The descent map from automorphic representations of GL to classical groups /:
This book introduces the method of automorphic descent, providing an explicit inverse map to the (weak) Langlands functorial lift from generic, cuspidal representations on classical groups to general linear groups. The essence of this method is the study of certain Fourier coefficients of Gelfand-Gr...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, NJ :
World Scientific Pub.,
©2011.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book introduces the method of automorphic descent, providing an explicit inverse map to the (weak) Langlands functorial lift from generic, cuspidal representations on classical groups to general linear groups. The essence of this method is the study of certain Fourier coefficients of Gelfand-Graev type, or of Fourier-Jacobi type when applied to certain residual Eisenstein series. This book contains a complete account of this automorphic descent, with complete, detailed proofs. The book will be of interest to graduate students and mathematicians, who specialize in automorphic forms and in. |
Beschreibung: | 1 online resource (ix, 339 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 335-338) and index. |
ISBN: | 9814304999 9789814304993 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn774956314 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 120130s2011 si a ob 001 0 eng d | ||
040 | |a YDXCP |b eng |e pn |c YDXCP |d N$T |d E7B |d OCLCQ |d DEBSZ |d OCLCQ |d OCLCF |d EBLCP |d OCLCQ |d LOA |d ZCU |d MERUC |d OCLCQ |d VTS |d ICG |d INT |d OCLCQ |d STF |d DKC |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 858228212 | ||
020 | |a 9814304999 |q (electronic bk.) | ||
020 | |a 9789814304993 |q (electronic bk.) | ||
020 | |z 9789814304986 | ||
020 | |z 9814304980 | ||
035 | |a (OCoLC)774956314 |z (OCoLC)858228212 | ||
050 | 4 | |a QA246 |b .G56 2011 | |
072 | 7 | |a MAT |x 040000 |2 bisacsh | |
082 | 7 | |a 515.9 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Ginzburg, D. |q (David) |1 https://id.oclc.org/worldcat/entity/E39PCjFxm3xPvqFqFPyvdBJQjd |0 http://id.loc.gov/authorities/names/n97027151 | |
245 | 1 | 4 | |a The descent map from automorphic representations of GL to classical groups / |c David Ginzburg, Stephen Rallis, David Soudry. |
260 | |a Singapore ; |a Hackensack, NJ : |b World Scientific Pub., |c ©2011. | ||
300 | |a 1 online resource (ix, 339 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 335-338) and index. | ||
505 | 0 | |a 1. Introduction -- 2. On certain residual representations -- 3. Coefficients of Gelfand-Graev type, of Fourier-Jacobi type, and descent -- 4. Some double coset decompositions -- 5. Jacquet modules of parabolic inductions: Gelfand-Graev characters -- 6. Jacquet modules of parabolic inductions: Fourier-Jacobi characters -- 7. The tower property -- 8. Non-vanishing of the descent I -- 9. Non-vanishing of the descent II -- 10. Global genericity of the descent and global integrals -- 11. Langlands (weak) functorial lift and descent. | |
520 | |a This book introduces the method of automorphic descent, providing an explicit inverse map to the (weak) Langlands functorial lift from generic, cuspidal representations on classical groups to general linear groups. The essence of this method is the study of certain Fourier coefficients of Gelfand-Graev type, or of Fourier-Jacobi type when applied to certain residual Eisenstein series. This book contains a complete account of this automorphic descent, with complete, detailed proofs. The book will be of interest to graduate students and mathematicians, who specialize in automorphic forms and in. | ||
650 | 0 | |a L-functions. |0 http://id.loc.gov/authorities/subjects/sh85073592 | |
650 | 0 | |a Automorphic forms. |0 http://id.loc.gov/authorities/subjects/sh85010451 | |
650 | 0 | |a Representations of groups. |0 http://id.loc.gov/authorities/subjects/sh85112944 | |
650 | 6 | |a Fonctions L. | |
650 | 6 | |a Formes automorphes. | |
650 | 6 | |a Représentations de groupes. | |
650 | 7 | |a MATHEMATICS |x Complex Analysis. |2 bisacsh | |
650 | 7 | |a Automorphic forms |2 fast | |
650 | 7 | |a L-functions |2 fast | |
650 | 7 | |a Representations of groups |2 fast | |
700 | 1 | |a Rallis, Stephen, |d 1942- |1 https://id.oclc.org/worldcat/entity/E39PBJjt79GDD4Hjpv86DQV3cP |0 http://id.loc.gov/authorities/names/n80022053 | |
700 | 1 | |a Soudry, David, |d 1956- |1 https://id.oclc.org/worldcat/entity/E39PCjJTfMp4fJt9jGJHkYGd33 |0 http://id.loc.gov/authorities/names/n93045996 | |
758 | |i has work: |a The descent map from automorphic representations of GL(n) to classical groups (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFvTg8VDQ9HjmVcjhgRBj3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 9789814304986 |z 9814304980 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=426381 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL840649 | ||
938 | |a ebrary |b EBRY |n ebr10524632 | ||
938 | |a EBSCOhost |b EBSC |n 426381 | ||
938 | |a YBP Library Services |b YANK |n 7364415 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn774956314 |
---|---|
_version_ | 1816881784946688000 |
adam_text | |
any_adam_object | |
author | Ginzburg, D. (David) |
author2 | Rallis, Stephen, 1942- Soudry, David, 1956- |
author2_role | |
author2_variant | s r sr d s ds |
author_GND | http://id.loc.gov/authorities/names/n97027151 http://id.loc.gov/authorities/names/n80022053 http://id.loc.gov/authorities/names/n93045996 |
author_facet | Ginzburg, D. (David) Rallis, Stephen, 1942- Soudry, David, 1956- |
author_role | |
author_sort | Ginzburg, D. |
author_variant | d g dg |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA246 |
callnumber-raw | QA246 .G56 2011 |
callnumber-search | QA246 .G56 2011 |
callnumber-sort | QA 3246 G56 42011 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Introduction -- 2. On certain residual representations -- 3. Coefficients of Gelfand-Graev type, of Fourier-Jacobi type, and descent -- 4. Some double coset decompositions -- 5. Jacquet modules of parabolic inductions: Gelfand-Graev characters -- 6. Jacquet modules of parabolic inductions: Fourier-Jacobi characters -- 7. The tower property -- 8. Non-vanishing of the descent I -- 9. Non-vanishing of the descent II -- 10. Global genericity of the descent and global integrals -- 11. Langlands (weak) functorial lift and descent. |
ctrlnum | (OCoLC)774956314 |
dewey-full | 515.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.9 |
dewey-search | 515.9 |
dewey-sort | 3515.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03985cam a2200589Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn774956314</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">120130s2011 si a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDXCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">YDXCP</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">858228212</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814304999</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814304993</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814304986</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814304980</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)774956314</subfield><subfield code="z">(OCoLC)858228212</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA246</subfield><subfield code="b">.G56 2011</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">040000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.9</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ginzburg, D.</subfield><subfield code="q">(David)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjFxm3xPvqFqFPyvdBJQjd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n97027151</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The descent map from automorphic representations of GL to classical groups /</subfield><subfield code="c">David Ginzburg, Stephen Rallis, David Soudry.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">World Scientific Pub.,</subfield><subfield code="c">©2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 339 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 335-338) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Introduction -- 2. On certain residual representations -- 3. Coefficients of Gelfand-Graev type, of Fourier-Jacobi type, and descent -- 4. Some double coset decompositions -- 5. Jacquet modules of parabolic inductions: Gelfand-Graev characters -- 6. Jacquet modules of parabolic inductions: Fourier-Jacobi characters -- 7. The tower property -- 8. Non-vanishing of the descent I -- 9. Non-vanishing of the descent II -- 10. Global genericity of the descent and global integrals -- 11. Langlands (weak) functorial lift and descent.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book introduces the method of automorphic descent, providing an explicit inverse map to the (weak) Langlands functorial lift from generic, cuspidal representations on classical groups to general linear groups. The essence of this method is the study of certain Fourier coefficients of Gelfand-Graev type, or of Fourier-Jacobi type when applied to certain residual Eisenstein series. This book contains a complete account of this automorphic descent, with complete, detailed proofs. The book will be of interest to graduate students and mathematicians, who specialize in automorphic forms and in.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">L-functions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85073592</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Automorphic forms.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85010451</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Representations of groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85112944</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Fonctions L.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Formes automorphes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Représentations de groupes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Complex Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Automorphic forms</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">L-functions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Representations of groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rallis, Stephen,</subfield><subfield code="d">1942-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJjt79GDD4Hjpv86DQV3cP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n80022053</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Soudry, David,</subfield><subfield code="d">1956-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjJTfMp4fJt9jGJHkYGd33</subfield><subfield code="0">http://id.loc.gov/authorities/names/n93045996</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">The descent map from automorphic representations of GL(n) to classical groups (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFvTg8VDQ9HjmVcjhgRBj3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9789814304986</subfield><subfield code="z">9814304980</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=426381</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL840649</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10524632</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">426381</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7364415</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn774956314 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:18:14Z |
institution | BVB |
isbn | 9814304999 9789814304993 |
language | English |
oclc_num | 774956314 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (ix, 339 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | World Scientific Pub., |
record_format | marc |
spelling | Ginzburg, D. (David) https://id.oclc.org/worldcat/entity/E39PCjFxm3xPvqFqFPyvdBJQjd http://id.loc.gov/authorities/names/n97027151 The descent map from automorphic representations of GL to classical groups / David Ginzburg, Stephen Rallis, David Soudry. Singapore ; Hackensack, NJ : World Scientific Pub., ©2011. 1 online resource (ix, 339 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 335-338) and index. 1. Introduction -- 2. On certain residual representations -- 3. Coefficients of Gelfand-Graev type, of Fourier-Jacobi type, and descent -- 4. Some double coset decompositions -- 5. Jacquet modules of parabolic inductions: Gelfand-Graev characters -- 6. Jacquet modules of parabolic inductions: Fourier-Jacobi characters -- 7. The tower property -- 8. Non-vanishing of the descent I -- 9. Non-vanishing of the descent II -- 10. Global genericity of the descent and global integrals -- 11. Langlands (weak) functorial lift and descent. This book introduces the method of automorphic descent, providing an explicit inverse map to the (weak) Langlands functorial lift from generic, cuspidal representations on classical groups to general linear groups. The essence of this method is the study of certain Fourier coefficients of Gelfand-Graev type, or of Fourier-Jacobi type when applied to certain residual Eisenstein series. This book contains a complete account of this automorphic descent, with complete, detailed proofs. The book will be of interest to graduate students and mathematicians, who specialize in automorphic forms and in. L-functions. http://id.loc.gov/authorities/subjects/sh85073592 Automorphic forms. http://id.loc.gov/authorities/subjects/sh85010451 Representations of groups. http://id.loc.gov/authorities/subjects/sh85112944 Fonctions L. Formes automorphes. Représentations de groupes. MATHEMATICS Complex Analysis. bisacsh Automorphic forms fast L-functions fast Representations of groups fast Rallis, Stephen, 1942- https://id.oclc.org/worldcat/entity/E39PBJjt79GDD4Hjpv86DQV3cP http://id.loc.gov/authorities/names/n80022053 Soudry, David, 1956- https://id.oclc.org/worldcat/entity/E39PCjJTfMp4fJt9jGJHkYGd33 http://id.loc.gov/authorities/names/n93045996 has work: The descent map from automorphic representations of GL(n) to classical groups (Text) https://id.oclc.org/worldcat/entity/E39PCFvTg8VDQ9HjmVcjhgRBj3 https://id.oclc.org/worldcat/ontology/hasWork Print version: 9789814304986 9814304980 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=426381 Volltext |
spellingShingle | Ginzburg, D. (David) The descent map from automorphic representations of GL to classical groups / 1. Introduction -- 2. On certain residual representations -- 3. Coefficients of Gelfand-Graev type, of Fourier-Jacobi type, and descent -- 4. Some double coset decompositions -- 5. Jacquet modules of parabolic inductions: Gelfand-Graev characters -- 6. Jacquet modules of parabolic inductions: Fourier-Jacobi characters -- 7. The tower property -- 8. Non-vanishing of the descent I -- 9. Non-vanishing of the descent II -- 10. Global genericity of the descent and global integrals -- 11. Langlands (weak) functorial lift and descent. L-functions. http://id.loc.gov/authorities/subjects/sh85073592 Automorphic forms. http://id.loc.gov/authorities/subjects/sh85010451 Representations of groups. http://id.loc.gov/authorities/subjects/sh85112944 Fonctions L. Formes automorphes. Représentations de groupes. MATHEMATICS Complex Analysis. bisacsh Automorphic forms fast L-functions fast Representations of groups fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85073592 http://id.loc.gov/authorities/subjects/sh85010451 http://id.loc.gov/authorities/subjects/sh85112944 |
title | The descent map from automorphic representations of GL to classical groups / |
title_auth | The descent map from automorphic representations of GL to classical groups / |
title_exact_search | The descent map from automorphic representations of GL to classical groups / |
title_full | The descent map from automorphic representations of GL to classical groups / David Ginzburg, Stephen Rallis, David Soudry. |
title_fullStr | The descent map from automorphic representations of GL to classical groups / David Ginzburg, Stephen Rallis, David Soudry. |
title_full_unstemmed | The descent map from automorphic representations of GL to classical groups / David Ginzburg, Stephen Rallis, David Soudry. |
title_short | The descent map from automorphic representations of GL to classical groups / |
title_sort | descent map from automorphic representations of gl to classical groups |
topic | L-functions. http://id.loc.gov/authorities/subjects/sh85073592 Automorphic forms. http://id.loc.gov/authorities/subjects/sh85010451 Representations of groups. http://id.loc.gov/authorities/subjects/sh85112944 Fonctions L. Formes automorphes. Représentations de groupes. MATHEMATICS Complex Analysis. bisacsh Automorphic forms fast L-functions fast Representations of groups fast |
topic_facet | L-functions. Automorphic forms. Representations of groups. Fonctions L. Formes automorphes. Représentations de groupes. MATHEMATICS Complex Analysis. Automorphic forms L-functions Representations of groups |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=426381 |
work_keys_str_mv | AT ginzburgd thedescentmapfromautomorphicrepresentationsofgltoclassicalgroups AT rallisstephen thedescentmapfromautomorphicrepresentationsofgltoclassicalgroups AT soudrydavid thedescentmapfromautomorphicrepresentationsofgltoclassicalgroups AT ginzburgd descentmapfromautomorphicrepresentationsofgltoclassicalgroups AT rallisstephen descentmapfromautomorphicrepresentationsofgltoclassicalgroups AT soudrydavid descentmapfromautomorphicrepresentationsofgltoclassicalgroups |