Bayesian methods for ecology /:
The interest in using Bayesian methods in ecology is increasing, however many ecologists have difficulty with conducting the required analyses. McCarthy bridges that gap, using a clear and accessible style. The text also incorporates case studies to demonstrate mark-recapture analysis, development o...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, UK ; New York :
Cambridge University Press,
2007.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The interest in using Bayesian methods in ecology is increasing, however many ecologists have difficulty with conducting the required analyses. McCarthy bridges that gap, using a clear and accessible style. The text also incorporates case studies to demonstrate mark-recapture analysis, development of population models and the use of subjective judgement. The advantages of Bayesian methods, are also described here, for example, the incorporation of any relevant prior information and the ability to assess the evidence in favour of competing hypotheses. Free software is available as well as an accompanying web-site containing the data files and WinBUGS codes. Bayesian Methods for Ecology will appeal to academic researchers, upper undergraduate and graduate students of Ecology. |
Beschreibung: | 1 online resource (xiii, 296 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 282-292) and index. |
ISBN: | 9780511286445 0511286449 0511285701 9780511285707 9780511802454 0511802455 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn772458958 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 120111s2007 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d AU@ |d E7B |d IDEBK |d REDDC |d OCLCQ |d CAMBR |d OCLCQ |d YDXCP |d OCLCQ |d BUB |d OCLCQ |d HEBIS |d OCLCO |d COO |d OCLCF |d UAB |d OCLCQ |d YDX |d OCLCO |d OCLCQ |d HS0 |d OCLCA |d UKAHL |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
015 | |a GBA698400 |2 bnb | ||
016 | 7 | |a 013607662 |2 Uk | |
019 | |a 271790225 |a 648265101 |a 817936351 |a 1058031409 |a 1109292549 |a 1170858706 |a 1170974320 | ||
020 | |a 9780511286445 |q (electronic bk.) | ||
020 | |a 0511286449 |q (electronic bk.) | ||
020 | |a 0511285701 |q (electronic bk.) | ||
020 | |a 9780511285707 |q (electronic bk.) | ||
020 | |a 9780511802454 |q (electronic bk.) | ||
020 | |a 0511802455 |q (electronic bk.) | ||
020 | |z 9780521850575 | ||
020 | |z 0521850576 | ||
020 | |z 9780521615594 | ||
020 | |z 0521615593 | ||
035 | |a (OCoLC)772458958 |z (OCoLC)271790225 |z (OCoLC)648265101 |z (OCoLC)817936351 |z (OCoLC)1058031409 |z (OCoLC)1109292549 |z (OCoLC)1170858706 |z (OCoLC)1170974320 | ||
050 | 4 | |a QH541.2 |b .M38 2007eb | |
072 | 7 | |a NAT |x 010000 |2 bisacsh | |
072 | 7 | |a NAT |x 045040 |2 bisacsh | |
072 | 7 | |a SCI |x 026000 |2 bisacsh | |
072 | 7 | |a SCI |x 020000 |2 bisacsh | |
082 | 7 | |a 577.072/4 |2 22 | |
084 | |a WC 7000 |2 rvk | ||
084 | |a BIO 130f |2 stub | ||
084 | |a BIO 110f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a McCarthy, Michael A., |d 1968- |1 https://id.oclc.org/worldcat/entity/E39PBJckVFJVrJ7BtPcqcwVQv3 |0 http://id.loc.gov/authorities/names/n2006096583 | |
245 | 1 | 0 | |a Bayesian methods for ecology / |c Michael A. McCarthy. |
260 | |a Cambridge, UK ; |a New York : |b Cambridge University Press, |c 2007. | ||
300 | |a 1 online resource (xiii, 296 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
505 | 0 | |a Introduction -- Critiques of statistical methods -- Analysing averages and frequencies -- How good are the models? -- Regression and correlation -- Analysis of variance -- Case studies -- Mark-recapture analysis -- Effects of marking frogs -- Population dynamics -- Subjective priors -- Conclusion -- Appendices: A.A tutorial for running WinBUGS ; B. Probability distributions ; C. MCMC algorithms. | |
504 | |a Includes bibliographical references (pages 282-292) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a The interest in using Bayesian methods in ecology is increasing, however many ecologists have difficulty with conducting the required analyses. McCarthy bridges that gap, using a clear and accessible style. The text also incorporates case studies to demonstrate mark-recapture analysis, development of population models and the use of subjective judgement. The advantages of Bayesian methods, are also described here, for example, the incorporation of any relevant prior information and the ability to assess the evidence in favour of competing hypotheses. Free software is available as well as an accompanying web-site containing the data files and WinBUGS codes. Bayesian Methods for Ecology will appeal to academic researchers, upper undergraduate and graduate students of Ecology. | ||
650 | 0 | |a Ecology |x Research |x Statistical methods. | |
650 | 0 | |a Bayesian statistical decision theory. |0 http://id.loc.gov/authorities/subjects/sh85012506 | |
650 | 6 | |a Écologie |x Recherche |x Méthodes statistiques. | |
650 | 6 | |a Théorie de la décision bayésienne. | |
650 | 7 | |a NATURE |x Ecology. |2 bisacsh | |
650 | 7 | |a NATURE |x Ecosystems & Habitats |x Wilderness. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Environmental Science. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Life Sciences |x Ecology. |2 bisacsh | |
650 | 7 | |a Bayesian statistical decision theory |2 fast | |
650 | 7 | |a Bayes-Entscheidungstheorie |2 gnd |0 http://d-nb.info/gnd/4144220-9 | |
650 | 7 | |a Ökologie |2 gnd | |
650 | 7 | |a Bayes-Verfahren |2 gnd |0 http://d-nb.info/gnd/4204326-8 | |
758 | |i has work: |a Bayesian methods for ecology (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGMPCGd9WMb3hFcvtgc4C3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a McCarthy, Michael A., 1968- |t Bayesian methods for ecology. |d Cambridge, UK ; New York : Cambridge University Press, 2007 |z 9780521850575 |w (DLC) 2006102405 |w (OCoLC)76798224 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=206695 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH22947550 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH37559033 | ||
938 | |a ebrary |b EBRY |n ebr10178454 | ||
938 | |a EBSCOhost |b EBSC |n 206695 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 90964 | ||
938 | |a YBP Library Services |b YANK |n 7365333 | ||
938 | |a YBP Library Services |b YANK |n 9246753 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn772458958 |
---|---|
_version_ | 1816881782102949888 |
adam_text | |
any_adam_object | |
author | McCarthy, Michael A., 1968- |
author_GND | http://id.loc.gov/authorities/names/n2006096583 |
author_facet | McCarthy, Michael A., 1968- |
author_role | |
author_sort | McCarthy, Michael A., 1968- |
author_variant | m a m ma mam |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QH541 |
callnumber-raw | QH541.2 .M38 2007eb |
callnumber-search | QH541.2 .M38 2007eb |
callnumber-sort | QH 3541.2 M38 42007EB |
callnumber-subject | QH - Natural History and Biology |
classification_rvk | WC 7000 |
classification_tum | BIO 130f BIO 110f |
collection | ZDB-4-EBA |
contents | Introduction -- Critiques of statistical methods -- Analysing averages and frequencies -- How good are the models? -- Regression and correlation -- Analysis of variance -- Case studies -- Mark-recapture analysis -- Effects of marking frogs -- Population dynamics -- Subjective priors -- Conclusion -- Appendices: A.A tutorial for running WinBUGS ; B. Probability distributions ; C. MCMC algorithms. |
ctrlnum | (OCoLC)772458958 |
dewey-full | 577.072/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 577 - Ecology |
dewey-raw | 577.072/4 |
dewey-search | 577.072/4 |
dewey-sort | 3577.072 14 |
dewey-tens | 570 - Biology |
discipline | Biologie Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04954cam a2200805 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn772458958</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">120111s2007 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">AU@</subfield><subfield code="d">E7B</subfield><subfield code="d">IDEBK</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">BUB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HS0</subfield><subfield code="d">OCLCA</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA698400</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">013607662</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">271790225</subfield><subfield code="a">648265101</subfield><subfield code="a">817936351</subfield><subfield code="a">1058031409</subfield><subfield code="a">1109292549</subfield><subfield code="a">1170858706</subfield><subfield code="a">1170974320</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511286445</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511286449</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511285701</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511285707</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511802454</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511802455</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521850575</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521850576</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521615594</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521615593</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)772458958</subfield><subfield code="z">(OCoLC)271790225</subfield><subfield code="z">(OCoLC)648265101</subfield><subfield code="z">(OCoLC)817936351</subfield><subfield code="z">(OCoLC)1058031409</subfield><subfield code="z">(OCoLC)1109292549</subfield><subfield code="z">(OCoLC)1170858706</subfield><subfield code="z">(OCoLC)1170974320</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QH541.2</subfield><subfield code="b">.M38 2007eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">NAT</subfield><subfield code="x">010000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">NAT</subfield><subfield code="x">045040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">026000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">020000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">577.072/4</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 7000</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 130f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 110f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McCarthy, Michael A.,</subfield><subfield code="d">1968-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJckVFJVrJ7BtPcqcwVQv3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2006096583</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bayesian methods for ecology /</subfield><subfield code="c">Michael A. McCarthy.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, UK ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2007.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 296 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Introduction -- Critiques of statistical methods -- Analysing averages and frequencies -- How good are the models? -- Regression and correlation -- Analysis of variance -- Case studies -- Mark-recapture analysis -- Effects of marking frogs -- Population dynamics -- Subjective priors -- Conclusion -- Appendices: A.A tutorial for running WinBUGS ; B. Probability distributions ; C. MCMC algorithms.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 282-292) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The interest in using Bayesian methods in ecology is increasing, however many ecologists have difficulty with conducting the required analyses. McCarthy bridges that gap, using a clear and accessible style. The text also incorporates case studies to demonstrate mark-recapture analysis, development of population models and the use of subjective judgement. The advantages of Bayesian methods, are also described here, for example, the incorporation of any relevant prior information and the ability to assess the evidence in favour of competing hypotheses. Free software is available as well as an accompanying web-site containing the data files and WinBUGS codes. Bayesian Methods for Ecology will appeal to academic researchers, upper undergraduate and graduate students of Ecology.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Ecology</subfield><subfield code="x">Research</subfield><subfield code="x">Statistical methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Bayesian statistical decision theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85012506</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Écologie</subfield><subfield code="x">Recherche</subfield><subfield code="x">Méthodes statistiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie de la décision bayésienne.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NATURE</subfield><subfield code="x">Ecology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NATURE</subfield><subfield code="x">Ecosystems & Habitats</subfield><subfield code="x">Wilderness.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Environmental Science.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Life Sciences</subfield><subfield code="x">Ecology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bayesian statistical decision theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4144220-9</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ökologie</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bayes-Verfahren</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4204326-8</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Bayesian methods for ecology (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGMPCGd9WMb3hFcvtgc4C3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">McCarthy, Michael A., 1968-</subfield><subfield code="t">Bayesian methods for ecology.</subfield><subfield code="d">Cambridge, UK ; New York : Cambridge University Press, 2007</subfield><subfield code="z">9780521850575</subfield><subfield code="w">(DLC) 2006102405</subfield><subfield code="w">(OCoLC)76798224</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=206695</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH22947550</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH37559033</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10178454</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">206695</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">90964</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7365333</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9246753</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn772458958 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:18:11Z |
institution | BVB |
isbn | 9780511286445 0511286449 0511285701 9780511285707 9780511802454 0511802455 |
language | English |
oclc_num | 772458958 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiii, 296 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge University Press, |
record_format | marc |
spelling | McCarthy, Michael A., 1968- https://id.oclc.org/worldcat/entity/E39PBJckVFJVrJ7BtPcqcwVQv3 http://id.loc.gov/authorities/names/n2006096583 Bayesian methods for ecology / Michael A. McCarthy. Cambridge, UK ; New York : Cambridge University Press, 2007. 1 online resource (xiii, 296 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Introduction -- Critiques of statistical methods -- Analysing averages and frequencies -- How good are the models? -- Regression and correlation -- Analysis of variance -- Case studies -- Mark-recapture analysis -- Effects of marking frogs -- Population dynamics -- Subjective priors -- Conclusion -- Appendices: A.A tutorial for running WinBUGS ; B. Probability distributions ; C. MCMC algorithms. Includes bibliographical references (pages 282-292) and index. Print version record. The interest in using Bayesian methods in ecology is increasing, however many ecologists have difficulty with conducting the required analyses. McCarthy bridges that gap, using a clear and accessible style. The text also incorporates case studies to demonstrate mark-recapture analysis, development of population models and the use of subjective judgement. The advantages of Bayesian methods, are also described here, for example, the incorporation of any relevant prior information and the ability to assess the evidence in favour of competing hypotheses. Free software is available as well as an accompanying web-site containing the data files and WinBUGS codes. Bayesian Methods for Ecology will appeal to academic researchers, upper undergraduate and graduate students of Ecology. Ecology Research Statistical methods. Bayesian statistical decision theory. http://id.loc.gov/authorities/subjects/sh85012506 Écologie Recherche Méthodes statistiques. Théorie de la décision bayésienne. NATURE Ecology. bisacsh NATURE Ecosystems & Habitats Wilderness. bisacsh SCIENCE Environmental Science. bisacsh SCIENCE Life Sciences Ecology. bisacsh Bayesian statistical decision theory fast Bayes-Entscheidungstheorie gnd http://d-nb.info/gnd/4144220-9 Ökologie gnd Bayes-Verfahren gnd http://d-nb.info/gnd/4204326-8 has work: Bayesian methods for ecology (Text) https://id.oclc.org/worldcat/entity/E39PCGMPCGd9WMb3hFcvtgc4C3 https://id.oclc.org/worldcat/ontology/hasWork Print version: McCarthy, Michael A., 1968- Bayesian methods for ecology. Cambridge, UK ; New York : Cambridge University Press, 2007 9780521850575 (DLC) 2006102405 (OCoLC)76798224 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=206695 Volltext |
spellingShingle | McCarthy, Michael A., 1968- Bayesian methods for ecology / Introduction -- Critiques of statistical methods -- Analysing averages and frequencies -- How good are the models? -- Regression and correlation -- Analysis of variance -- Case studies -- Mark-recapture analysis -- Effects of marking frogs -- Population dynamics -- Subjective priors -- Conclusion -- Appendices: A.A tutorial for running WinBUGS ; B. Probability distributions ; C. MCMC algorithms. Ecology Research Statistical methods. Bayesian statistical decision theory. http://id.loc.gov/authorities/subjects/sh85012506 Écologie Recherche Méthodes statistiques. Théorie de la décision bayésienne. NATURE Ecology. bisacsh NATURE Ecosystems & Habitats Wilderness. bisacsh SCIENCE Environmental Science. bisacsh SCIENCE Life Sciences Ecology. bisacsh Bayesian statistical decision theory fast Bayes-Entscheidungstheorie gnd http://d-nb.info/gnd/4144220-9 Ökologie gnd Bayes-Verfahren gnd http://d-nb.info/gnd/4204326-8 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85012506 http://d-nb.info/gnd/4144220-9 http://d-nb.info/gnd/4204326-8 |
title | Bayesian methods for ecology / |
title_auth | Bayesian methods for ecology / |
title_exact_search | Bayesian methods for ecology / |
title_full | Bayesian methods for ecology / Michael A. McCarthy. |
title_fullStr | Bayesian methods for ecology / Michael A. McCarthy. |
title_full_unstemmed | Bayesian methods for ecology / Michael A. McCarthy. |
title_short | Bayesian methods for ecology / |
title_sort | bayesian methods for ecology |
topic | Ecology Research Statistical methods. Bayesian statistical decision theory. http://id.loc.gov/authorities/subjects/sh85012506 Écologie Recherche Méthodes statistiques. Théorie de la décision bayésienne. NATURE Ecology. bisacsh NATURE Ecosystems & Habitats Wilderness. bisacsh SCIENCE Environmental Science. bisacsh SCIENCE Life Sciences Ecology. bisacsh Bayesian statistical decision theory fast Bayes-Entscheidungstheorie gnd http://d-nb.info/gnd/4144220-9 Ökologie gnd Bayes-Verfahren gnd http://d-nb.info/gnd/4204326-8 |
topic_facet | Ecology Research Statistical methods. Bayesian statistical decision theory. Écologie Recherche Méthodes statistiques. Théorie de la décision bayésienne. NATURE Ecology. NATURE Ecosystems & Habitats Wilderness. SCIENCE Environmental Science. SCIENCE Life Sciences Ecology. Bayesian statistical decision theory Bayes-Entscheidungstheorie Ökologie Bayes-Verfahren |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=206695 |
work_keys_str_mv | AT mccarthymichaela bayesianmethodsforecology |