Applications of unitary symmetry and combinatorics /:
This monograph is a synthesis of the theory of the pairwise coupling of the angular momenta of arbitrarily many independent systems to the total angular momentum in which the universal role of doubly stochastic matrices and their quantum-mechanical probabilistic interpretation is a major theme. A un...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, NJ :
World Scientific,
©2011.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This monograph is a synthesis of the theory of the pairwise coupling of the angular momenta of arbitrarily many independent systems to the total angular momentum in which the universal role of doubly stochastic matrices and their quantum-mechanical probabilistic interpretation is a major theme. A uniform viewpoint is presented based on the structure of binary trees. This includes a systematic method for the evaluation of all 3n-j coefficients and their relationship to cubic graphs. A number of topical subjects that emerge naturally are also developed, such as the algebra of permutation matrices, the properties of magic squares and an associated generalized Regge form, the Zeilberger counting formula for alternating sign matrices, and the Heisenberg ring problem, viewed as a composite system in which the total angular momentum is conserved. The readership is intended to be advanced graduate students and researchers interested in learning about the relationship between unitary symmetry and combinatorics and challenging unsolved problems. The many examples serve partially as exercises, but this monograph is not a textbook. It is hoped that the topics presented promote further and more rigorous developments that lead to a deeper understanding of the angular momentum properties of complex systems viewed as composite wholes. |
Beschreibung: | 1 online resource (xxxv, 344 pages) |
Bibliographie: | Includes bibliographical references (pages 327-333) and index. |
ISBN: | 9814350729 9789814350723 1283433834 9781283433839 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn773799229 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 120120s2011 si ob 001 0 eng d | ||
040 | |a YDXCP |b eng |e pn |c YDXCP |d E7B |d N$T |d OCLCQ |d DEBSZ |d OCLCQ |d OSU |d OCLCQ |d OCLCF |d IDEBK |d CDX |d EBLCP |d OCLCQ |d LOA |d AGLDB |d MOR |d PIFAG |d ZCU |d OCLCQ |d MERUC |d OCLCQ |d JBG |d COO |d U3W |d STF |d WRM |d VTS |d COCUF |d RRP |d ICG |d INT |d VT2 |d AU@ |d OCLCQ |d WYU |d TKN |d OCLCQ |d LEAUB |d DKC |d OCLCQ |d UKAHL |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
066 | |c (S | ||
019 | |a 778314600 |a 817056770 |a 824106828 |a 847509486 |a 858228500 |a 961491341 |a 1058122196 | ||
020 | |a 9814350729 |q (electronic bk.) | ||
020 | |a 9789814350723 |q (electronic bk.) | ||
020 | |a 1283433834 | ||
020 | |a 9781283433839 | ||
020 | |z 9789814350716 | ||
020 | |z 9814350710 | ||
035 | |a (OCoLC)773799229 |z (OCoLC)778314600 |z (OCoLC)817056770 |z (OCoLC)824106828 |z (OCoLC)847509486 |z (OCoLC)858228500 |z (OCoLC)961491341 |z (OCoLC)1058122196 | ||
050 | 4 | |a QC174.17.S9 |b L68 2011 | |
072 | 7 | |a SCI |x 057000 |2 bisacsh | |
072 | 7 | |a PBV |2 bicssc | |
082 | 7 | |a 530.12 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Louck, James D. | |
245 | 1 | 0 | |a Applications of unitary symmetry and combinatorics / |c James D. Louck. |
260 | |a Singapore ; |a Hackensack, NJ : |b World Scientific, |c ©2011. | ||
300 | |a 1 online resource (xxxv, 344 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 327-333) and index. | ||
505 | 0 | |6 880-01 |a Composite quantum systems -- Algebra of permutation matrices -- Doubly stochastic matrices in angular momentum theory -- Magic squares -- Alternating sign matrices -- The Heisenberg magnetic ring -- Counting formulas for compositions and partitions -- No single coupling scheme for n>̲ 5 -- Generalization of binary coupling schemes. | |
520 | |a This monograph is a synthesis of the theory of the pairwise coupling of the angular momenta of arbitrarily many independent systems to the total angular momentum in which the universal role of doubly stochastic matrices and their quantum-mechanical probabilistic interpretation is a major theme. A uniform viewpoint is presented based on the structure of binary trees. This includes a systematic method for the evaluation of all 3n-j coefficients and their relationship to cubic graphs. A number of topical subjects that emerge naturally are also developed, such as the algebra of permutation matrices, the properties of magic squares and an associated generalized Regge form, the Zeilberger counting formula for alternating sign matrices, and the Heisenberg ring problem, viewed as a composite system in which the total angular momentum is conserved. The readership is intended to be advanced graduate students and researchers interested in learning about the relationship between unitary symmetry and combinatorics and challenging unsolved problems. The many examples serve partially as exercises, but this monograph is not a textbook. It is hoped that the topics presented promote further and more rigorous developments that lead to a deeper understanding of the angular momentum properties of complex systems viewed as composite wholes. | ||
650 | 0 | |a Symmetry (Physics) |0 http://id.loc.gov/authorities/subjects/sh85131443 | |
650 | 0 | |a Combinatorial analysis. |0 http://id.loc.gov/authorities/subjects/sh85028802 | |
650 | 4 | |a Combinatorial analysis. | |
650 | 4 | |a Symmetry (Physics) | |
650 | 6 | |a Symétrie (Physique) | |
650 | 6 | |a Analyse combinatoire. | |
650 | 7 | |a SCIENCE |x Physics |x Quantum Theory. |2 bisacsh | |
650 | 7 | |a Combinatorial analysis |2 fast | |
650 | 7 | |a Symmetry (Physics) |2 fast | |
758 | |i has work: |a Applications of unitary symmetry and combinatorics (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGJTYxdjmYtF6CCTMD96jC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 9789814350716 |z 9814350710 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=426336 |3 Volltext |
880 | 0 | |6 505-00/(S |a Machine generated contents note: 1.Composite Quantum Systems -- 1.1. Introduction -- 1.2. Angular Momentum State Vectors of a Composite System -- 1.2.1. Group Actions in a Composite System -- 1.3. Standard Form of the Kronecker Direct Sum -- 1.3.1. Reduction of Kronecker Products -- 1.4. Recoupling Matrices -- 1.5. Preliminary Results on Doubly Stochastic Matrices and Permutation Matrices -- 1.6. Relationship between Doubly Stochastic Matrices and Density Matrices in Angular Momentum Theory -- 2. Algebra of Permutation Matrices -- 2.1. Introduction -- 2.2. Basis Sets of Permutation Matrices -- 2.2.1. Summary -- 3. Coordinates of A in Basis PΣn(e, p) -- 3.1. Notations -- 3.2. The A-Expansion Rule in the Basis PΣn(e, p) -- 3.3. Dual Matrices in the Basis Set Σn(e, p) -- 3.3.1. Dual Matrices for Σ3(e, p) -- 3.3.2. Dual Matrices for Σ4(e, p) -- 3.4. The General Dual Matrices in the Basis Σn(e, p) -- 3.4.1. Relation between the A-Expansion and Dual Matrices. | |
880 | 0 | |6 505-01/(S |a Contents note continued: 7.3. Strict Gelfand-Tsetlin Patterns for λ = (nn -- 1 ... 21) -- 7.3.1. Symmetries -- 7.4. Sign-Reversal-Shift Invariant Polynomials -- 7.5. The Requirement of Zeros -- 7.6. The Incidence Matrix Formulation -- 8. The Heisenberg Magnetic Ring -- 8.1. Introduction -- 8.2. Matrix Elements of H in the Uncoupled and Coupled Bases -- 8.3. Exact Solution of the Heisenberg Ring Magnet for n = 2,3,4 -- 8.4. The Heisenberg Ring Hamiltonian: Even n -- 8.4.1. Summary of Properties of Recoupling Matrices -- 8.4.2. Maximal Angular Momentum Eigenvalues -- 8.4.3. Shapes and Paths for Coupling Schemes I and II -- 8.4.4. Determination of the Shape Transformations -- 8.4.5. The Transformation Method for n = 4 -- 8.4.6. The General 3(2f -- 1) --- j Coefficients -- 8.4.7. The General 3(2f -- 1) --- j Coefficients Continued -- 8.5. The Heisenberg Ring Hamiltonian: Odd n -- 8.5.1. Matrix Representations of H -- 8.5.2. Matrix Elements of Rj2:j1: The 6f --- j Coefficients. | |
938 | |a YBP Library Services |b YANK |n 4589268 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 343383 | ||
938 | |a EBSCOhost |b EBSC |n 426336 | ||
938 | |a ebrary |b EBRY |n ebr10524594 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL840615 | ||
938 | |a Coutts Information Services |b COUT |n 23887066 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH25565360 | ||
938 | |a Internet Archive |b INAR |n applicationsofun0000louc | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn773799229 |
---|---|
_version_ | 1816881783649599488 |
adam_text | |
any_adam_object | |
author | Louck, James D. |
author_facet | Louck, James D. |
author_role | |
author_sort | Louck, James D. |
author_variant | j d l jd jdl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.17.S9 L68 2011 |
callnumber-search | QC174.17.S9 L68 2011 |
callnumber-sort | QC 3174.17 S9 L68 42011 |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Composite quantum systems -- Algebra of permutation matrices -- Doubly stochastic matrices in angular momentum theory -- Magic squares -- Alternating sign matrices -- The Heisenberg magnetic ring -- Counting formulas for compositions and partitions -- No single coupling scheme for n>̲ 5 -- Generalization of binary coupling schemes. |
ctrlnum | (OCoLC)773799229 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06644cam a2200673Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn773799229</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">120120s2011 si ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDXCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">YDXCP</subfield><subfield code="d">E7B</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OSU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">IDEBK</subfield><subfield code="d">CDX</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">COO</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">COCUF</subfield><subfield code="d">RRP</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">778314600</subfield><subfield code="a">817056770</subfield><subfield code="a">824106828</subfield><subfield code="a">847509486</subfield><subfield code="a">858228500</subfield><subfield code="a">961491341</subfield><subfield code="a">1058122196</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814350729</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814350723</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283433834</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283433839</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814350716</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814350710</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)773799229</subfield><subfield code="z">(OCoLC)778314600</subfield><subfield code="z">(OCoLC)817056770</subfield><subfield code="z">(OCoLC)824106828</subfield><subfield code="z">(OCoLC)847509486</subfield><subfield code="z">(OCoLC)858228500</subfield><subfield code="z">(OCoLC)961491341</subfield><subfield code="z">(OCoLC)1058122196</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC174.17.S9</subfield><subfield code="b">L68 2011</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">057000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBV</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Louck, James D.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applications of unitary symmetry and combinatorics /</subfield><subfield code="c">James D. Louck.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxxv, 344 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 327-333) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="6">880-01</subfield><subfield code="a">Composite quantum systems -- Algebra of permutation matrices -- Doubly stochastic matrices in angular momentum theory -- Magic squares -- Alternating sign matrices -- The Heisenberg magnetic ring -- Counting formulas for compositions and partitions -- No single coupling scheme for n>̲ 5 -- Generalization of binary coupling schemes.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This monograph is a synthesis of the theory of the pairwise coupling of the angular momenta of arbitrarily many independent systems to the total angular momentum in which the universal role of doubly stochastic matrices and their quantum-mechanical probabilistic interpretation is a major theme. A uniform viewpoint is presented based on the structure of binary trees. This includes a systematic method for the evaluation of all 3n-j coefficients and their relationship to cubic graphs. A number of topical subjects that emerge naturally are also developed, such as the algebra of permutation matrices, the properties of magic squares and an associated generalized Regge form, the Zeilberger counting formula for alternating sign matrices, and the Heisenberg ring problem, viewed as a composite system in which the total angular momentum is conserved. The readership is intended to be advanced graduate students and researchers interested in learning about the relationship between unitary symmetry and combinatorics and challenging unsolved problems. The many examples serve partially as exercises, but this monograph is not a textbook. It is hoped that the topics presented promote further and more rigorous developments that lead to a deeper understanding of the angular momentum properties of complex systems viewed as composite wholes.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Symmetry (Physics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85131443</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Combinatorial analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85028802</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetry (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Symétrie (Physique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse combinatoire.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Quantum Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combinatorial analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Symmetry (Physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Applications of unitary symmetry and combinatorics (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGJTYxdjmYtF6CCTMD96jC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9789814350716</subfield><subfield code="z">9814350710</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=426336</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="0" ind2=" "><subfield code="6">505-00/(S</subfield><subfield code="a">Machine generated contents note: 1.Composite Quantum Systems -- 1.1. Introduction -- 1.2. Angular Momentum State Vectors of a Composite System -- 1.2.1. Group Actions in a Composite System -- 1.3. Standard Form of the Kronecker Direct Sum -- 1.3.1. Reduction of Kronecker Products -- 1.4. Recoupling Matrices -- 1.5. Preliminary Results on Doubly Stochastic Matrices and Permutation Matrices -- 1.6. Relationship between Doubly Stochastic Matrices and Density Matrices in Angular Momentum Theory -- 2. Algebra of Permutation Matrices -- 2.1. Introduction -- 2.2. Basis Sets of Permutation Matrices -- 2.2.1. Summary -- 3. Coordinates of A in Basis PΣn(e, p) -- 3.1. Notations -- 3.2. The A-Expansion Rule in the Basis PΣn(e, p) -- 3.3. Dual Matrices in the Basis Set Σn(e, p) -- 3.3.1. Dual Matrices for Σ3(e, p) -- 3.3.2. Dual Matrices for Σ4(e, p) -- 3.4. The General Dual Matrices in the Basis Σn(e, p) -- 3.4.1. Relation between the A-Expansion and Dual Matrices.</subfield></datafield><datafield tag="880" ind1="0" ind2=" "><subfield code="6">505-01/(S</subfield><subfield code="a">Contents note continued: 7.3. Strict Gelfand-Tsetlin Patterns for λ = (nn -- 1 ... 21) -- 7.3.1. Symmetries -- 7.4. Sign-Reversal-Shift Invariant Polynomials -- 7.5. The Requirement of Zeros -- 7.6. The Incidence Matrix Formulation -- 8. The Heisenberg Magnetic Ring -- 8.1. Introduction -- 8.2. Matrix Elements of H in the Uncoupled and Coupled Bases -- 8.3. Exact Solution of the Heisenberg Ring Magnet for n = 2,3,4 -- 8.4. The Heisenberg Ring Hamiltonian: Even n -- 8.4.1. Summary of Properties of Recoupling Matrices -- 8.4.2. Maximal Angular Momentum Eigenvalues -- 8.4.3. Shapes and Paths for Coupling Schemes I and II -- 8.4.4. Determination of the Shape Transformations -- 8.4.5. The Transformation Method for n = 4 -- 8.4.6. The General 3(2f -- 1) --- j Coefficients -- 8.4.7. The General 3(2f -- 1) --- j Coefficients Continued -- 8.5. The Heisenberg Ring Hamiltonian: Odd n -- 8.5.1. Matrix Representations of H -- 8.5.2. Matrix Elements of Rj2:j1: The 6f --- j Coefficients.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">4589268</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">343383</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">426336</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10524594</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL840615</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">23887066</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25565360</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">applicationsofun0000louc</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn773799229 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:18:12Z |
institution | BVB |
isbn | 9814350729 9789814350723 1283433834 9781283433839 |
language | English |
oclc_num | 773799229 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xxxv, 344 pages) |
psigel | ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | World Scientific, |
record_format | marc |
spelling | Louck, James D. Applications of unitary symmetry and combinatorics / James D. Louck. Singapore ; Hackensack, NJ : World Scientific, ©2011. 1 online resource (xxxv, 344 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 327-333) and index. 880-01 Composite quantum systems -- Algebra of permutation matrices -- Doubly stochastic matrices in angular momentum theory -- Magic squares -- Alternating sign matrices -- The Heisenberg magnetic ring -- Counting formulas for compositions and partitions -- No single coupling scheme for n>̲ 5 -- Generalization of binary coupling schemes. This monograph is a synthesis of the theory of the pairwise coupling of the angular momenta of arbitrarily many independent systems to the total angular momentum in which the universal role of doubly stochastic matrices and their quantum-mechanical probabilistic interpretation is a major theme. A uniform viewpoint is presented based on the structure of binary trees. This includes a systematic method for the evaluation of all 3n-j coefficients and their relationship to cubic graphs. A number of topical subjects that emerge naturally are also developed, such as the algebra of permutation matrices, the properties of magic squares and an associated generalized Regge form, the Zeilberger counting formula for alternating sign matrices, and the Heisenberg ring problem, viewed as a composite system in which the total angular momentum is conserved. The readership is intended to be advanced graduate students and researchers interested in learning about the relationship between unitary symmetry and combinatorics and challenging unsolved problems. The many examples serve partially as exercises, but this monograph is not a textbook. It is hoped that the topics presented promote further and more rigorous developments that lead to a deeper understanding of the angular momentum properties of complex systems viewed as composite wholes. Symmetry (Physics) http://id.loc.gov/authorities/subjects/sh85131443 Combinatorial analysis. http://id.loc.gov/authorities/subjects/sh85028802 Combinatorial analysis. Symmetry (Physics) Symétrie (Physique) Analyse combinatoire. SCIENCE Physics Quantum Theory. bisacsh Combinatorial analysis fast Symmetry (Physics) fast has work: Applications of unitary symmetry and combinatorics (Text) https://id.oclc.org/worldcat/entity/E39PCGJTYxdjmYtF6CCTMD96jC https://id.oclc.org/worldcat/ontology/hasWork Print version: 9789814350716 9814350710 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=426336 Volltext 505-00/(S Machine generated contents note: 1.Composite Quantum Systems -- 1.1. Introduction -- 1.2. Angular Momentum State Vectors of a Composite System -- 1.2.1. Group Actions in a Composite System -- 1.3. Standard Form of the Kronecker Direct Sum -- 1.3.1. Reduction of Kronecker Products -- 1.4. Recoupling Matrices -- 1.5. Preliminary Results on Doubly Stochastic Matrices and Permutation Matrices -- 1.6. Relationship between Doubly Stochastic Matrices and Density Matrices in Angular Momentum Theory -- 2. Algebra of Permutation Matrices -- 2.1. Introduction -- 2.2. Basis Sets of Permutation Matrices -- 2.2.1. Summary -- 3. Coordinates of A in Basis PΣn(e, p) -- 3.1. Notations -- 3.2. The A-Expansion Rule in the Basis PΣn(e, p) -- 3.3. Dual Matrices in the Basis Set Σn(e, p) -- 3.3.1. Dual Matrices for Σ3(e, p) -- 3.3.2. Dual Matrices for Σ4(e, p) -- 3.4. The General Dual Matrices in the Basis Σn(e, p) -- 3.4.1. Relation between the A-Expansion and Dual Matrices. 505-01/(S Contents note continued: 7.3. Strict Gelfand-Tsetlin Patterns for λ = (nn -- 1 ... 21) -- 7.3.1. Symmetries -- 7.4. Sign-Reversal-Shift Invariant Polynomials -- 7.5. The Requirement of Zeros -- 7.6. The Incidence Matrix Formulation -- 8. The Heisenberg Magnetic Ring -- 8.1. Introduction -- 8.2. Matrix Elements of H in the Uncoupled and Coupled Bases -- 8.3. Exact Solution of the Heisenberg Ring Magnet for n = 2,3,4 -- 8.4. The Heisenberg Ring Hamiltonian: Even n -- 8.4.1. Summary of Properties of Recoupling Matrices -- 8.4.2. Maximal Angular Momentum Eigenvalues -- 8.4.3. Shapes and Paths for Coupling Schemes I and II -- 8.4.4. Determination of the Shape Transformations -- 8.4.5. The Transformation Method for n = 4 -- 8.4.6. The General 3(2f -- 1) --- j Coefficients -- 8.4.7. The General 3(2f -- 1) --- j Coefficients Continued -- 8.5. The Heisenberg Ring Hamiltonian: Odd n -- 8.5.1. Matrix Representations of H -- 8.5.2. Matrix Elements of Rj2:j1: The 6f --- j Coefficients. |
spellingShingle | Louck, James D. Applications of unitary symmetry and combinatorics / Composite quantum systems -- Algebra of permutation matrices -- Doubly stochastic matrices in angular momentum theory -- Magic squares -- Alternating sign matrices -- The Heisenberg magnetic ring -- Counting formulas for compositions and partitions -- No single coupling scheme for n>̲ 5 -- Generalization of binary coupling schemes. Symmetry (Physics) http://id.loc.gov/authorities/subjects/sh85131443 Combinatorial analysis. http://id.loc.gov/authorities/subjects/sh85028802 Combinatorial analysis. Symmetry (Physics) Symétrie (Physique) Analyse combinatoire. SCIENCE Physics Quantum Theory. bisacsh Combinatorial analysis fast Symmetry (Physics) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85131443 http://id.loc.gov/authorities/subjects/sh85028802 |
title | Applications of unitary symmetry and combinatorics / |
title_auth | Applications of unitary symmetry and combinatorics / |
title_exact_search | Applications of unitary symmetry and combinatorics / |
title_full | Applications of unitary symmetry and combinatorics / James D. Louck. |
title_fullStr | Applications of unitary symmetry and combinatorics / James D. Louck. |
title_full_unstemmed | Applications of unitary symmetry and combinatorics / James D. Louck. |
title_short | Applications of unitary symmetry and combinatorics / |
title_sort | applications of unitary symmetry and combinatorics |
topic | Symmetry (Physics) http://id.loc.gov/authorities/subjects/sh85131443 Combinatorial analysis. http://id.loc.gov/authorities/subjects/sh85028802 Combinatorial analysis. Symmetry (Physics) Symétrie (Physique) Analyse combinatoire. SCIENCE Physics Quantum Theory. bisacsh Combinatorial analysis fast Symmetry (Physics) fast |
topic_facet | Symmetry (Physics) Combinatorial analysis. Symétrie (Physique) Analyse combinatoire. SCIENCE Physics Quantum Theory. Combinatorial analysis |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=426336 |
work_keys_str_mv | AT louckjamesd applicationsofunitarysymmetryandcombinatorics |