Convolution and Equidistribution :: Sato-Tate Theorems for Finite-Field Mellin Transforms.
Convolution and Equidistribution explores an important aspect of number theory--the theory of exponential sums over finite fields and their Mellin transforms--from a new, categorical point of view. The book presents fundamentally important results and a plethora of examples, opening up new direction...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton :
Princeton University Press,
2012.
|
Schriftenreihe: | Annals of mathematics studies ;
no. 180. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Convolution and Equidistribution explores an important aspect of number theory--the theory of exponential sums over finite fields and their Mellin transforms--from a new, categorical point of view. The book presents fundamentally important results and a plethora of examples, opening up new directions in the subject. The finite-field Mellin transform (of a function on the multiplicative group of a finite field) is defined by summing that function against variable multiplicative characters. The basic question considered in the book is how the values of the Mellin transform are distributed (in a. |
Beschreibung: | 1 online resource (213 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781400842704 1400842700 1283379961 9781283379960 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn769343171 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 111226s2012 nju ob 001 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d N$T |d YDXCP |d IDEBK |d OCLCQ |d DEBSZ |d OCLCQ |d OCLCO |d COO |d OCLCO |d OCLCF |d E7B |d CDX |d UMI |d JSTOR |d KZC |d OCLCQ |d UIU |d AGLDB |d LOA |d MERUC |d ICG |d PIFAG |d FVL |d OTZ |d ZCU |d OCLCQ |d U3W |d EZ9 |d OCLCQ |d STF |d WRM |d VTS |d CEF |d INT |d VT2 |d OCLCQ |d WYU |d LVT |d TKN |d OCLCQ |d UAB |d DKC |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d MM9 |d AJS |d OCLCQ |d OCLCO |d OCLCQ |d SFB |d OCLCQ |d OCLCO |d OCLCL |d EZC | ||
019 | |a 778432208 |a 816879877 |a 825821366 |a 1034973906 |a 1086953574 |a 1264822130 |a 1297653678 | ||
020 | |a 9781400842704 |q (electronic bk.) | ||
020 | |a 1400842700 |q (electronic bk.) | ||
020 | |a 1283379961 | ||
020 | |a 9781283379960 | ||
020 | |z 1400842700 | ||
020 | |z 9780691153308 |q (hardcover ; |q alk. paper) | ||
020 | |z 9780691153315 |q (pbk. ; |q alk. paper) | ||
020 | |z 0691153302 | ||
020 | |z 0691153310 | ||
024 | 8 | |a 9786613379962 | |
024 | 7 | |a 10.1515/9781400842704 |2 doi | |
035 | |a (OCoLC)769343171 |z (OCoLC)778432208 |z (OCoLC)816879877 |z (OCoLC)825821366 |z (OCoLC)1034973906 |z (OCoLC)1086953574 |z (OCoLC)1264822130 |z (OCoLC)1297653678 | ||
037 | |a CL0500000188 |b Safari Books Online | ||
037 | |a 22573/cttkg1h |b JSTOR | ||
050 | 4 | |a QA432 .K388 2012 | |
072 | 7 | |a MAT |x 037000 |2 bisacsh | |
072 | 7 | |a PBH |2 bicssc | |
082 | 7 | |a 515.723 | |
084 | |a SI 830 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Katz, Nicholas M. | |
245 | 1 | 0 | |a Convolution and Equidistribution : |b Sato-Tate Theorems for Finite-Field Mellin Transforms. |
260 | |a Princeton : |b Princeton University Press, |c 2012. | ||
300 | |a 1 online resource (213 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of mathematics studies ; |v no. 180 | |
588 | 0 | |a Print version record. | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Cover; Title Page; Copyright Page; Table of Contents; Introduction; Chapter 1. Overview; Chapter 2. Convolution of Perverse Sheaves; Chapter 3. Fibre Functors; Chapter 4. The Situation over a Finite Field; Chapter 5. Frobenius Conjugacy Classes; Chapter 6. Group-Theoretic Facts about Ggeom and Garith; Chapter 7. The Main Theorem; Chapter 8. Isogenies, Connectedness, and Lie-Irreducibility; Chapter 9. Autodualities and Signs; Chapter 10. A First Construction of Autodual Objects; Chapter 11. A Second Construction of Autodual Objects; Chapter 12. The Previous Construction in the Nonsplit Case. | |
505 | 8 | |a Chapter 25. G2 Examples: the Overall StrategyChapter 26. G2 Examples: Construction in Characteristic Two; Chapter 27. G2 Examples: Construction in Odd Characteristic; Chapter 28. The Situation over Z: Results; Chapter 29. The Situation over Z: Questions; Chapter 30. Appendix: Deligne's Fibre Functor; Bibliography. | |
520 | |a Convolution and Equidistribution explores an important aspect of number theory--the theory of exponential sums over finite fields and their Mellin transforms--from a new, categorical point of view. The book presents fundamentally important results and a plethora of examples, opening up new directions in the subject. The finite-field Mellin transform (of a function on the multiplicative group of a finite field) is defined by summing that function against variable multiplicative characters. The basic question considered in the book is how the values of the Mellin transform are distributed (in a. | ||
546 | |a In English. | ||
650 | 0 | |a Mellin transform. |0 http://id.loc.gov/authorities/subjects/sh85083428 | |
650 | 0 | |a Convolutions (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85031752 | |
650 | 0 | |a Sequences (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85120145 | |
650 | 6 | |a Transformation de Mellin. | |
650 | 6 | |a Convolutions (Mathématiques) | |
650 | 6 | |a Suites (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Functional Analysis. |2 bisacsh | |
650 | 7 | |a Convolutions (Mathematics) |2 fast | |
650 | 7 | |a Mellin transform |2 fast | |
650 | 7 | |a Sequences (Mathematics) |2 fast | |
655 | 7 | |a dissertations. |2 aat | |
655 | 7 | |a Academic theses |2 fast | |
655 | 7 | |a Academic theses. |2 lcgft |0 http://id.loc.gov/authorities/genreForms/gf2014026039 | |
655 | 7 | |a Thèses et écrits académiques. |2 rvmgf | |
758 | |i has work: |a Convolution and equidistribution (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFWpf49DthTjX68X4XJHJC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Katz, Nicholas M. |t Convolution and Equidistribution : Sato-Tate Theorems for Finite-Field Mellin Transforms. |d Princeton : Princeton University Press, ©2012 |z 9780691153315 |
830 | 0 | |a Annals of mathematics studies ; |v no. 180. |0 http://id.loc.gov/authorities/names/n42002129 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=421488 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH23067672 | ||
938 | |a Coutts Information Services |b COUT |n 20454930 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL827807 | ||
938 | |a ebrary |b EBRY |n ebr10521872 | ||
938 | |a EBSCOhost |b EBSC |n 421488 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 337996 | ||
938 | |a YBP Library Services |b YANK |n 7305854 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn769343171 |
---|---|
_version_ | 1816881781145600000 |
adam_text | |
any_adam_object | |
author | Katz, Nicholas M. |
author_facet | Katz, Nicholas M. |
author_role | |
author_sort | Katz, Nicholas M. |
author_variant | n m k nm nmk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA432 |
callnumber-raw | QA432 .K388 2012 |
callnumber-search | QA432 .K388 2012 |
callnumber-sort | QA 3432 K388 42012 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 830 |
collection | ZDB-4-EBA |
contents | Cover; Title Page; Copyright Page; Table of Contents; Introduction; Chapter 1. Overview; Chapter 2. Convolution of Perverse Sheaves; Chapter 3. Fibre Functors; Chapter 4. The Situation over a Finite Field; Chapter 5. Frobenius Conjugacy Classes; Chapter 6. Group-Theoretic Facts about Ggeom and Garith; Chapter 7. The Main Theorem; Chapter 8. Isogenies, Connectedness, and Lie-Irreducibility; Chapter 9. Autodualities and Signs; Chapter 10. A First Construction of Autodual Objects; Chapter 11. A Second Construction of Autodual Objects; Chapter 12. The Previous Construction in the Nonsplit Case. Chapter 25. G2 Examples: the Overall StrategyChapter 26. G2 Examples: Construction in Characteristic Two; Chapter 27. G2 Examples: Construction in Odd Characteristic; Chapter 28. The Situation over Z: Results; Chapter 29. The Situation over Z: Questions; Chapter 30. Appendix: Deligne's Fibre Functor; Bibliography. |
ctrlnum | (OCoLC)769343171 |
dewey-full | 515.723 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.723 |
dewey-search | 515.723 |
dewey-sort | 3515.723 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05455cam a2200841Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn769343171</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|---|||||</controlfield><controlfield tag="008">111226s2012 nju ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">E7B</subfield><subfield code="d">CDX</subfield><subfield code="d">UMI</subfield><subfield code="d">JSTOR</subfield><subfield code="d">KZC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UIU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">LOA</subfield><subfield code="d">MERUC</subfield><subfield code="d">ICG</subfield><subfield code="d">PIFAG</subfield><subfield code="d">FVL</subfield><subfield code="d">OTZ</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">EZ9</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">CEF</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MM9</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">EZC</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">778432208</subfield><subfield code="a">816879877</subfield><subfield code="a">825821366</subfield><subfield code="a">1034973906</subfield><subfield code="a">1086953574</subfield><subfield code="a">1264822130</subfield><subfield code="a">1297653678</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400842704</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400842700</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283379961</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283379960</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1400842700</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691153308</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691153315</subfield><subfield code="q">(pbk. ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691153302</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691153310</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">9786613379962</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400842704</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)769343171</subfield><subfield code="z">(OCoLC)778432208</subfield><subfield code="z">(OCoLC)816879877</subfield><subfield code="z">(OCoLC)825821366</subfield><subfield code="z">(OCoLC)1034973906</subfield><subfield code="z">(OCoLC)1086953574</subfield><subfield code="z">(OCoLC)1264822130</subfield><subfield code="z">(OCoLC)1297653678</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000188</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/cttkg1h</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA432 .K388 2012</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">037000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBH</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.723</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Katz, Nicholas M.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convolution and Equidistribution :</subfield><subfield code="b">Sato-Tate Theorems for Finite-Field Mellin Transforms.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (213 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">no. 180</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title Page; Copyright Page; Table of Contents; Introduction; Chapter 1. Overview; Chapter 2. Convolution of Perverse Sheaves; Chapter 3. Fibre Functors; Chapter 4. The Situation over a Finite Field; Chapter 5. Frobenius Conjugacy Classes; Chapter 6. Group-Theoretic Facts about Ggeom and Garith; Chapter 7. The Main Theorem; Chapter 8. Isogenies, Connectedness, and Lie-Irreducibility; Chapter 9. Autodualities and Signs; Chapter 10. A First Construction of Autodual Objects; Chapter 11. A Second Construction of Autodual Objects; Chapter 12. The Previous Construction in the Nonsplit Case.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 25. G2 Examples: the Overall StrategyChapter 26. G2 Examples: Construction in Characteristic Two; Chapter 27. G2 Examples: Construction in Odd Characteristic; Chapter 28. The Situation over Z: Results; Chapter 29. The Situation over Z: Questions; Chapter 30. Appendix: Deligne's Fibre Functor; Bibliography.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Convolution and Equidistribution explores an important aspect of number theory--the theory of exponential sums over finite fields and their Mellin transforms--from a new, categorical point of view. The book presents fundamentally important results and a plethora of examples, opening up new directions in the subject. The finite-field Mellin transform (of a function on the multiplicative group of a finite field) is defined by summing that function against variable multiplicative characters. The basic question considered in the book is how the values of the Mellin transform are distributed (in a.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mellin transform.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85083428</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Convolutions (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85031752</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Sequences (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85120145</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Transformation de Mellin.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Convolutions (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Suites (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Functional Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Convolutions (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mellin transform</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sequences (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">dissertations.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Academic theses</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Academic theses.</subfield><subfield code="2">lcgft</subfield><subfield code="0">http://id.loc.gov/authorities/genreForms/gf2014026039</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Thèses et écrits académiques.</subfield><subfield code="2">rvmgf</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Convolution and equidistribution (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFWpf49DthTjX68X4XJHJC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Katz, Nicholas M.</subfield><subfield code="t">Convolution and Equidistribution : Sato-Tate Theorems for Finite-Field Mellin Transforms.</subfield><subfield code="d">Princeton : Princeton University Press, ©2012</subfield><subfield code="z">9780691153315</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">no. 180.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42002129</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=421488</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH23067672</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">20454930</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL827807</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10521872</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">421488</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">337996</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7305854</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | dissertations. aat Academic theses fast Academic theses. lcgft http://id.loc.gov/authorities/genreForms/gf2014026039 Thèses et écrits académiques. rvmgf |
genre_facet | dissertations. Academic theses Academic theses. Thèses et écrits académiques. |
id | ZDB-4-EBA-ocn769343171 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:18:10Z |
institution | BVB |
isbn | 9781400842704 1400842700 1283379961 9781283379960 |
language | English |
oclc_num | 769343171 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (213 pages) |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Princeton University Press, |
record_format | marc |
series | Annals of mathematics studies ; |
series2 | Annals of mathematics studies ; |
spelling | Katz, Nicholas M. Convolution and Equidistribution : Sato-Tate Theorems for Finite-Field Mellin Transforms. Princeton : Princeton University Press, 2012. 1 online resource (213 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Annals of mathematics studies ; no. 180 Print version record. Includes bibliographical references and index. Cover; Title Page; Copyright Page; Table of Contents; Introduction; Chapter 1. Overview; Chapter 2. Convolution of Perverse Sheaves; Chapter 3. Fibre Functors; Chapter 4. The Situation over a Finite Field; Chapter 5. Frobenius Conjugacy Classes; Chapter 6. Group-Theoretic Facts about Ggeom and Garith; Chapter 7. The Main Theorem; Chapter 8. Isogenies, Connectedness, and Lie-Irreducibility; Chapter 9. Autodualities and Signs; Chapter 10. A First Construction of Autodual Objects; Chapter 11. A Second Construction of Autodual Objects; Chapter 12. The Previous Construction in the Nonsplit Case. Chapter 25. G2 Examples: the Overall StrategyChapter 26. G2 Examples: Construction in Characteristic Two; Chapter 27. G2 Examples: Construction in Odd Characteristic; Chapter 28. The Situation over Z: Results; Chapter 29. The Situation over Z: Questions; Chapter 30. Appendix: Deligne's Fibre Functor; Bibliography. Convolution and Equidistribution explores an important aspect of number theory--the theory of exponential sums over finite fields and their Mellin transforms--from a new, categorical point of view. The book presents fundamentally important results and a plethora of examples, opening up new directions in the subject. The finite-field Mellin transform (of a function on the multiplicative group of a finite field) is defined by summing that function against variable multiplicative characters. The basic question considered in the book is how the values of the Mellin transform are distributed (in a. In English. Mellin transform. http://id.loc.gov/authorities/subjects/sh85083428 Convolutions (Mathematics) http://id.loc.gov/authorities/subjects/sh85031752 Sequences (Mathematics) http://id.loc.gov/authorities/subjects/sh85120145 Transformation de Mellin. Convolutions (Mathématiques) Suites (Mathématiques) MATHEMATICS Functional Analysis. bisacsh Convolutions (Mathematics) fast Mellin transform fast Sequences (Mathematics) fast dissertations. aat Academic theses fast Academic theses. lcgft http://id.loc.gov/authorities/genreForms/gf2014026039 Thèses et écrits académiques. rvmgf has work: Convolution and equidistribution (Text) https://id.oclc.org/worldcat/entity/E39PCFWpf49DthTjX68X4XJHJC https://id.oclc.org/worldcat/ontology/hasWork Print version: Katz, Nicholas M. Convolution and Equidistribution : Sato-Tate Theorems for Finite-Field Mellin Transforms. Princeton : Princeton University Press, ©2012 9780691153315 Annals of mathematics studies ; no. 180. http://id.loc.gov/authorities/names/n42002129 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=421488 Volltext |
spellingShingle | Katz, Nicholas M. Convolution and Equidistribution : Sato-Tate Theorems for Finite-Field Mellin Transforms. Annals of mathematics studies ; Cover; Title Page; Copyright Page; Table of Contents; Introduction; Chapter 1. Overview; Chapter 2. Convolution of Perverse Sheaves; Chapter 3. Fibre Functors; Chapter 4. The Situation over a Finite Field; Chapter 5. Frobenius Conjugacy Classes; Chapter 6. Group-Theoretic Facts about Ggeom and Garith; Chapter 7. The Main Theorem; Chapter 8. Isogenies, Connectedness, and Lie-Irreducibility; Chapter 9. Autodualities and Signs; Chapter 10. A First Construction of Autodual Objects; Chapter 11. A Second Construction of Autodual Objects; Chapter 12. The Previous Construction in the Nonsplit Case. Chapter 25. G2 Examples: the Overall StrategyChapter 26. G2 Examples: Construction in Characteristic Two; Chapter 27. G2 Examples: Construction in Odd Characteristic; Chapter 28. The Situation over Z: Results; Chapter 29. The Situation over Z: Questions; Chapter 30. Appendix: Deligne's Fibre Functor; Bibliography. Mellin transform. http://id.loc.gov/authorities/subjects/sh85083428 Convolutions (Mathematics) http://id.loc.gov/authorities/subjects/sh85031752 Sequences (Mathematics) http://id.loc.gov/authorities/subjects/sh85120145 Transformation de Mellin. Convolutions (Mathématiques) Suites (Mathématiques) MATHEMATICS Functional Analysis. bisacsh Convolutions (Mathematics) fast Mellin transform fast Sequences (Mathematics) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85083428 http://id.loc.gov/authorities/subjects/sh85031752 http://id.loc.gov/authorities/subjects/sh85120145 http://id.loc.gov/authorities/genreForms/gf2014026039 |
title | Convolution and Equidistribution : Sato-Tate Theorems for Finite-Field Mellin Transforms. |
title_auth | Convolution and Equidistribution : Sato-Tate Theorems for Finite-Field Mellin Transforms. |
title_exact_search | Convolution and Equidistribution : Sato-Tate Theorems for Finite-Field Mellin Transforms. |
title_full | Convolution and Equidistribution : Sato-Tate Theorems for Finite-Field Mellin Transforms. |
title_fullStr | Convolution and Equidistribution : Sato-Tate Theorems for Finite-Field Mellin Transforms. |
title_full_unstemmed | Convolution and Equidistribution : Sato-Tate Theorems for Finite-Field Mellin Transforms. |
title_short | Convolution and Equidistribution : |
title_sort | convolution and equidistribution sato tate theorems for finite field mellin transforms |
title_sub | Sato-Tate Theorems for Finite-Field Mellin Transforms. |
topic | Mellin transform. http://id.loc.gov/authorities/subjects/sh85083428 Convolutions (Mathematics) http://id.loc.gov/authorities/subjects/sh85031752 Sequences (Mathematics) http://id.loc.gov/authorities/subjects/sh85120145 Transformation de Mellin. Convolutions (Mathématiques) Suites (Mathématiques) MATHEMATICS Functional Analysis. bisacsh Convolutions (Mathematics) fast Mellin transform fast Sequences (Mathematics) fast |
topic_facet | Mellin transform. Convolutions (Mathematics) Sequences (Mathematics) Transformation de Mellin. Convolutions (Mathématiques) Suites (Mathématiques) MATHEMATICS Functional Analysis. Mellin transform dissertations. Academic theses Academic theses. Thèses et écrits académiques. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=421488 |
work_keys_str_mv | AT katznicholasm convolutionandequidistributionsatotatetheoremsforfinitefieldmellintransforms |