Harmonic analysis method for nonlinear evolution equations, I /:
This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrödinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those...
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, NJ :
World Scientific,
©2011.
|
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrödinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods. This book is self-contained and may also be used as an advanced textbook by graduate students in analysis and PDE subjects and even ambitious undergraduate students. |
Beschreibung: | 1 online resource (xiv, 283 pages :) |
Bibliographie: | Includes bibliographical references (pages 269-280) and index. |
ISBN: | 9814360740 9789814360746 1283433990 9781283433990 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn773799256 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 120120s2011 si a ob 001 0 eng d | ||
010 | |z 2011275230 | ||
040 | |a YDXCP |b eng |e pn |c YDXCP |d N$T |d E7B |d OCLCQ |d DEBSZ |d OCLCQ |d OCLCF |d IDEBK |d CDX |d EBLCP |d OCLCQ |d AZK |d LOA |d AGLDB |d MOR |d PIFPO |d ZCU |d OTZ |d OCLCQ |d MERUC |d OCLCQ |d U3W |d STF |d WRM |d VTS |d COCUF |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d OCLCQ |d LEAUB |d DKC |d OCLCQ |d UKAHL |d UKCRE |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
016 | 7 | |a 015960134 |2 Uk | |
019 | |a 778314623 |a 817056786 |a 824106844 |a 877767902 |a 961492903 |a 962667875 |a 966194810 |a 988441814 |a 992108823 |a 994959446 |a 1037795543 |a 1038676119 |a 1055379899 |a 1064185392 |a 1081218781 |a 1153519248 | ||
020 | |a 9814360740 |q (electronic bk.) | ||
020 | |a 9789814360746 |q (electronic bk.) | ||
020 | |a 1283433990 | ||
020 | |a 9781283433990 | ||
020 | |z 9789814360739 | ||
020 | |z 9814360732 | ||
035 | |a (OCoLC)773799256 |z (OCoLC)778314623 |z (OCoLC)817056786 |z (OCoLC)824106844 |z (OCoLC)877767902 |z (OCoLC)961492903 |z (OCoLC)962667875 |z (OCoLC)966194810 |z (OCoLC)988441814 |z (OCoLC)992108823 |z (OCoLC)994959446 |z (OCoLC)1037795543 |z (OCoLC)1038676119 |z (OCoLC)1055379899 |z (OCoLC)1064185392 |z (OCoLC)1081218781 |z (OCoLC)1153519248 | ||
050 | 4 | |a QA403 |b .H37 2011 | |
072 | 7 | |a MAT |x 016000 |2 bisacsh | |
072 | 7 | |a PBKJ |2 bicssc | |
082 | 7 | |a 515.2433 |2 22 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Harmonic analysis method for nonlinear evolution equations, I / |c Baoxiang Wang, Zhaohui Huo, Chengchun Hao, Zihua Guo. |
260 | |a Singapore ; |a Hackensack, NJ : |b World Scientific, |c ©2011. | ||
300 | |a 1 online resource (xiv, 283 pages :) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 269-280) and index. | ||
505 | 0 | |a 1. Fourier multiplier, function space X [superscript]s [subscript]p, q -- 2. Navier-Stokes equation -- 3. Strichartz estimates for linear dispersive equations -- 4. Local and global wellposedness for nonlinear dispersive equations -- 5. The low regularity theory for the nonlinear dispersive equations -- 6. Frequency-uniform decomposition techniques -- 7. Conservations, Morawetz' estimates of nonlinear Schrödinger equations -- 8. Boltzmann equation without angular cutoff. | |
520 | |a This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrödinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods. This book is self-contained and may also be used as an advanced textbook by graduate students in analysis and PDE subjects and even ambitious undergraduate students. | ||
650 | 0 | |a Harmonic analysis. |0 http://id.loc.gov/authorities/subjects/sh85058939 | |
650 | 0 | |a Differential equations, Nonlinear. |0 http://id.loc.gov/authorities/subjects/sh85037906 | |
650 | 0 | |a Mathematical analysis. |0 http://id.loc.gov/authorities/subjects/sh85082116 | |
650 | 2 | |a Fourier Analysis |0 https://id.nlm.nih.gov/mesh/D005583 | |
650 | 6 | |a Analyse harmonique. | |
650 | 6 | |a Équations différentielles non linéaires. | |
650 | 6 | |a Analyse mathématique. | |
650 | 7 | |a MATHEMATICS |x Infinity. |2 bisacsh | |
650 | 7 | |a Differential equations, Nonlinear |2 fast | |
650 | 7 | |a Harmonic analysis |2 fast | |
650 | 7 | |a Mathematical analysis |2 fast | |
700 | 1 | |a Wang, Baoxiang. | |
700 | 1 | |a Huo, Zhaohui. | |
700 | 1 | |a Guo, Zihua. | |
700 | 1 | |a Hao, Chengchun. | |
758 | |i has work: |a Harmonic analysis method for nonlinear evolution equations, I (Text) |1 https://id.oclc.org/worldcat/entity/E39PCYhRCG7PmMQqFwFc4hqwBX |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 9789814360739 |z 9814360732 |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=426417 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=426417 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH25565386 | ||
938 | |a Coutts Information Services |b COUT |n 23887117 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL840682 | ||
938 | |a ebrary |b EBRY |n ebr10524626 | ||
938 | |a EBSCOhost |b EBSC |n 426417 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 343399 | ||
938 | |a YBP Library Services |b YANK |n 7073970 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn773799256 |
---|---|
_version_ | 1826941674313482240 |
adam_text | |
any_adam_object | |
author2 | Wang, Baoxiang Huo, Zhaohui Guo, Zihua Hao, Chengchun |
author2_role | |
author2_variant | b w bw z h zh z g zg c h ch |
author_facet | Wang, Baoxiang Huo, Zhaohui Guo, Zihua Hao, Chengchun |
author_sort | Wang, Baoxiang |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA403 |
callnumber-raw | QA403 .H37 2011 |
callnumber-search | QA403 .H37 2011 |
callnumber-sort | QA 3403 H37 42011 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Fourier multiplier, function space X [superscript]s [subscript]p, q -- 2. Navier-Stokes equation -- 3. Strichartz estimates for linear dispersive equations -- 4. Local and global wellposedness for nonlinear dispersive equations -- 5. The low regularity theory for the nonlinear dispersive equations -- 6. Frequency-uniform decomposition techniques -- 7. Conservations, Morawetz' estimates of nonlinear Schrödinger equations -- 8. Boltzmann equation without angular cutoff. |
ctrlnum | (OCoLC)773799256 |
dewey-full | 515.2433 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.2433 |
dewey-search | 515.2433 |
dewey-sort | 3515.2433 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04539cam a2200709Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn773799256</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">120120s2011 si a ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2011275230</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDXCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">YDXCP</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">IDEBK</subfield><subfield code="d">CDX</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFPO</subfield><subfield code="d">ZCU</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">COCUF</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">UKCRE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">015960134</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">778314623</subfield><subfield code="a">817056786</subfield><subfield code="a">824106844</subfield><subfield code="a">877767902</subfield><subfield code="a">961492903</subfield><subfield code="a">962667875</subfield><subfield code="a">966194810</subfield><subfield code="a">988441814</subfield><subfield code="a">992108823</subfield><subfield code="a">994959446</subfield><subfield code="a">1037795543</subfield><subfield code="a">1038676119</subfield><subfield code="a">1055379899</subfield><subfield code="a">1064185392</subfield><subfield code="a">1081218781</subfield><subfield code="a">1153519248</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814360740</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814360746</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283433990</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283433990</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814360739</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814360732</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)773799256</subfield><subfield code="z">(OCoLC)778314623</subfield><subfield code="z">(OCoLC)817056786</subfield><subfield code="z">(OCoLC)824106844</subfield><subfield code="z">(OCoLC)877767902</subfield><subfield code="z">(OCoLC)961492903</subfield><subfield code="z">(OCoLC)962667875</subfield><subfield code="z">(OCoLC)966194810</subfield><subfield code="z">(OCoLC)988441814</subfield><subfield code="z">(OCoLC)992108823</subfield><subfield code="z">(OCoLC)994959446</subfield><subfield code="z">(OCoLC)1037795543</subfield><subfield code="z">(OCoLC)1038676119</subfield><subfield code="z">(OCoLC)1055379899</subfield><subfield code="z">(OCoLC)1064185392</subfield><subfield code="z">(OCoLC)1081218781</subfield><subfield code="z">(OCoLC)1153519248</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA403</subfield><subfield code="b">.H37 2011</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">016000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBKJ</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.2433</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Harmonic analysis method for nonlinear evolution equations, I /</subfield><subfield code="c">Baoxiang Wang, Zhaohui Huo, Chengchun Hao, Zihua Guo.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 283 pages :)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 269-280) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Fourier multiplier, function space X [superscript]s [subscript]p, q -- 2. Navier-Stokes equation -- 3. Strichartz estimates for linear dispersive equations -- 4. Local and global wellposedness for nonlinear dispersive equations -- 5. The low regularity theory for the nonlinear dispersive equations -- 6. Frequency-uniform decomposition techniques -- 7. Conservations, Morawetz' estimates of nonlinear Schrödinger equations -- 8. Boltzmann equation without angular cutoff.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrödinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods. This book is self-contained and may also be used as an advanced textbook by graduate students in analysis and PDE subjects and even ambitious undergraduate students.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Harmonic analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85058939</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations, Nonlinear.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037906</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082116</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Fourier Analysis</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D005583</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse harmonique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations différentielles non linéaires.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Infinity.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Nonlinear</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Harmonic analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Baoxiang.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huo, Zhaohui.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Zihua.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hao, Chengchun.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Harmonic analysis method for nonlinear evolution equations, I (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCYhRCG7PmMQqFwFc4hqwBX</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9789814360739</subfield><subfield code="z">9814360732</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=426417</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=426417</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25565386</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">23887117</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL840682</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10524626</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">426417</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">343399</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7073970</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn773799256 |
illustrated | Illustrated |
indexdate | 2025-03-18T14:15:52Z |
institution | BVB |
isbn | 9814360740 9789814360746 1283433990 9781283433990 |
language | English |
oclc_num | 773799256 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (xiv, 283 pages :) |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | World Scientific, |
record_format | marc |
spelling | Harmonic analysis method for nonlinear evolution equations, I / Baoxiang Wang, Zhaohui Huo, Chengchun Hao, Zihua Guo. Singapore ; Hackensack, NJ : World Scientific, ©2011. 1 online resource (xiv, 283 pages :) text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 269-280) and index. 1. Fourier multiplier, function space X [superscript]s [subscript]p, q -- 2. Navier-Stokes equation -- 3. Strichartz estimates for linear dispersive equations -- 4. Local and global wellposedness for nonlinear dispersive equations -- 5. The low regularity theory for the nonlinear dispersive equations -- 6. Frequency-uniform decomposition techniques -- 7. Conservations, Morawetz' estimates of nonlinear Schrödinger equations -- 8. Boltzmann equation without angular cutoff. This monograph provides a comprehensive overview on a class of nonlinear evolution equations, such as nonlinear Schrödinger equations, nonlinear Klein-Gordon equations, KdV equations as well as Navier-Stokes equations and Boltzmann equations. The global wellposedness to the Cauchy problem for those equations is systematically studied by using the harmonic analysis methods. This book is self-contained and may also be used as an advanced textbook by graduate students in analysis and PDE subjects and even ambitious undergraduate students. Harmonic analysis. http://id.loc.gov/authorities/subjects/sh85058939 Differential equations, Nonlinear. http://id.loc.gov/authorities/subjects/sh85037906 Mathematical analysis. http://id.loc.gov/authorities/subjects/sh85082116 Fourier Analysis https://id.nlm.nih.gov/mesh/D005583 Analyse harmonique. Équations différentielles non linéaires. Analyse mathématique. MATHEMATICS Infinity. bisacsh Differential equations, Nonlinear fast Harmonic analysis fast Mathematical analysis fast Wang, Baoxiang. Huo, Zhaohui. Guo, Zihua. Hao, Chengchun. has work: Harmonic analysis method for nonlinear evolution equations, I (Text) https://id.oclc.org/worldcat/entity/E39PCYhRCG7PmMQqFwFc4hqwBX https://id.oclc.org/worldcat/ontology/hasWork Print version: 9789814360739 9814360732 |
spellingShingle | Harmonic analysis method for nonlinear evolution equations, I / 1. Fourier multiplier, function space X [superscript]s [subscript]p, q -- 2. Navier-Stokes equation -- 3. Strichartz estimates for linear dispersive equations -- 4. Local and global wellposedness for nonlinear dispersive equations -- 5. The low regularity theory for the nonlinear dispersive equations -- 6. Frequency-uniform decomposition techniques -- 7. Conservations, Morawetz' estimates of nonlinear Schrödinger equations -- 8. Boltzmann equation without angular cutoff. Harmonic analysis. http://id.loc.gov/authorities/subjects/sh85058939 Differential equations, Nonlinear. http://id.loc.gov/authorities/subjects/sh85037906 Mathematical analysis. http://id.loc.gov/authorities/subjects/sh85082116 Fourier Analysis https://id.nlm.nih.gov/mesh/D005583 Analyse harmonique. Équations différentielles non linéaires. Analyse mathématique. MATHEMATICS Infinity. bisacsh Differential equations, Nonlinear fast Harmonic analysis fast Mathematical analysis fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85058939 http://id.loc.gov/authorities/subjects/sh85037906 http://id.loc.gov/authorities/subjects/sh85082116 https://id.nlm.nih.gov/mesh/D005583 |
title | Harmonic analysis method for nonlinear evolution equations, I / |
title_auth | Harmonic analysis method for nonlinear evolution equations, I / |
title_exact_search | Harmonic analysis method for nonlinear evolution equations, I / |
title_full | Harmonic analysis method for nonlinear evolution equations, I / Baoxiang Wang, Zhaohui Huo, Chengchun Hao, Zihua Guo. |
title_fullStr | Harmonic analysis method for nonlinear evolution equations, I / Baoxiang Wang, Zhaohui Huo, Chengchun Hao, Zihua Guo. |
title_full_unstemmed | Harmonic analysis method for nonlinear evolution equations, I / Baoxiang Wang, Zhaohui Huo, Chengchun Hao, Zihua Guo. |
title_short | Harmonic analysis method for nonlinear evolution equations, I / |
title_sort | harmonic analysis method for nonlinear evolution equations i |
topic | Harmonic analysis. http://id.loc.gov/authorities/subjects/sh85058939 Differential equations, Nonlinear. http://id.loc.gov/authorities/subjects/sh85037906 Mathematical analysis. http://id.loc.gov/authorities/subjects/sh85082116 Fourier Analysis https://id.nlm.nih.gov/mesh/D005583 Analyse harmonique. Équations différentielles non linéaires. Analyse mathématique. MATHEMATICS Infinity. bisacsh Differential equations, Nonlinear fast Harmonic analysis fast Mathematical analysis fast |
topic_facet | Harmonic analysis. Differential equations, Nonlinear. Mathematical analysis. Fourier Analysis Analyse harmonique. Équations différentielles non linéaires. Analyse mathématique. MATHEMATICS Infinity. Differential equations, Nonlinear Harmonic analysis Mathematical analysis |
work_keys_str_mv | AT wangbaoxiang harmonicanalysismethodfornonlinearevolutionequationsi AT huozhaohui harmonicanalysismethodfornonlinearevolutionequationsi AT guozihua harmonicanalysismethodfornonlinearevolutionequationsi AT haochengchun harmonicanalysismethodfornonlinearevolutionequationsi |