Forcing with Random Variables and Proof Complexity.:
A model-theoretic approach to bounded arithmetic and propositional proof complexity.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2010.
|
Schriftenreihe: | London Mathematical Society Lecture Note Series, 382.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | A model-theoretic approach to bounded arithmetic and propositional proof complexity. |
Beschreibung: | 19 PHP principle. |
Beschreibung: | 1 online resource (266 pages) |
Bibliographie: | Includes bibliographical references (pages 236-242) and indexes. |
ISBN: | 9781139117333 1139117335 9781139127998 1139127993 9781139115162 1139115162 9781139107211 1139107216 |
Internformat
MARC
LEADER | 00000cam a2200000Mu 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn769341802 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 111226s2010 enk ob 001 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d OCLCQ |d IDEBK |d CUY |d OCLCQ |d OCLCO |d DEBSZ |d OCLCQ |d OCLCO |d OCLCF |d N$T |d CDX |d YDXCP |d E7B |d REDDC |d CAMBR |d OCLCQ |d LUN |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 759007187 |a 771910411 |a 817914316 |a 1167197724 |a 1264731639 | ||
020 | |a 9781139117333 | ||
020 | |a 1139117335 | ||
020 | |a 9781139127998 |q (electronic bk.) | ||
020 | |a 1139127993 |q (electronic bk.) | ||
020 | |a 9781139115162 | ||
020 | |a 1139115162 | ||
020 | |a 9781139107211 |q (electronic bk.) | ||
020 | |a 1139107216 |q (electronic bk.) | ||
020 | |z 9780521154338 | ||
020 | |z 0521154332 | ||
024 | 8 | |a 9786613296108 | |
035 | |a (OCoLC)769341802 |z (OCoLC)759007187 |z (OCoLC)771910411 |z (OCoLC)817914316 |z (OCoLC)1167197724 |z (OCoLC)1264731639 | ||
037 | |a 329610 |b MIL | ||
050 | 4 | |a QA267.7 .K73 2011 | |
072 | 7 | |a MAT |x 016000 |2 bisacsh | |
072 | 7 | |a MAT |x 018000 |2 bisacsh | |
082 | 7 | |a 511.36 | |
049 | |a MAIN | ||
100 | 1 | |a Krajícek, Jan. | |
245 | 1 | 0 | |a Forcing with Random Variables and Proof Complexity. |
260 | |a Cambridge : |b Cambridge University Press, |c 2010. | ||
300 | |a 1 online resource (266 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society Lecture Note Series, 382 ; |v v. 382 | |
505 | 0 | |a Cover; Title; Copyright; Dedication; Contents; Preface; Acknowledgment; Introduction; Organization of the book; Remarks on the literature; Background; Part I Basics; 1 The definition of the models; 1.1 The ambient model of arithmetic; 1.2 The Boolean algebras; 1.3 The models K(F); 1.4 Valid sentences; 1.5 Possible generalizations; 2 Measure on B; 2.1 A metric on B; 2.2 From Boolean value to probability; 3 Witnessing quantifiers; 3.1 Propositional approximation of truth values; 3.2 Witnessing in definable families; 3.3 Definition by cases by open formulas; 3.4 Compact families. | |
505 | 8 | |a 3.5 Propositional computation of truth values4 The truth in N and the validity in K(F); Part II Second-order structures; 5 Structures K(F, G); 5.1 Language L2 and the hierarchy of bounded formulas; 5.2 Cut Mn, languages Ln and L2n; 5.3 Definition of the structures; 5.4 Equality of functions, extensionality and possible generalizations; 5.5 Absoluteness of ASb8-sentences of language Ln; Part III AC0 world; 6 Theories I?0, I?0(R) and V01; 7 Shallow Boolean decision tree model; 7.1 Family Frud; 7.2 Family Grud; 7.3 Properties of Frud and Grud; 8 Open comprehension and open induction. | |
505 | 8 | |a 8.1 The ((. . .)) notation8.2 Open comprehension in K(Frud, Grud); 8.3 Open induction in K(Frud, Grud); 8.4 Short open induction; 9 Comprehension and induction via quantifier elimination; 9.1 Bounded quantifier elimination; 9.2 Skolem functions in K(F, G) and quantifierelimination; 9.3 Comprehension and induction for S01,b-formulas; 10 Skolem functions, switching lemma; 10.1 Switching lemma; 10.2 Tree model K(Ftree, Gtree); 11 Quantifier elimination in K(Ftree, Gtree); 11.1 Skolem functions; 11.2 Comprehension and induction for S01,b-formulas. | |
505 | 8 | |a 12 Witnessing, independence and definability in V0112.1 Witnessing AX <x EY <x S01,b-formulas; 12.2 Preservation of true sp11,b-sentences; 12.3 Circuit lower bound for parity; Part IV AC0(2) world; 13 Theory Q2V01; 13.1 Q2 quantifier and theory Q2V01; 13.2 Interpreting Q2 in structures; 14 Algebraic model; 14.1 Family Falg; 14.2 Family Galg; 14.3 Open comprehension and open induction; 15 Quantifier elimination and the interpretation of Q2; 15.1 Skolemization and the Razborov -- Smolensky method; 15.2 Interpretation of Q2 in front of an open formula. | |
505 | 8 | |a 15.3 Elimination of quantifiers and the interpretation of the Q2 quantifier15.4 Comprehension and induction for Q21,b0-formulas; 16 Witnessing and independence in Q2V01; 16.1 Witnessing AX <xEY <xA Z <xS01,b-formulas; 16.2 Preservation of true sp11,b-sentences; Part V Towards proof complexity; 17 Propositional proof systems; 17.1 Frege and Extended Frege systems; 17.2 Language with connective and constant-depth Frege systems; 18 Lengths-of-proofs lower bounds; 18.1 Formalization of the provability predicate; 18.2 Reflection principles; 18.3 Three conditions for a lower bound. | |
500 | |a 19 PHP principle. | ||
520 | |a A model-theoretic approach to bounded arithmetic and propositional proof complexity. | ||
588 | 0 | |a Print version record. | |
504 | |a Includes bibliographical references (pages 236-242) and indexes. | ||
650 | 0 | |a Computational complexity. |0 http://id.loc.gov/authorities/subjects/sh85029473 | |
650 | 0 | |a Random variables. |0 http://id.loc.gov/authorities/subjects/sh85111355 | |
650 | 0 | |a Mathematical analysis. |0 http://id.loc.gov/authorities/subjects/sh85082116 | |
650 | 6 | |a Complexité de calcul (Informatique) | |
650 | 6 | |a Variables aléatoires. | |
650 | 6 | |a Analyse mathématique. | |
650 | 7 | |a MATHEMATICS |x Infinity. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Logic. |2 bisacsh | |
650 | 7 | |a Computational complexity |2 fast | |
650 | 7 | |a Mathematical analysis |2 fast | |
650 | 7 | |a Random variables |2 fast | |
776 | 0 | 8 | |i Print version: |a Krajícek, Jan. |t Forcing with Random Variables and Proof Complexity. |d Cambridge : Cambridge University Press, ©2010 |z 9780521154338 |
830 | 0 | |a London Mathematical Society Lecture Note Series, 382. | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399278 |3 Volltext |
938 | |a Coutts Information Services |b COUT |n 19724670 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL775090 | ||
938 | |a ebrary |b EBRY |n ebr10502652 | ||
938 | |a EBSCOhost |b EBSC |n 399278 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 329610 | ||
938 | |a YBP Library Services |b YANK |n 7236512 | ||
938 | |a YBP Library Services |b YANK |n 7205463 | ||
938 | |a YBP Library Services |b YANK |n 7302907 | ||
938 | |a YBP Library Services |b YANK |n 7365720 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn769341802 |
---|---|
_version_ | 1816881780917010432 |
adam_text | |
any_adam_object | |
author | Krajícek, Jan |
author_facet | Krajícek, Jan |
author_role | |
author_sort | Krajícek, Jan |
author_variant | j k jk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA267 |
callnumber-raw | QA267.7 .K73 2011 |
callnumber-search | QA267.7 .K73 2011 |
callnumber-sort | QA 3267.7 K73 42011 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Dedication; Contents; Preface; Acknowledgment; Introduction; Organization of the book; Remarks on the literature; Background; Part I Basics; 1 The definition of the models; 1.1 The ambient model of arithmetic; 1.2 The Boolean algebras; 1.3 The models K(F); 1.4 Valid sentences; 1.5 Possible generalizations; 2 Measure on B; 2.1 A metric on B; 2.2 From Boolean value to probability; 3 Witnessing quantifiers; 3.1 Propositional approximation of truth values; 3.2 Witnessing in definable families; 3.3 Definition by cases by open formulas; 3.4 Compact families. 3.5 Propositional computation of truth values4 The truth in N and the validity in K(F); Part II Second-order structures; 5 Structures K(F, G); 5.1 Language L2 and the hierarchy of bounded formulas; 5.2 Cut Mn, languages Ln and L2n; 5.3 Definition of the structures; 5.4 Equality of functions, extensionality and possible generalizations; 5.5 Absoluteness of ASb8-sentences of language Ln; Part III AC0 world; 6 Theories I?0, I?0(R) and V01; 7 Shallow Boolean decision tree model; 7.1 Family Frud; 7.2 Family Grud; 7.3 Properties of Frud and Grud; 8 Open comprehension and open induction. 8.1 The ((. . .)) notation8.2 Open comprehension in K(Frud, Grud); 8.3 Open induction in K(Frud, Grud); 8.4 Short open induction; 9 Comprehension and induction via quantifier elimination; 9.1 Bounded quantifier elimination; 9.2 Skolem functions in K(F, G) and quantifierelimination; 9.3 Comprehension and induction for S01,b-formulas; 10 Skolem functions, switching lemma; 10.1 Switching lemma; 10.2 Tree model K(Ftree, Gtree); 11 Quantifier elimination in K(Ftree, Gtree); 11.1 Skolem functions; 11.2 Comprehension and induction for S01,b-formulas. 12 Witnessing, independence and definability in V0112.1 Witnessing AX <x EY <x S01,b-formulas; 12.2 Preservation of true sp11,b-sentences; 12.3 Circuit lower bound for parity; Part IV AC0(2) world; 13 Theory Q2V01; 13.1 Q2 quantifier and theory Q2V01; 13.2 Interpreting Q2 in structures; 14 Algebraic model; 14.1 Family Falg; 14.2 Family Galg; 14.3 Open comprehension and open induction; 15 Quantifier elimination and the interpretation of Q2; 15.1 Skolemization and the Razborov -- Smolensky method; 15.2 Interpretation of Q2 in front of an open formula. 15.3 Elimination of quantifiers and the interpretation of the Q2 quantifier15.4 Comprehension and induction for Q21,b0-formulas; 16 Witnessing and independence in Q2V01; 16.1 Witnessing AX <xEY <xA Z <xS01,b-formulas; 16.2 Preservation of true sp11,b-sentences; Part V Towards proof complexity; 17 Propositional proof systems; 17.1 Frege and Extended Frege systems; 17.2 Language with connective and constant-depth Frege systems; 18 Lengths-of-proofs lower bounds; 18.1 Formalization of the provability predicate; 18.2 Reflection principles; 18.3 Three conditions for a lower bound. |
ctrlnum | (OCoLC)769341802 |
dewey-full | 511.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.36 |
dewey-search | 511.36 |
dewey-sort | 3511.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06236cam a2200829Mu 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn769341802</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|---|||||</controlfield><controlfield tag="008">111226s2010 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">CUY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">N$T</subfield><subfield code="d">CDX</subfield><subfield code="d">YDXCP</subfield><subfield code="d">E7B</subfield><subfield code="d">REDDC</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LUN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">759007187</subfield><subfield code="a">771910411</subfield><subfield code="a">817914316</subfield><subfield code="a">1167197724</subfield><subfield code="a">1264731639</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139117333</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139117335</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139127998</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139127993</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139115162</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139115162</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139107211</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139107216</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521154338</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521154332</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">9786613296108</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)769341802</subfield><subfield code="z">(OCoLC)759007187</subfield><subfield code="z">(OCoLC)771910411</subfield><subfield code="z">(OCoLC)817914316</subfield><subfield code="z">(OCoLC)1167197724</subfield><subfield code="z">(OCoLC)1264731639</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">329610</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA267.7 .K73 2011</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">016000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">018000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.36</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krajícek, Jan.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Forcing with Random Variables and Proof Complexity.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2010.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (266 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society Lecture Note Series, 382 ;</subfield><subfield code="v">v. 382</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Dedication; Contents; Preface; Acknowledgment; Introduction; Organization of the book; Remarks on the literature; Background; Part I Basics; 1 The definition of the models; 1.1 The ambient model of arithmetic; 1.2 The Boolean algebras; 1.3 The models K(F); 1.4 Valid sentences; 1.5 Possible generalizations; 2 Measure on B; 2.1 A metric on B; 2.2 From Boolean value to probability; 3 Witnessing quantifiers; 3.1 Propositional approximation of truth values; 3.2 Witnessing in definable families; 3.3 Definition by cases by open formulas; 3.4 Compact families.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.5 Propositional computation of truth values4 The truth in N and the validity in K(F); Part II Second-order structures; 5 Structures K(F, G); 5.1 Language L2 and the hierarchy of bounded formulas; 5.2 Cut Mn, languages Ln and L2n; 5.3 Definition of the structures; 5.4 Equality of functions, extensionality and possible generalizations; 5.5 Absoluteness of ASb8-sentences of language Ln; Part III AC0 world; 6 Theories I?0, I?0(R) and V01; 7 Shallow Boolean decision tree model; 7.1 Family Frud; 7.2 Family Grud; 7.3 Properties of Frud and Grud; 8 Open comprehension and open induction.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.1 The ((. . .)) notation8.2 Open comprehension in K(Frud, Grud); 8.3 Open induction in K(Frud, Grud); 8.4 Short open induction; 9 Comprehension and induction via quantifier elimination; 9.1 Bounded quantifier elimination; 9.2 Skolem functions in K(F, G) and quantifierelimination; 9.3 Comprehension and induction for S01,b-formulas; 10 Skolem functions, switching lemma; 10.1 Switching lemma; 10.2 Tree model K(Ftree, Gtree); 11 Quantifier elimination in K(Ftree, Gtree); 11.1 Skolem functions; 11.2 Comprehension and induction for S01,b-formulas.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12 Witnessing, independence and definability in V0112.1 Witnessing AX <x EY <x S01,b-formulas; 12.2 Preservation of true sp11,b-sentences; 12.3 Circuit lower bound for parity; Part IV AC0(2) world; 13 Theory Q2V01; 13.1 Q2 quantifier and theory Q2V01; 13.2 Interpreting Q2 in structures; 14 Algebraic model; 14.1 Family Falg; 14.2 Family Galg; 14.3 Open comprehension and open induction; 15 Quantifier elimination and the interpretation of Q2; 15.1 Skolemization and the Razborov -- Smolensky method; 15.2 Interpretation of Q2 in front of an open formula.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">15.3 Elimination of quantifiers and the interpretation of the Q2 quantifier15.4 Comprehension and induction for Q21,b0-formulas; 16 Witnessing and independence in Q2V01; 16.1 Witnessing AX <xEY <xA Z <xS01,b-formulas; 16.2 Preservation of true sp11,b-sentences; Part V Towards proof complexity; 17 Propositional proof systems; 17.1 Frege and Extended Frege systems; 17.2 Language with connective and constant-depth Frege systems; 18 Lengths-of-proofs lower bounds; 18.1 Formalization of the provability predicate; 18.2 Reflection principles; 18.3 Three conditions for a lower bound.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">19 PHP principle.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A model-theoretic approach to bounded arithmetic and propositional proof complexity.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 236-242) and indexes.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computational complexity.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85029473</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Random variables.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85111355</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082116</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Complexité de calcul (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variables aléatoires.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Infinity.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Logic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computational complexity</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Random variables</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Krajícek, Jan.</subfield><subfield code="t">Forcing with Random Variables and Proof Complexity.</subfield><subfield code="d">Cambridge : Cambridge University Press, ©2010</subfield><subfield code="z">9780521154338</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society Lecture Note Series, 382.</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399278</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">19724670</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL775090</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10502652</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">399278</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">329610</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7236512</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7205463</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7302907</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7365720</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn769341802 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:18:10Z |
institution | BVB |
isbn | 9781139117333 1139117335 9781139127998 1139127993 9781139115162 1139115162 9781139107211 1139107216 |
language | English |
oclc_num | 769341802 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (266 pages) |
psigel | ZDB-4-EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society Lecture Note Series, 382. |
series2 | London Mathematical Society Lecture Note Series, 382 ; |
spelling | Krajícek, Jan. Forcing with Random Variables and Proof Complexity. Cambridge : Cambridge University Press, 2010. 1 online resource (266 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society Lecture Note Series, 382 ; v. 382 Cover; Title; Copyright; Dedication; Contents; Preface; Acknowledgment; Introduction; Organization of the book; Remarks on the literature; Background; Part I Basics; 1 The definition of the models; 1.1 The ambient model of arithmetic; 1.2 The Boolean algebras; 1.3 The models K(F); 1.4 Valid sentences; 1.5 Possible generalizations; 2 Measure on B; 2.1 A metric on B; 2.2 From Boolean value to probability; 3 Witnessing quantifiers; 3.1 Propositional approximation of truth values; 3.2 Witnessing in definable families; 3.3 Definition by cases by open formulas; 3.4 Compact families. 3.5 Propositional computation of truth values4 The truth in N and the validity in K(F); Part II Second-order structures; 5 Structures K(F, G); 5.1 Language L2 and the hierarchy of bounded formulas; 5.2 Cut Mn, languages Ln and L2n; 5.3 Definition of the structures; 5.4 Equality of functions, extensionality and possible generalizations; 5.5 Absoluteness of ASb8-sentences of language Ln; Part III AC0 world; 6 Theories I?0, I?0(R) and V01; 7 Shallow Boolean decision tree model; 7.1 Family Frud; 7.2 Family Grud; 7.3 Properties of Frud and Grud; 8 Open comprehension and open induction. 8.1 The ((. . .)) notation8.2 Open comprehension in K(Frud, Grud); 8.3 Open induction in K(Frud, Grud); 8.4 Short open induction; 9 Comprehension and induction via quantifier elimination; 9.1 Bounded quantifier elimination; 9.2 Skolem functions in K(F, G) and quantifierelimination; 9.3 Comprehension and induction for S01,b-formulas; 10 Skolem functions, switching lemma; 10.1 Switching lemma; 10.2 Tree model K(Ftree, Gtree); 11 Quantifier elimination in K(Ftree, Gtree); 11.1 Skolem functions; 11.2 Comprehension and induction for S01,b-formulas. 12 Witnessing, independence and definability in V0112.1 Witnessing AX <x EY <x S01,b-formulas; 12.2 Preservation of true sp11,b-sentences; 12.3 Circuit lower bound for parity; Part IV AC0(2) world; 13 Theory Q2V01; 13.1 Q2 quantifier and theory Q2V01; 13.2 Interpreting Q2 in structures; 14 Algebraic model; 14.1 Family Falg; 14.2 Family Galg; 14.3 Open comprehension and open induction; 15 Quantifier elimination and the interpretation of Q2; 15.1 Skolemization and the Razborov -- Smolensky method; 15.2 Interpretation of Q2 in front of an open formula. 15.3 Elimination of quantifiers and the interpretation of the Q2 quantifier15.4 Comprehension and induction for Q21,b0-formulas; 16 Witnessing and independence in Q2V01; 16.1 Witnessing AX <xEY <xA Z <xS01,b-formulas; 16.2 Preservation of true sp11,b-sentences; Part V Towards proof complexity; 17 Propositional proof systems; 17.1 Frege and Extended Frege systems; 17.2 Language with connective and constant-depth Frege systems; 18 Lengths-of-proofs lower bounds; 18.1 Formalization of the provability predicate; 18.2 Reflection principles; 18.3 Three conditions for a lower bound. 19 PHP principle. A model-theoretic approach to bounded arithmetic and propositional proof complexity. Print version record. Includes bibliographical references (pages 236-242) and indexes. Computational complexity. http://id.loc.gov/authorities/subjects/sh85029473 Random variables. http://id.loc.gov/authorities/subjects/sh85111355 Mathematical analysis. http://id.loc.gov/authorities/subjects/sh85082116 Complexité de calcul (Informatique) Variables aléatoires. Analyse mathématique. MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh Computational complexity fast Mathematical analysis fast Random variables fast Print version: Krajícek, Jan. Forcing with Random Variables and Proof Complexity. Cambridge : Cambridge University Press, ©2010 9780521154338 London Mathematical Society Lecture Note Series, 382. FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399278 Volltext |
spellingShingle | Krajícek, Jan Forcing with Random Variables and Proof Complexity. London Mathematical Society Lecture Note Series, 382. Cover; Title; Copyright; Dedication; Contents; Preface; Acknowledgment; Introduction; Organization of the book; Remarks on the literature; Background; Part I Basics; 1 The definition of the models; 1.1 The ambient model of arithmetic; 1.2 The Boolean algebras; 1.3 The models K(F); 1.4 Valid sentences; 1.5 Possible generalizations; 2 Measure on B; 2.1 A metric on B; 2.2 From Boolean value to probability; 3 Witnessing quantifiers; 3.1 Propositional approximation of truth values; 3.2 Witnessing in definable families; 3.3 Definition by cases by open formulas; 3.4 Compact families. 3.5 Propositional computation of truth values4 The truth in N and the validity in K(F); Part II Second-order structures; 5 Structures K(F, G); 5.1 Language L2 and the hierarchy of bounded formulas; 5.2 Cut Mn, languages Ln and L2n; 5.3 Definition of the structures; 5.4 Equality of functions, extensionality and possible generalizations; 5.5 Absoluteness of ASb8-sentences of language Ln; Part III AC0 world; 6 Theories I?0, I?0(R) and V01; 7 Shallow Boolean decision tree model; 7.1 Family Frud; 7.2 Family Grud; 7.3 Properties of Frud and Grud; 8 Open comprehension and open induction. 8.1 The ((. . .)) notation8.2 Open comprehension in K(Frud, Grud); 8.3 Open induction in K(Frud, Grud); 8.4 Short open induction; 9 Comprehension and induction via quantifier elimination; 9.1 Bounded quantifier elimination; 9.2 Skolem functions in K(F, G) and quantifierelimination; 9.3 Comprehension and induction for S01,b-formulas; 10 Skolem functions, switching lemma; 10.1 Switching lemma; 10.2 Tree model K(Ftree, Gtree); 11 Quantifier elimination in K(Ftree, Gtree); 11.1 Skolem functions; 11.2 Comprehension and induction for S01,b-formulas. 12 Witnessing, independence and definability in V0112.1 Witnessing AX <x EY <x S01,b-formulas; 12.2 Preservation of true sp11,b-sentences; 12.3 Circuit lower bound for parity; Part IV AC0(2) world; 13 Theory Q2V01; 13.1 Q2 quantifier and theory Q2V01; 13.2 Interpreting Q2 in structures; 14 Algebraic model; 14.1 Family Falg; 14.2 Family Galg; 14.3 Open comprehension and open induction; 15 Quantifier elimination and the interpretation of Q2; 15.1 Skolemization and the Razborov -- Smolensky method; 15.2 Interpretation of Q2 in front of an open formula. 15.3 Elimination of quantifiers and the interpretation of the Q2 quantifier15.4 Comprehension and induction for Q21,b0-formulas; 16 Witnessing and independence in Q2V01; 16.1 Witnessing AX <xEY <xA Z <xS01,b-formulas; 16.2 Preservation of true sp11,b-sentences; Part V Towards proof complexity; 17 Propositional proof systems; 17.1 Frege and Extended Frege systems; 17.2 Language with connective and constant-depth Frege systems; 18 Lengths-of-proofs lower bounds; 18.1 Formalization of the provability predicate; 18.2 Reflection principles; 18.3 Three conditions for a lower bound. Computational complexity. http://id.loc.gov/authorities/subjects/sh85029473 Random variables. http://id.loc.gov/authorities/subjects/sh85111355 Mathematical analysis. http://id.loc.gov/authorities/subjects/sh85082116 Complexité de calcul (Informatique) Variables aléatoires. Analyse mathématique. MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh Computational complexity fast Mathematical analysis fast Random variables fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85029473 http://id.loc.gov/authorities/subjects/sh85111355 http://id.loc.gov/authorities/subjects/sh85082116 |
title | Forcing with Random Variables and Proof Complexity. |
title_auth | Forcing with Random Variables and Proof Complexity. |
title_exact_search | Forcing with Random Variables and Proof Complexity. |
title_full | Forcing with Random Variables and Proof Complexity. |
title_fullStr | Forcing with Random Variables and Proof Complexity. |
title_full_unstemmed | Forcing with Random Variables and Proof Complexity. |
title_short | Forcing with Random Variables and Proof Complexity. |
title_sort | forcing with random variables and proof complexity |
topic | Computational complexity. http://id.loc.gov/authorities/subjects/sh85029473 Random variables. http://id.loc.gov/authorities/subjects/sh85111355 Mathematical analysis. http://id.loc.gov/authorities/subjects/sh85082116 Complexité de calcul (Informatique) Variables aléatoires. Analyse mathématique. MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh Computational complexity fast Mathematical analysis fast Random variables fast |
topic_facet | Computational complexity. Random variables. Mathematical analysis. Complexité de calcul (Informatique) Variables aléatoires. Analyse mathématique. MATHEMATICS Infinity. MATHEMATICS Logic. Computational complexity Mathematical analysis Random variables |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399278 |
work_keys_str_mv | AT krajicekjan forcingwithrandomvariablesandproofcomplexity |