From Pythagoras to Einstein /:
The main thread running through this somewhat unorthodox approach to the special theory of relativity is the Pythagorean theorem. It appears in its most elementary geometric form in the very beginning of this monograph. Then it reappears in algebraic garb, it is further modified and finally reinterp...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2012.
|
Schriftenreihe: | Anneli Lax new mathematical library.
|
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | The main thread running through this somewhat unorthodox approach to the special theory of relativity is the Pythagorean theorem. It appears in its most elementary geometric form in the very beginning of this monograph. Then it reappears in algebraic garb, it is further modified and finally reinterpreted to play the role of one of the main characters in the special theory of relativity. The first four chapters are easily accessible to high school sophomores or juniors. The remaining part of the book may be a little difficult for students who never studied physics, although the author actually employs only the notion of impact and presupposes no background in physics. With the aid of the vector geometry introduced earlier, he leads the reader from the impact conservation laws to the famous formula e=mc^2. |
Beschreibung: | Title from publishers bibliographic system (viewed on 30 Jan 2012). |
Beschreibung: | 1 online resource |
ISBN: | 9780883859315 0883859319 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn775428756 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 111024s2012 enk o 001 0 eng d | ||
040 | |a COO |b eng |e pn |c COO |d N$T |d OCLCQ |d OCLCF |d CAMBR |d YDXCP |d OCLCQ |d EBLCP |d DEBSZ |d OCLCQ |d AGLDB |d ZCU |d MERUC |d OCLCQ |d VTS |d ICG |d OCLCQ |d STF |d DKC |d OCLCQ |d AJS |d OCLCO |d RDF |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 903621764 |a 923220585 |a 929120327 |a 1011015038 |a 1086977788 | ||
020 | |a 9780883859315 |q (electronic bk.) | ||
020 | |a 0883859319 |q (electronic bk.) | ||
035 | |a (OCoLC)775428756 |z (OCoLC)903621764 |z (OCoLC)923220585 |z (OCoLC)929120327 |z (OCoLC)1011015038 |z (OCoLC)1086977788 | ||
050 | 4 | |a QA460.P8 | |
072 | 7 | |a MAT |x 012000 |2 bisacsh | |
082 | 7 | |a 516.83 | |
049 | |a MAIN | ||
100 | 1 | |a Friedrichs, K. O. | |
245 | 1 | 0 | |a From Pythagoras to Einstein / |c K.O. Friedrichs. |
260 | |a Cambridge : |b Cambridge University Press, |c 2012. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Anneli Lax New Mathematical Library ; |v v. 16 | |
500 | |a Title from publishers bibliographic system (viewed on 30 Jan 2012). | ||
505 | 0 | |a Front Cover -- From Pythagoras to Einstein -- Copyright Page -- Contents -- Preface -- Introduction -- Chapter 1. The Pythagorean Theorem -- Chapter 2. Signed Numbers -- Chapter 3. Vectors -- Chapter 4. Components and Coordinates. Spaces of Higher Dimension -- Chapter 5. Momentum and Energy. Elastic Impact -- Chapter 6. Inelastic Impact -- Chapter 7. Space and Time Measurement in the Special Theory of Relativity -- Chapter 8. Momentum and Energy in the Special Theory of Relativity. Impact -- back cover | |
520 | |a The main thread running through this somewhat unorthodox approach to the special theory of relativity is the Pythagorean theorem. It appears in its most elementary geometric form in the very beginning of this monograph. Then it reappears in algebraic garb, it is further modified and finally reinterpreted to play the role of one of the main characters in the special theory of relativity. The first four chapters are easily accessible to high school sophomores or juniors. The remaining part of the book may be a little difficult for students who never studied physics, although the author actually employs only the notion of impact and presupposes no background in physics. With the aid of the vector geometry introduced earlier, he leads the reader from the impact conservation laws to the famous formula e=mc^2. | ||
650 | 0 | |a Pythagorean theorem. |0 http://id.loc.gov/authorities/subjects/sh85109374 | |
650 | 0 | |a Dynamics. |0 http://id.loc.gov/authorities/subjects/sh85040316 | |
650 | 0 | |a Relativity (Physics) |0 http://id.loc.gov/authorities/subjects/sh85112497 | |
650 | 0 | |a Vector analysis. |0 http://id.loc.gov/authorities/subjects/sh85142449 | |
650 | 6 | |a Théorème de Pythagore. | |
650 | 6 | |a Dynamique. | |
650 | 6 | |a Relativité (Physique) | |
650 | 6 | |a Analyse vectorielle. | |
650 | 7 | |a MATHEMATICS |x Geometry |x General. |2 bisacsh | |
650 | 7 | |a Dynamics |2 fast | |
650 | 7 | |a Pythagorean theorem |2 fast | |
650 | 7 | |a Relativity (Physics) |2 fast | |
650 | 7 | |a Vector analysis |2 fast | |
776 | 0 | 8 | |i Print version: |a Friedrichs, K.O. |t From Pythagoras to Einstein. |d Washington : Mathematical Association of America, ©2014 |z 9780883856161 |
830 | 0 | |a Anneli Lax new mathematical library. |0 http://id.loc.gov/authorities/names/n2002012009 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=452150 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=452150 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL3330381 | ||
938 | |a EBSCOhost |b EBSC |n 452150 | ||
938 | |a YBP Library Services |b YANK |n 7349801 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn775428756 |
---|---|
_version_ | 1829094717811326976 |
adam_text | |
any_adam_object | |
author | Friedrichs, K. O. |
author_facet | Friedrichs, K. O. |
author_role | |
author_sort | Friedrichs, K. O. |
author_variant | k o f ko kof |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA460 |
callnumber-raw | QA460.P8 |
callnumber-search | QA460.P8 |
callnumber-sort | QA 3460 P8 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Front Cover -- From Pythagoras to Einstein -- Copyright Page -- Contents -- Preface -- Introduction -- Chapter 1. The Pythagorean Theorem -- Chapter 2. Signed Numbers -- Chapter 3. Vectors -- Chapter 4. Components and Coordinates. Spaces of Higher Dimension -- Chapter 5. Momentum and Energy. Elastic Impact -- Chapter 6. Inelastic Impact -- Chapter 7. Space and Time Measurement in the Special Theory of Relativity -- Chapter 8. Momentum and Energy in the Special Theory of Relativity. Impact -- back cover |
ctrlnum | (OCoLC)775428756 |
dewey-full | 516.83 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.83 |
dewey-search | 516.83 |
dewey-sort | 3516.83 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03845cam a2200577Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn775428756</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">111024s2012 enk o 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">COO</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">COO</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">CAMBR</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">RDF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">903621764</subfield><subfield code="a">923220585</subfield><subfield code="a">929120327</subfield><subfield code="a">1011015038</subfield><subfield code="a">1086977788</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780883859315</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0883859319</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)775428756</subfield><subfield code="z">(OCoLC)903621764</subfield><subfield code="z">(OCoLC)923220585</subfield><subfield code="z">(OCoLC)929120327</subfield><subfield code="z">(OCoLC)1011015038</subfield><subfield code="z">(OCoLC)1086977788</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA460.P8</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516.83</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Friedrichs, K. O.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">From Pythagoras to Einstein /</subfield><subfield code="c">K.O. Friedrichs.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Anneli Lax New Mathematical Library ;</subfield><subfield code="v">v. 16</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publishers bibliographic system (viewed on 30 Jan 2012).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover -- From Pythagoras to Einstein -- Copyright Page -- Contents -- Preface -- Introduction -- Chapter 1. The Pythagorean Theorem -- Chapter 2. Signed Numbers -- Chapter 3. Vectors -- Chapter 4. Components and Coordinates. Spaces of Higher Dimension -- Chapter 5. Momentum and Energy. Elastic Impact -- Chapter 6. Inelastic Impact -- Chapter 7. Space and Time Measurement in the Special Theory of Relativity -- Chapter 8. Momentum and Energy in the Special Theory of Relativity. Impact -- back cover</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The main thread running through this somewhat unorthodox approach to the special theory of relativity is the Pythagorean theorem. It appears in its most elementary geometric form in the very beginning of this monograph. Then it reappears in algebraic garb, it is further modified and finally reinterpreted to play the role of one of the main characters in the special theory of relativity. The first four chapters are easily accessible to high school sophomores or juniors. The remaining part of the book may be a little difficult for students who never studied physics, although the author actually employs only the notion of impact and presupposes no background in physics. With the aid of the vector geometry introduced earlier, he leads the reader from the impact conservation laws to the famous formula e=mc^2.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Pythagorean theorem.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85109374</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Dynamics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85040316</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Relativity (Physics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85112497</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Vector analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85142449</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorème de Pythagore.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Dynamique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Relativité (Physique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse vectorielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dynamics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pythagorean theorem</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Relativity (Physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vector analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Friedrichs, K.O.</subfield><subfield code="t">From Pythagoras to Einstein.</subfield><subfield code="d">Washington : Mathematical Association of America, ©2014</subfield><subfield code="z">9780883856161</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Anneli Lax new mathematical library.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2002012009</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=452150</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=452150</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3330381</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">452150</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7349801</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn775428756 |
illustrated | Not Illustrated |
indexdate | 2025-04-11T08:37:34Z |
institution | BVB |
isbn | 9780883859315 0883859319 |
language | English |
oclc_num | 775428756 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge University Press, |
record_format | marc |
series | Anneli Lax new mathematical library. |
series2 | Anneli Lax New Mathematical Library ; |
spelling | Friedrichs, K. O. From Pythagoras to Einstein / K.O. Friedrichs. Cambridge : Cambridge University Press, 2012. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Anneli Lax New Mathematical Library ; v. 16 Title from publishers bibliographic system (viewed on 30 Jan 2012). Front Cover -- From Pythagoras to Einstein -- Copyright Page -- Contents -- Preface -- Introduction -- Chapter 1. The Pythagorean Theorem -- Chapter 2. Signed Numbers -- Chapter 3. Vectors -- Chapter 4. Components and Coordinates. Spaces of Higher Dimension -- Chapter 5. Momentum and Energy. Elastic Impact -- Chapter 6. Inelastic Impact -- Chapter 7. Space and Time Measurement in the Special Theory of Relativity -- Chapter 8. Momentum and Energy in the Special Theory of Relativity. Impact -- back cover The main thread running through this somewhat unorthodox approach to the special theory of relativity is the Pythagorean theorem. It appears in its most elementary geometric form in the very beginning of this monograph. Then it reappears in algebraic garb, it is further modified and finally reinterpreted to play the role of one of the main characters in the special theory of relativity. The first four chapters are easily accessible to high school sophomores or juniors. The remaining part of the book may be a little difficult for students who never studied physics, although the author actually employs only the notion of impact and presupposes no background in physics. With the aid of the vector geometry introduced earlier, he leads the reader from the impact conservation laws to the famous formula e=mc^2. Pythagorean theorem. http://id.loc.gov/authorities/subjects/sh85109374 Dynamics. http://id.loc.gov/authorities/subjects/sh85040316 Relativity (Physics) http://id.loc.gov/authorities/subjects/sh85112497 Vector analysis. http://id.loc.gov/authorities/subjects/sh85142449 Théorème de Pythagore. Dynamique. Relativité (Physique) Analyse vectorielle. MATHEMATICS Geometry General. bisacsh Dynamics fast Pythagorean theorem fast Relativity (Physics) fast Vector analysis fast Print version: Friedrichs, K.O. From Pythagoras to Einstein. Washington : Mathematical Association of America, ©2014 9780883856161 Anneli Lax new mathematical library. http://id.loc.gov/authorities/names/n2002012009 |
spellingShingle | Friedrichs, K. O. From Pythagoras to Einstein / Anneli Lax new mathematical library. Front Cover -- From Pythagoras to Einstein -- Copyright Page -- Contents -- Preface -- Introduction -- Chapter 1. The Pythagorean Theorem -- Chapter 2. Signed Numbers -- Chapter 3. Vectors -- Chapter 4. Components and Coordinates. Spaces of Higher Dimension -- Chapter 5. Momentum and Energy. Elastic Impact -- Chapter 6. Inelastic Impact -- Chapter 7. Space and Time Measurement in the Special Theory of Relativity -- Chapter 8. Momentum and Energy in the Special Theory of Relativity. Impact -- back cover Pythagorean theorem. http://id.loc.gov/authorities/subjects/sh85109374 Dynamics. http://id.loc.gov/authorities/subjects/sh85040316 Relativity (Physics) http://id.loc.gov/authorities/subjects/sh85112497 Vector analysis. http://id.loc.gov/authorities/subjects/sh85142449 Théorème de Pythagore. Dynamique. Relativité (Physique) Analyse vectorielle. MATHEMATICS Geometry General. bisacsh Dynamics fast Pythagorean theorem fast Relativity (Physics) fast Vector analysis fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85109374 http://id.loc.gov/authorities/subjects/sh85040316 http://id.loc.gov/authorities/subjects/sh85112497 http://id.loc.gov/authorities/subjects/sh85142449 |
title | From Pythagoras to Einstein / |
title_auth | From Pythagoras to Einstein / |
title_exact_search | From Pythagoras to Einstein / |
title_full | From Pythagoras to Einstein / K.O. Friedrichs. |
title_fullStr | From Pythagoras to Einstein / K.O. Friedrichs. |
title_full_unstemmed | From Pythagoras to Einstein / K.O. Friedrichs. |
title_short | From Pythagoras to Einstein / |
title_sort | from pythagoras to einstein |
topic | Pythagorean theorem. http://id.loc.gov/authorities/subjects/sh85109374 Dynamics. http://id.loc.gov/authorities/subjects/sh85040316 Relativity (Physics) http://id.loc.gov/authorities/subjects/sh85112497 Vector analysis. http://id.loc.gov/authorities/subjects/sh85142449 Théorème de Pythagore. Dynamique. Relativité (Physique) Analyse vectorielle. MATHEMATICS Geometry General. bisacsh Dynamics fast Pythagorean theorem fast Relativity (Physics) fast Vector analysis fast |
topic_facet | Pythagorean theorem. Dynamics. Relativity (Physics) Vector analysis. Théorème de Pythagore. Dynamique. Relativité (Physique) Analyse vectorielle. MATHEMATICS Geometry General. Dynamics Pythagorean theorem Vector analysis |
work_keys_str_mv | AT friedrichsko frompythagorastoeinstein |