction to Groups -- Chapter 2. Group Axioms -- Chapter 3. Examples of Groups -- Chapter 4. Multiplication Table of a Group -- Chapter 5. Generators of a Group -- Chapter 6. Graph of a Group -- Chapter 7. Definition of a Group by Generators and Relations -- Chapter 8. Subgroups -- Chapter 9. Mappings -- Chapter 10. Permutation Groups -- Chapter 11. Normal Subgroups -- Chapter 12. The Quaternion Group -- Chapter 13. Symmetric and Alternating Groups Chapter 14. Path GroupsChapter 15. Groups and Wallpaper Designs -- Appendix: Group of the Dodecahedron and the Icosahedron -- Solutions -- Bibliography -- Index Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Graph theory. http://id.loc.gov/authorities/subjects/sh85056471 Théorie des groupes. MATHEMATICS Algebra Intermediate. bisacsh Graph theory fast Group theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85057512 http://id.loc.gov/authorities/subjects/sh85056471 |
title | Groups and Their Graphs / |
title_auth | Groups and Their Graphs / |
title_exact_search | Groups and Their Graphs / |
title_full | Groups and Their Graphs / Israel Grossman, Wilhelm Magnus. |
title_fullStr | Groups and Their Graphs / Israel Grossman, Wilhelm Magnus. |
title_full_unstemmed | Groups and Their Graphs / Israel Grossman, Wilhelm Magnus. |
title_short | Groups and Their Graphs / |
title_sort | groups and their graphs |
topic | Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Graph theory. http://id.loc.gov/authorities/subjects/sh85056471 Théorie des groupes. MATHEMATICS Algebra Intermediate. bisacsh Graph theory fast Group theory fast |
topic_facet | Group theory. Graph theory. Théorie des groupes. MATHEMATICS Algebra Intermediate. Graph theory Group theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450355 |
work_keys_str_mv | AT grossmanisrael groupsandtheirgraphs AT magnuswilhelm groupsandtheirgraphs |