Differential tensor algebras and their module categories /:
A detailed account of main results in the theory of differential tensor algebras.
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2009.
|
Schriftenreihe: | London Mathematical Society Lecture Note Series, 362.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | A detailed account of main results in the theory of differential tensor algebras. |
Beschreibung: | 1 online resource (ix, 452 pages :) |
Bibliographie: | Includes bibliographical references (pages 446-448) and index. |
ISBN: | 9781139127448 1139127446 9781139114615 1139114611 9781139107105 1139107100 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn769341724 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr mn||||||||| | ||
008 | 111226t20092009enka ob 001 0 eng d | ||
040 | |a EBLCP |b eng |e rda |e pn |c EBLCP |d YDXCP |d OCLCQ |d CN3GA |d OCLCO |d IDEBK |d OCLCQ |d DEBSZ |d OCLCQ |d OCLCO |d OCLCF |d N$T |d E7B |d REDDC |d CAMBR |d OCLCQ |d UAB |d OCLCO |d OCLCQ |d OSU |d OCLCQ |d INT |d AU@ |d OCLCO |d OCLCQ |d LUN |d OCLCQ |d UKAHL |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 769187766 |a 802261806 |a 817920233 |a 1032508409 |a 1055262005 |a 1167222037 | ||
020 | |a 9781139127448 |q (electronic bk.) | ||
020 | |a 1139127446 |q (electronic bk.) | ||
020 | |a 9781139114615 |q (e-book) | ||
020 | |a 1139114611 |q (e-book) | ||
020 | |a 9781139107105 |q (electronic bk.) | ||
020 | |a 1139107100 |q (electronic bk.) | ||
020 | |z 9780521757683 |q (pbk.) | ||
020 | |z 0521757681 |q (pbk.) | ||
020 | |z 9781139116787 | ||
020 | |z 1139116789 | ||
020 | |z 9780521571814 | ||
020 | |z 0521571812 | ||
035 | |a (OCoLC)769341724 |z (OCoLC)769187766 |z (OCoLC)802261806 |z (OCoLC)817920233 |z (OCoLC)1032508409 |z (OCoLC)1055262005 |z (OCoLC)1167222037 | ||
050 | 4 | |a QA200 .B38 2009 | |
072 | 7 | |a MAT |x 002050 |2 bisacsh | |
082 | 7 | |a 512.57 |a 512/.57 | |
084 | |a SI 320 |2 rvk | ||
084 | |a SK 220 |2 rvk | ||
084 | |a MAT 180f |2 stub | ||
084 | |a MAT 157f |2 stub | ||
084 | |a MAT 162f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a Bautista, R., |e author. | |
245 | 1 | 0 | |a Differential tensor algebras and their module categories / |c R. Bautista, L. Salmerón and R. Zuazua, Universidad Nacional Autónoma de México. |
264 | 1 | |a Cambridge : |b Cambridge University Press, |c 2009. | |
264 | 4 | |c ©2009 | |
300 | |a 1 online resource (ix, 452 pages :) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society Lecture Note Series, 362 ; |v v. 362 | |
520 | |a A detailed account of main results in the theory of differential tensor algebras. | ||
504 | |a Includes bibliographical references (pages 446-448) and index. | ||
505 | 0 | |a t-algebras and differentials -- Ditalgebras and modules -- Bocses, ditalgebras and modules -- Layered ditalgebras -- Triangular ditalgebras -- Exact structures in A-Mod -- Almost split conflations in A-Mod -- Quotient ditalgebras -- Frames and Roiter ditalgebras -- Product of ditalgebras -- Hom-tensor relations and dual basis -- Admissible modules -- Complete admissible modules -- Bimodule filtrations -- Free bimodule filtrations and free ditalgebras -- AX is a Roiter ditalgebra, for suitable X -- Examples and applications -- The exact categories P, P1 and -Mod -- Passage from ditalgebras -- Scalar extension and ditalgebras -- Bimodules -- Parametrizing bimodules and wildness -- Nested and seminested ditalgebras -- Critical ditalgebras -- Reduction functors -- Modules over non-wild ditalgebras -- Tameness and wildness -- Modules over non-wild ditalgebras revisited -- Modules over non-wild algebras -- Absolute wildness -- Generic modules and tameness -- Almost split sequences and tameness -- Varieties of modules over ditalgebras -- Ditalgebras of partially ordered sets -- Further examples of wild ditalgebras -- Answers to selected exercises. | |
588 | 0 | |a Print version record. | |
650 | 0 | |a Tensor algebra. |0 http://id.loc.gov/authorities/subjects/sh85133937 | |
650 | 0 | |a Representations of algebras. |0 http://id.loc.gov/authorities/subjects/sh85112938 | |
650 | 0 | |a Categories (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85020992 | |
650 | 6 | |a Algèbre tensorielle. | |
650 | 6 | |a Représentations des algèbres. | |
650 | 6 | |a Catégories (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Algebra |x Linear. |2 bisacsh | |
650 | 7 | |a Categories (Mathematics) |2 fast | |
650 | 7 | |a Representations of algebras |2 fast | |
650 | 7 | |a Tensor algebra |2 fast | |
650 | 7 | |a Modulkategorie |2 gnd |0 http://d-nb.info/gnd/4170335-2 | |
650 | 7 | |a Tensoralgebra |2 gnd |0 http://d-nb.info/gnd/4505278-5 | |
700 | 1 | |a Salmerón, L., |e author. | |
700 | 1 | |a Zuazua, R., |e author. |0 http://id.loc.gov/authorities/names/n2009020957 | |
758 | |i has work: |a Differential tensor algebras and their module categories (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGFvXQhpMbmYYkXDVDkFcd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Bautista, R., 1943- |t Differential tensor algebras and their module categories. |d Cambridge ; New York : Cambridge University Press, 2009 |z 9780521757683 |w (DLC) 2009014316 |w (OCoLC)311769481 |
830 | 0 | |a London Mathematical Society Lecture Note Series, 362. | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399262 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399262 |3 Volltext | |
938 | |a Askews and Holts Library Services |b ASKH |n AH16078773 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL774982 | ||
938 | |a ebrary |b EBRY |n ebr10502751 | ||
938 | |a EBSCOhost |b EBSC |n 399262 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 329580 | ||
938 | |a YBP Library Services |b YANK |n 7302868 | ||
938 | |a YBP Library Services |b YANK |n 7113597 | ||
938 | |a YBP Library Services |b YANK |n 7205420 | ||
938 | |a YBP Library Services |b YANK |n 9523231 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn769341724 |
---|---|
_version_ | 1813903423359156224 |
adam_text | |
any_adam_object | |
author | Bautista, R. Salmerón, L. Zuazua, R. |
author_GND | http://id.loc.gov/authorities/names/n2009020957 |
author_facet | Bautista, R. Salmerón, L. Zuazua, R. |
author_role | aut aut aut |
author_sort | Bautista, R. |
author_variant | r b rb l s ls r z rz |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA200 |
callnumber-raw | QA200 .B38 2009 |
callnumber-search | QA200 .B38 2009 |
callnumber-sort | QA 3200 B38 42009 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 320 SK 220 |
classification_tum | MAT 180f MAT 157f MAT 162f |
collection | ZDB-4-EBA |
contents | t-algebras and differentials -- Ditalgebras and modules -- Bocses, ditalgebras and modules -- Layered ditalgebras -- Triangular ditalgebras -- Exact structures in A-Mod -- Almost split conflations in A-Mod -- Quotient ditalgebras -- Frames and Roiter ditalgebras -- Product of ditalgebras -- Hom-tensor relations and dual basis -- Admissible modules -- Complete admissible modules -- Bimodule filtrations -- Free bimodule filtrations and free ditalgebras -- AX is a Roiter ditalgebra, for suitable X -- Examples and applications -- The exact categories P, P1 and -Mod -- Passage from ditalgebras -- Scalar extension and ditalgebras -- Bimodules -- Parametrizing bimodules and wildness -- Nested and seminested ditalgebras -- Critical ditalgebras -- Reduction functors -- Modules over non-wild ditalgebras -- Tameness and wildness -- Modules over non-wild ditalgebras revisited -- Modules over non-wild algebras -- Absolute wildness -- Generic modules and tameness -- Almost split sequences and tameness -- Varieties of modules over ditalgebras -- Ditalgebras of partially ordered sets -- Further examples of wild ditalgebras -- Answers to selected exercises. |
ctrlnum | (OCoLC)769341724 |
dewey-full | 512.57 512/.57 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.57 512/.57 |
dewey-search | 512.57 512/.57 |
dewey-sort | 3512.57 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05317cam a2200877 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn769341724</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mn|||||||||</controlfield><controlfield tag="008">111226t20092009enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CN3GA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">REDDC</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OSU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LUN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">769187766</subfield><subfield code="a">802261806</subfield><subfield code="a">817920233</subfield><subfield code="a">1032508409</subfield><subfield code="a">1055262005</subfield><subfield code="a">1167222037</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139127448</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139127446</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139114615</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139114611</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139107105</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139107100</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521757683</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521757681</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781139116787</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1139116789</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521571814</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521571812</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)769341724</subfield><subfield code="z">(OCoLC)769187766</subfield><subfield code="z">(OCoLC)802261806</subfield><subfield code="z">(OCoLC)817920233</subfield><subfield code="z">(OCoLC)1032508409</subfield><subfield code="z">(OCoLC)1055262005</subfield><subfield code="z">(OCoLC)1167222037</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA200 .B38 2009</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002050</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.57</subfield><subfield code="a">512/.57</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 180f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 157f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 162f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bautista, R.,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential tensor algebras and their module categories /</subfield><subfield code="c">R. Bautista, L. Salmerón and R. Zuazua, Universidad Nacional Autónoma de México.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2009.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 452 pages :)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society Lecture Note Series, 362 ;</subfield><subfield code="v">v. 362</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A detailed account of main results in the theory of differential tensor algebras.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 446-448) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">t-algebras and differentials -- Ditalgebras and modules -- Bocses, ditalgebras and modules -- Layered ditalgebras -- Triangular ditalgebras -- Exact structures in A-Mod -- Almost split conflations in A-Mod -- Quotient ditalgebras -- Frames and Roiter ditalgebras -- Product of ditalgebras -- Hom-tensor relations and dual basis -- Admissible modules -- Complete admissible modules -- Bimodule filtrations -- Free bimodule filtrations and free ditalgebras -- AX is a Roiter ditalgebra, for suitable X -- Examples and applications -- The exact categories P, P1 and -Mod -- Passage from ditalgebras -- Scalar extension and ditalgebras -- Bimodules -- Parametrizing bimodules and wildness -- Nested and seminested ditalgebras -- Critical ditalgebras -- Reduction functors -- Modules over non-wild ditalgebras -- Tameness and wildness -- Modules over non-wild ditalgebras revisited -- Modules over non-wild algebras -- Absolute wildness -- Generic modules and tameness -- Almost split sequences and tameness -- Varieties of modules over ditalgebras -- Ditalgebras of partially ordered sets -- Further examples of wild ditalgebras -- Answers to selected exercises.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Tensor algebra.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85133937</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Representations of algebras.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85112938</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Categories (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85020992</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbre tensorielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Représentations des algèbres.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Catégories (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Linear.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Categories (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Representations of algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tensor algebra</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modulkategorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4170335-2</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tensoralgebra</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4505278-5</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Salmerón, L.,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zuazua, R.,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2009020957</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Differential tensor algebras and their module categories (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGFvXQhpMbmYYkXDVDkFcd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Bautista, R., 1943-</subfield><subfield code="t">Differential tensor algebras and their module categories.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 2009</subfield><subfield code="z">9780521757683</subfield><subfield code="w">(DLC) 2009014316</subfield><subfield code="w">(OCoLC)311769481</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society Lecture Note Series, 362.</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399262</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399262</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH16078773</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL774982</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10502751</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">399262</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">329580</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7302868</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7113597</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7205420</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9523231</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn769341724 |
illustrated | Illustrated |
indexdate | 2024-10-25T16:18:26Z |
institution | BVB |
isbn | 9781139127448 1139127446 9781139114615 1139114611 9781139107105 1139107100 |
language | English |
oclc_num | 769341724 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (ix, 452 pages :) |
psigel | ZDB-4-EBA |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society Lecture Note Series, 362. |
series2 | London Mathematical Society Lecture Note Series, 362 ; |
spelling | Bautista, R., author. Differential tensor algebras and their module categories / R. Bautista, L. Salmerón and R. Zuazua, Universidad Nacional Autónoma de México. Cambridge : Cambridge University Press, 2009. ©2009 1 online resource (ix, 452 pages :) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society Lecture Note Series, 362 ; v. 362 A detailed account of main results in the theory of differential tensor algebras. Includes bibliographical references (pages 446-448) and index. t-algebras and differentials -- Ditalgebras and modules -- Bocses, ditalgebras and modules -- Layered ditalgebras -- Triangular ditalgebras -- Exact structures in A-Mod -- Almost split conflations in A-Mod -- Quotient ditalgebras -- Frames and Roiter ditalgebras -- Product of ditalgebras -- Hom-tensor relations and dual basis -- Admissible modules -- Complete admissible modules -- Bimodule filtrations -- Free bimodule filtrations and free ditalgebras -- AX is a Roiter ditalgebra, for suitable X -- Examples and applications -- The exact categories P, P1 and -Mod -- Passage from ditalgebras -- Scalar extension and ditalgebras -- Bimodules -- Parametrizing bimodules and wildness -- Nested and seminested ditalgebras -- Critical ditalgebras -- Reduction functors -- Modules over non-wild ditalgebras -- Tameness and wildness -- Modules over non-wild ditalgebras revisited -- Modules over non-wild algebras -- Absolute wildness -- Generic modules and tameness -- Almost split sequences and tameness -- Varieties of modules over ditalgebras -- Ditalgebras of partially ordered sets -- Further examples of wild ditalgebras -- Answers to selected exercises. Print version record. Tensor algebra. http://id.loc.gov/authorities/subjects/sh85133937 Representations of algebras. http://id.loc.gov/authorities/subjects/sh85112938 Categories (Mathematics) http://id.loc.gov/authorities/subjects/sh85020992 Algèbre tensorielle. Représentations des algèbres. Catégories (Mathématiques) MATHEMATICS Algebra Linear. bisacsh Categories (Mathematics) fast Representations of algebras fast Tensor algebra fast Modulkategorie gnd http://d-nb.info/gnd/4170335-2 Tensoralgebra gnd http://d-nb.info/gnd/4505278-5 Salmerón, L., author. Zuazua, R., author. http://id.loc.gov/authorities/names/n2009020957 has work: Differential tensor algebras and their module categories (Text) https://id.oclc.org/worldcat/entity/E39PCGFvXQhpMbmYYkXDVDkFcd https://id.oclc.org/worldcat/ontology/hasWork Print version: Bautista, R., 1943- Differential tensor algebras and their module categories. Cambridge ; New York : Cambridge University Press, 2009 9780521757683 (DLC) 2009014316 (OCoLC)311769481 London Mathematical Society Lecture Note Series, 362. FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399262 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399262 Volltext |
spellingShingle | Bautista, R. Salmerón, L. Zuazua, R. Differential tensor algebras and their module categories / London Mathematical Society Lecture Note Series, 362. t-algebras and differentials -- Ditalgebras and modules -- Bocses, ditalgebras and modules -- Layered ditalgebras -- Triangular ditalgebras -- Exact structures in A-Mod -- Almost split conflations in A-Mod -- Quotient ditalgebras -- Frames and Roiter ditalgebras -- Product of ditalgebras -- Hom-tensor relations and dual basis -- Admissible modules -- Complete admissible modules -- Bimodule filtrations -- Free bimodule filtrations and free ditalgebras -- AX is a Roiter ditalgebra, for suitable X -- Examples and applications -- The exact categories P, P1 and -Mod -- Passage from ditalgebras -- Scalar extension and ditalgebras -- Bimodules -- Parametrizing bimodules and wildness -- Nested and seminested ditalgebras -- Critical ditalgebras -- Reduction functors -- Modules over non-wild ditalgebras -- Tameness and wildness -- Modules over non-wild ditalgebras revisited -- Modules over non-wild algebras -- Absolute wildness -- Generic modules and tameness -- Almost split sequences and tameness -- Varieties of modules over ditalgebras -- Ditalgebras of partially ordered sets -- Further examples of wild ditalgebras -- Answers to selected exercises. Tensor algebra. http://id.loc.gov/authorities/subjects/sh85133937 Representations of algebras. http://id.loc.gov/authorities/subjects/sh85112938 Categories (Mathematics) http://id.loc.gov/authorities/subjects/sh85020992 Algèbre tensorielle. Représentations des algèbres. Catégories (Mathématiques) MATHEMATICS Algebra Linear. bisacsh Categories (Mathematics) fast Representations of algebras fast Tensor algebra fast Modulkategorie gnd http://d-nb.info/gnd/4170335-2 Tensoralgebra gnd http://d-nb.info/gnd/4505278-5 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85133937 http://id.loc.gov/authorities/subjects/sh85112938 http://id.loc.gov/authorities/subjects/sh85020992 http://d-nb.info/gnd/4170335-2 http://d-nb.info/gnd/4505278-5 |
title | Differential tensor algebras and their module categories / |
title_auth | Differential tensor algebras and their module categories / |
title_exact_search | Differential tensor algebras and their module categories / |
title_full | Differential tensor algebras and their module categories / R. Bautista, L. Salmerón and R. Zuazua, Universidad Nacional Autónoma de México. |
title_fullStr | Differential tensor algebras and their module categories / R. Bautista, L. Salmerón and R. Zuazua, Universidad Nacional Autónoma de México. |
title_full_unstemmed | Differential tensor algebras and their module categories / R. Bautista, L. Salmerón and R. Zuazua, Universidad Nacional Autónoma de México. |
title_short | Differential tensor algebras and their module categories / |
title_sort | differential tensor algebras and their module categories |
topic | Tensor algebra. http://id.loc.gov/authorities/subjects/sh85133937 Representations of algebras. http://id.loc.gov/authorities/subjects/sh85112938 Categories (Mathematics) http://id.loc.gov/authorities/subjects/sh85020992 Algèbre tensorielle. Représentations des algèbres. Catégories (Mathématiques) MATHEMATICS Algebra Linear. bisacsh Categories (Mathematics) fast Representations of algebras fast Tensor algebra fast Modulkategorie gnd http://d-nb.info/gnd/4170335-2 Tensoralgebra gnd http://d-nb.info/gnd/4505278-5 |
topic_facet | Tensor algebra. Representations of algebras. Categories (Mathematics) Algèbre tensorielle. Représentations des algèbres. Catégories (Mathématiques) MATHEMATICS Algebra Linear. Representations of algebras Tensor algebra Modulkategorie Tensoralgebra |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399262 |
work_keys_str_mv | AT bautistar differentialtensoralgebrasandtheirmodulecategories AT salmeronl differentialtensoralgebrasandtheirmodulecategories AT zuazuar differentialtensoralgebrasandtheirmodulecategories |