Geometric and Cohomological Methods in Group Theory.:
An extended tour through a selection of the most important trends in modern geometric group theory.
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2009.
|
Schriftenreihe: | London Mathematical Society Lecture Note Series, 358.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | An extended tour through a selection of the most important trends in modern geometric group theory. |
Beschreibung: | 8.1 Measure Equivalence and Quasi-Isometry. |
Beschreibung: | 1 online resource (332 pages) |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9781139116763 1139116762 9781139127424 113912742X 9781139114592 113911459X 9781139107099 1139107097 |
Internformat
MARC
LEADER | 00000cam a2200000Mu 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn769341706 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 111226s2009 enk ob 000 0 eng d | ||
010 | |z 2010275265 | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d E7B |d REDDC |d N$T |d IDEBK |d YDXCP |d OCLCQ |d OCLCO |d OCLCQ |d DEBSZ |d OCLCQ |d OCLCO |d OCLCF |d OCL |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d LUN |d OCLCQ |d UKAHL |d OCLCO |d OCLCQ |d OCLCO |d INARC |d OCLCL |d OCLCQ | ||
015 | |a GBA9C2157 |2 bnb | ||
016 | 7 | |a 015441284 |2 Uk | |
019 | |a 769187764 |a 796932296 |a 1167176351 |a 1264903547 |a 1412756658 | ||
020 | |a 9781139116763 | ||
020 | |a 1139116762 | ||
020 | |a 9781139127424 |q (electronic bk.) | ||
020 | |a 113912742X |q (electronic bk.) | ||
020 | |a 9781139114592 |q (electronic bk.) | ||
020 | |a 113911459X |q (electronic bk.) | ||
020 | |a 9781139107099 |q (ebook) | ||
020 | |a 1139107097 | ||
020 | |z 9780521757249 |q (pbk.) | ||
020 | |z 052175724X |q (pbk.) | ||
035 | |a (OCoLC)769341706 |z (OCoLC)769187764 |z (OCoLC)796932296 |z (OCoLC)1167176351 |z (OCoLC)1264903547 |z (OCoLC)1412756658 | ||
050 | 4 | |a QA183 .G43 2009 | |
072 | 7 | |a MAT |x 014000 |2 bisacsh | |
072 | 7 | |a PBG |2 bicssc | |
082 | 7 | |a 512.2 |a 512/.2 | |
049 | |a MAIN | ||
100 | 1 | |a Bridson, Martin R. | |
245 | 1 | 0 | |a Geometric and Cohomological Methods in Group Theory. |
260 | |a Cambridge : |b Cambridge University Press, |c 2009. | ||
300 | |a 1 online resource (332 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society Lecture Note Series, 358 ; |v v. 358 | |
505 | 0 | |a Cover; Title; Copyright; Contents; Preface; List of Participants; Notes on Sela's work: Limit groups and Makanin-Razborov diagrams; Contents; 1 The Main Theorem; 1.1 Introduction; 1.2 Basic properties of limit groups; 1.3 Modular groups and the statement of the main theorem; 1.4 Makanin-Razborov diagrams; 1.5 Abelian subgroups of limit groups; 1.6 Constructible limit groups; 2 The Main Proposition; 3 Review: Measured laminations and R-tree; 3.1 Laminations; 3.2 Dual trees; 3.3 The structure theorem; 3.4 Spaces of trees; 4 Proof of the Main Proposition; 5 Review: JSJ-theory. | |
505 | 8 | |a 6 Limit groups are CLG's7 A more geometric approach; References; Solutions to Bestvina & Feighn's exercises on limit groups; 1 Definitions and elementary properties; 1.1?-residually free groups; 1.2 Limit groups; 1.3 Negative examples; 2 Embeddings in real algebraic groups; 3 GADs for limit groups; 4 Constructible Limit Groups; 4.1 CLGs are CSA; 4.2 Abelian subgroups; 4.3 Heredity; 4.4 Coherence; 4.5 Finite K(G, 1); 4.6 Principal cyclic splittings; 4.7 A criterion in free groups; 4.8 CLGs are limit groups; 5 The Shortening Argument; 5.1 Preliminary ideas; 5.2 The abelian part. | |
505 | 8 | |a 5.3 The surface part5.4 The simplicial part; 6 Bestvina and Feighn's geometric approach; 6.1 The space of laminations; 6.2 Matching resolutions in the limit; 6.3 Finding kernel elements carried by leaves; 6.4 Examples of limit groups; References; L2 Invariants from the algebraic point of view; 0 Introduction; Contents; 1 Group von Neumann Algebras; 1.1 The Definition of the Group von Neumann Algebra; 1.2 Ring Theoretic Properties of the Group von Neumann Algebra; 1.3 Dimension Theory over the Group von Neumann Algebra; 2 Definition and Basic Properties of L2-Betti Numbers. | |
505 | 8 | |a 2.1 The Definition of L2-Betti Numbers2.2 Basic Properties of L2-Betti Numbers; 2.3 Comparison with Other Definitions; 2.4 L2-Euler Characteristic; 3 Computations of L2-Betti Numbers; 3.1 Abelian Groups; 3.2 Finite Coverings; 3.3 Surfaces; 3.4 Three-Dimensional Manifolds; 3.5 Symmetric Spaces; 3.6 Spaces with S1 Action; 3.7 Mapping Tori; 3.8 Fibrations; 4 The Atiyah Conjecture; 4.1 Reformulations of the Atiyah Conjecture; 4.2 The Ring Theoretic Version of the Atiyah Conjecture; 4.3 The Atiyah Conjecture for Torsion-Free Groups; 4.4 The Atiyah Conjecture Implies the Kaplanski Conjecture. | |
505 | 8 | |a 4.5 The Status of the Atiyah Conjecture4.6 Groups Without Bound on the Order of Its Finite Subgroups; 5 Flatness Properties of the Group von Neumann Algebra; 6 Applications to Group Theory; 6.1 L2-Betti Numbers of Groups; 6.2 Vanishing of L2-Betti Numbers of Groups; 6.3 L2-Betti Numbers of Some Specific Groups; 6.4 Deficiency and L2-Betti Numbers of Groups; 7 G- and K-Theory; 7.1 The K0- group of a Group von Neumann Algebra; 7.2 The K1- and L-groups of a Group von Neumann Algebra; 7.3 Applications to G-theory of Group Rings; 7.4 Applications to the Whitehead Group; 8 Measurable Group Theory. | |
500 | |a 8.1 Measure Equivalence and Quasi-Isometry. | ||
520 | |a An extended tour through a selection of the most important trends in modern geometric group theory. | ||
504 | |a Includes bibliographical references. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Geometric group theory |v Congresses. | |
650 | 0 | |a Homology theory |v Congresses. | |
650 | 6 | |a Théorie géométrique des groupes |v Congrès. | |
650 | 6 | |a Homologie |v Congrès. | |
650 | 7 | |a MATHEMATICS |x Group Theory. |2 bisacsh | |
650 | 7 | |a Geometric group theory |2 fast | |
650 | 7 | |a Homology theory |2 fast | |
655 | 7 | |a Conference papers and proceedings |2 fast | |
700 | 1 | |a Kropholler, Peter H. | |
700 | 1 | |a Leary, Ian J. |0 http://id.loc.gov/authorities/names/no2009188355 | |
776 | 0 | 8 | |i Print version: |a Bridson, Martin R. |t Geometric and Cohomological Methods in Group Theory. |d Cambridge : Cambridge University Press, ©2009 |z 9780521757249 |
830 | 0 | |a London Mathematical Society Lecture Note Series, 358. | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399263 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH16078772 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL774956 | ||
938 | |a ebrary |b EBRY |n ebr10502730 | ||
938 | |a EBSCOhost |b EBSC |n 399263 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 368646 | ||
938 | |a YBP Library Services |b YANK |n 7205418 | ||
938 | |a YBP Library Services |b YANK |n 7302866 | ||
938 | |a YBP Library Services |b YANK |n 9621221 | ||
938 | |a Internet Archive |b INAR |n isbn_9780521757249 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn769341706 |
---|---|
_version_ | 1816881780849901568 |
adam_text | |
any_adam_object | |
author | Bridson, Martin R. |
author2 | Kropholler, Peter H. Leary, Ian J. |
author2_role | |
author2_variant | p h k ph phk i j l ij ijl |
author_GND | http://id.loc.gov/authorities/names/no2009188355 |
author_facet | Bridson, Martin R. Kropholler, Peter H. Leary, Ian J. |
author_role | |
author_sort | Bridson, Martin R. |
author_variant | m r b mr mrb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA183 |
callnumber-raw | QA183 .G43 2009 |
callnumber-search | QA183 .G43 2009 |
callnumber-sort | QA 3183 G43 42009 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Contents; Preface; List of Participants; Notes on Sela's work: Limit groups and Makanin-Razborov diagrams; Contents; 1 The Main Theorem; 1.1 Introduction; 1.2 Basic properties of limit groups; 1.3 Modular groups and the statement of the main theorem; 1.4 Makanin-Razborov diagrams; 1.5 Abelian subgroups of limit groups; 1.6 Constructible limit groups; 2 The Main Proposition; 3 Review: Measured laminations and R-tree; 3.1 Laminations; 3.2 Dual trees; 3.3 The structure theorem; 3.4 Spaces of trees; 4 Proof of the Main Proposition; 5 Review: JSJ-theory. 6 Limit groups are CLG's7 A more geometric approach; References; Solutions to Bestvina & Feighn's exercises on limit groups; 1 Definitions and elementary properties; 1.1?-residually free groups; 1.2 Limit groups; 1.3 Negative examples; 2 Embeddings in real algebraic groups; 3 GADs for limit groups; 4 Constructible Limit Groups; 4.1 CLGs are CSA; 4.2 Abelian subgroups; 4.3 Heredity; 4.4 Coherence; 4.5 Finite K(G, 1); 4.6 Principal cyclic splittings; 4.7 A criterion in free groups; 4.8 CLGs are limit groups; 5 The Shortening Argument; 5.1 Preliminary ideas; 5.2 The abelian part. 5.3 The surface part5.4 The simplicial part; 6 Bestvina and Feighn's geometric approach; 6.1 The space of laminations; 6.2 Matching resolutions in the limit; 6.3 Finding kernel elements carried by leaves; 6.4 Examples of limit groups; References; L2 Invariants from the algebraic point of view; 0 Introduction; Contents; 1 Group von Neumann Algebras; 1.1 The Definition of the Group von Neumann Algebra; 1.2 Ring Theoretic Properties of the Group von Neumann Algebra; 1.3 Dimension Theory over the Group von Neumann Algebra; 2 Definition and Basic Properties of L2-Betti Numbers. 2.1 The Definition of L2-Betti Numbers2.2 Basic Properties of L2-Betti Numbers; 2.3 Comparison with Other Definitions; 2.4 L2-Euler Characteristic; 3 Computations of L2-Betti Numbers; 3.1 Abelian Groups; 3.2 Finite Coverings; 3.3 Surfaces; 3.4 Three-Dimensional Manifolds; 3.5 Symmetric Spaces; 3.6 Spaces with S1 Action; 3.7 Mapping Tori; 3.8 Fibrations; 4 The Atiyah Conjecture; 4.1 Reformulations of the Atiyah Conjecture; 4.2 The Ring Theoretic Version of the Atiyah Conjecture; 4.3 The Atiyah Conjecture for Torsion-Free Groups; 4.4 The Atiyah Conjecture Implies the Kaplanski Conjecture. 4.5 The Status of the Atiyah Conjecture4.6 Groups Without Bound on the Order of Its Finite Subgroups; 5 Flatness Properties of the Group von Neumann Algebra; 6 Applications to Group Theory; 6.1 L2-Betti Numbers of Groups; 6.2 Vanishing of L2-Betti Numbers of Groups; 6.3 L2-Betti Numbers of Some Specific Groups; 6.4 Deficiency and L2-Betti Numbers of Groups; 7 G- and K-Theory; 7.1 The K0- group of a Group von Neumann Algebra; 7.2 The K1- and L-groups of a Group von Neumann Algebra; 7.3 Applications to G-theory of Group Rings; 7.4 Applications to the Whitehead Group; 8 Measurable Group Theory. |
ctrlnum | (OCoLC)769341706 |
dewey-full | 512.2 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 512/.2 |
dewey-search | 512.2 512/.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06323cam a2200829Mu 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn769341706</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|---|||||</controlfield><controlfield tag="008">111226s2009 enk ob 000 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2010275265</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">E7B</subfield><subfield code="d">REDDC</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LUN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA9C2157</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">015441284</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">769187764</subfield><subfield code="a">796932296</subfield><subfield code="a">1167176351</subfield><subfield code="a">1264903547</subfield><subfield code="a">1412756658</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139116763</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139116762</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139127424</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">113912742X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139114592</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">113911459X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139107099</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139107097</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521757249</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">052175724X</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)769341706</subfield><subfield code="z">(OCoLC)769187764</subfield><subfield code="z">(OCoLC)796932296</subfield><subfield code="z">(OCoLC)1167176351</subfield><subfield code="z">(OCoLC)1264903547</subfield><subfield code="z">(OCoLC)1412756658</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA183 .G43 2009</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBG</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.2</subfield><subfield code="a">512/.2</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bridson, Martin R.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric and Cohomological Methods in Group Theory.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2009.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (332 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society Lecture Note Series, 358 ;</subfield><subfield code="v">v. 358</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; Preface; List of Participants; Notes on Sela's work: Limit groups and Makanin-Razborov diagrams; Contents; 1 The Main Theorem; 1.1 Introduction; 1.2 Basic properties of limit groups; 1.3 Modular groups and the statement of the main theorem; 1.4 Makanin-Razborov diagrams; 1.5 Abelian subgroups of limit groups; 1.6 Constructible limit groups; 2 The Main Proposition; 3 Review: Measured laminations and R-tree; 3.1 Laminations; 3.2 Dual trees; 3.3 The structure theorem; 3.4 Spaces of trees; 4 Proof of the Main Proposition; 5 Review: JSJ-theory.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6 Limit groups are CLG's7 A more geometric approach; References; Solutions to Bestvina & Feighn's exercises on limit groups; 1 Definitions and elementary properties; 1.1?-residually free groups; 1.2 Limit groups; 1.3 Negative examples; 2 Embeddings in real algebraic groups; 3 GADs for limit groups; 4 Constructible Limit Groups; 4.1 CLGs are CSA; 4.2 Abelian subgroups; 4.3 Heredity; 4.4 Coherence; 4.5 Finite K(G, 1); 4.6 Principal cyclic splittings; 4.7 A criterion in free groups; 4.8 CLGs are limit groups; 5 The Shortening Argument; 5.1 Preliminary ideas; 5.2 The abelian part.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.3 The surface part5.4 The simplicial part; 6 Bestvina and Feighn's geometric approach; 6.1 The space of laminations; 6.2 Matching resolutions in the limit; 6.3 Finding kernel elements carried by leaves; 6.4 Examples of limit groups; References; L2 Invariants from the algebraic point of view; 0 Introduction; Contents; 1 Group von Neumann Algebras; 1.1 The Definition of the Group von Neumann Algebra; 1.2 Ring Theoretic Properties of the Group von Neumann Algebra; 1.3 Dimension Theory over the Group von Neumann Algebra; 2 Definition and Basic Properties of L2-Betti Numbers.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.1 The Definition of L2-Betti Numbers2.2 Basic Properties of L2-Betti Numbers; 2.3 Comparison with Other Definitions; 2.4 L2-Euler Characteristic; 3 Computations of L2-Betti Numbers; 3.1 Abelian Groups; 3.2 Finite Coverings; 3.3 Surfaces; 3.4 Three-Dimensional Manifolds; 3.5 Symmetric Spaces; 3.6 Spaces with S1 Action; 3.7 Mapping Tori; 3.8 Fibrations; 4 The Atiyah Conjecture; 4.1 Reformulations of the Atiyah Conjecture; 4.2 The Ring Theoretic Version of the Atiyah Conjecture; 4.3 The Atiyah Conjecture for Torsion-Free Groups; 4.4 The Atiyah Conjecture Implies the Kaplanski Conjecture.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.5 The Status of the Atiyah Conjecture4.6 Groups Without Bound on the Order of Its Finite Subgroups; 5 Flatness Properties of the Group von Neumann Algebra; 6 Applications to Group Theory; 6.1 L2-Betti Numbers of Groups; 6.2 Vanishing of L2-Betti Numbers of Groups; 6.3 L2-Betti Numbers of Some Specific Groups; 6.4 Deficiency and L2-Betti Numbers of Groups; 7 G- and K-Theory; 7.1 The K0- group of a Group von Neumann Algebra; 7.2 The K1- and L-groups of a Group von Neumann Algebra; 7.3 Applications to G-theory of Group Rings; 7.4 Applications to the Whitehead Group; 8 Measurable Group Theory.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">8.1 Measure Equivalence and Quasi-Isometry.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An extended tour through a selection of the most important trends in modern geometric group theory.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometric group theory</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Homology theory</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie géométrique des groupes</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Homologie</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Group Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometric group theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homology theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Conference papers and proceedings</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kropholler, Peter H.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leary, Ian J.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2009188355</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Bridson, Martin R.</subfield><subfield code="t">Geometric and Cohomological Methods in Group Theory.</subfield><subfield code="d">Cambridge : Cambridge University Press, ©2009</subfield><subfield code="z">9780521757249</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society Lecture Note Series, 358.</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399263</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH16078772</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL774956</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10502730</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">399263</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">368646</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7205418</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7302866</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9621221</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">isbn_9780521757249</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Conference papers and proceedings fast |
genre_facet | Conference papers and proceedings |
id | ZDB-4-EBA-ocn769341706 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:18:10Z |
institution | BVB |
isbn | 9781139116763 1139116762 9781139127424 113912742X 9781139114592 113911459X 9781139107099 1139107097 |
language | English |
oclc_num | 769341706 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (332 pages) |
psigel | ZDB-4-EBA |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society Lecture Note Series, 358. |
series2 | London Mathematical Society Lecture Note Series, 358 ; |
spelling | Bridson, Martin R. Geometric and Cohomological Methods in Group Theory. Cambridge : Cambridge University Press, 2009. 1 online resource (332 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society Lecture Note Series, 358 ; v. 358 Cover; Title; Copyright; Contents; Preface; List of Participants; Notes on Sela's work: Limit groups and Makanin-Razborov diagrams; Contents; 1 The Main Theorem; 1.1 Introduction; 1.2 Basic properties of limit groups; 1.3 Modular groups and the statement of the main theorem; 1.4 Makanin-Razborov diagrams; 1.5 Abelian subgroups of limit groups; 1.6 Constructible limit groups; 2 The Main Proposition; 3 Review: Measured laminations and R-tree; 3.1 Laminations; 3.2 Dual trees; 3.3 The structure theorem; 3.4 Spaces of trees; 4 Proof of the Main Proposition; 5 Review: JSJ-theory. 6 Limit groups are CLG's7 A more geometric approach; References; Solutions to Bestvina & Feighn's exercises on limit groups; 1 Definitions and elementary properties; 1.1?-residually free groups; 1.2 Limit groups; 1.3 Negative examples; 2 Embeddings in real algebraic groups; 3 GADs for limit groups; 4 Constructible Limit Groups; 4.1 CLGs are CSA; 4.2 Abelian subgroups; 4.3 Heredity; 4.4 Coherence; 4.5 Finite K(G, 1); 4.6 Principal cyclic splittings; 4.7 A criterion in free groups; 4.8 CLGs are limit groups; 5 The Shortening Argument; 5.1 Preliminary ideas; 5.2 The abelian part. 5.3 The surface part5.4 The simplicial part; 6 Bestvina and Feighn's geometric approach; 6.1 The space of laminations; 6.2 Matching resolutions in the limit; 6.3 Finding kernel elements carried by leaves; 6.4 Examples of limit groups; References; L2 Invariants from the algebraic point of view; 0 Introduction; Contents; 1 Group von Neumann Algebras; 1.1 The Definition of the Group von Neumann Algebra; 1.2 Ring Theoretic Properties of the Group von Neumann Algebra; 1.3 Dimension Theory over the Group von Neumann Algebra; 2 Definition and Basic Properties of L2-Betti Numbers. 2.1 The Definition of L2-Betti Numbers2.2 Basic Properties of L2-Betti Numbers; 2.3 Comparison with Other Definitions; 2.4 L2-Euler Characteristic; 3 Computations of L2-Betti Numbers; 3.1 Abelian Groups; 3.2 Finite Coverings; 3.3 Surfaces; 3.4 Three-Dimensional Manifolds; 3.5 Symmetric Spaces; 3.6 Spaces with S1 Action; 3.7 Mapping Tori; 3.8 Fibrations; 4 The Atiyah Conjecture; 4.1 Reformulations of the Atiyah Conjecture; 4.2 The Ring Theoretic Version of the Atiyah Conjecture; 4.3 The Atiyah Conjecture for Torsion-Free Groups; 4.4 The Atiyah Conjecture Implies the Kaplanski Conjecture. 4.5 The Status of the Atiyah Conjecture4.6 Groups Without Bound on the Order of Its Finite Subgroups; 5 Flatness Properties of the Group von Neumann Algebra; 6 Applications to Group Theory; 6.1 L2-Betti Numbers of Groups; 6.2 Vanishing of L2-Betti Numbers of Groups; 6.3 L2-Betti Numbers of Some Specific Groups; 6.4 Deficiency and L2-Betti Numbers of Groups; 7 G- and K-Theory; 7.1 The K0- group of a Group von Neumann Algebra; 7.2 The K1- and L-groups of a Group von Neumann Algebra; 7.3 Applications to G-theory of Group Rings; 7.4 Applications to the Whitehead Group; 8 Measurable Group Theory. 8.1 Measure Equivalence and Quasi-Isometry. An extended tour through a selection of the most important trends in modern geometric group theory. Includes bibliographical references. Print version record. Geometric group theory Congresses. Homology theory Congresses. Théorie géométrique des groupes Congrès. Homologie Congrès. MATHEMATICS Group Theory. bisacsh Geometric group theory fast Homology theory fast Conference papers and proceedings fast Kropholler, Peter H. Leary, Ian J. http://id.loc.gov/authorities/names/no2009188355 Print version: Bridson, Martin R. Geometric and Cohomological Methods in Group Theory. Cambridge : Cambridge University Press, ©2009 9780521757249 London Mathematical Society Lecture Note Series, 358. FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399263 Volltext |
spellingShingle | Bridson, Martin R. Geometric and Cohomological Methods in Group Theory. London Mathematical Society Lecture Note Series, 358. Cover; Title; Copyright; Contents; Preface; List of Participants; Notes on Sela's work: Limit groups and Makanin-Razborov diagrams; Contents; 1 The Main Theorem; 1.1 Introduction; 1.2 Basic properties of limit groups; 1.3 Modular groups and the statement of the main theorem; 1.4 Makanin-Razborov diagrams; 1.5 Abelian subgroups of limit groups; 1.6 Constructible limit groups; 2 The Main Proposition; 3 Review: Measured laminations and R-tree; 3.1 Laminations; 3.2 Dual trees; 3.3 The structure theorem; 3.4 Spaces of trees; 4 Proof of the Main Proposition; 5 Review: JSJ-theory. 6 Limit groups are CLG's7 A more geometric approach; References; Solutions to Bestvina & Feighn's exercises on limit groups; 1 Definitions and elementary properties; 1.1?-residually free groups; 1.2 Limit groups; 1.3 Negative examples; 2 Embeddings in real algebraic groups; 3 GADs for limit groups; 4 Constructible Limit Groups; 4.1 CLGs are CSA; 4.2 Abelian subgroups; 4.3 Heredity; 4.4 Coherence; 4.5 Finite K(G, 1); 4.6 Principal cyclic splittings; 4.7 A criterion in free groups; 4.8 CLGs are limit groups; 5 The Shortening Argument; 5.1 Preliminary ideas; 5.2 The abelian part. 5.3 The surface part5.4 The simplicial part; 6 Bestvina and Feighn's geometric approach; 6.1 The space of laminations; 6.2 Matching resolutions in the limit; 6.3 Finding kernel elements carried by leaves; 6.4 Examples of limit groups; References; L2 Invariants from the algebraic point of view; 0 Introduction; Contents; 1 Group von Neumann Algebras; 1.1 The Definition of the Group von Neumann Algebra; 1.2 Ring Theoretic Properties of the Group von Neumann Algebra; 1.3 Dimension Theory over the Group von Neumann Algebra; 2 Definition and Basic Properties of L2-Betti Numbers. 2.1 The Definition of L2-Betti Numbers2.2 Basic Properties of L2-Betti Numbers; 2.3 Comparison with Other Definitions; 2.4 L2-Euler Characteristic; 3 Computations of L2-Betti Numbers; 3.1 Abelian Groups; 3.2 Finite Coverings; 3.3 Surfaces; 3.4 Three-Dimensional Manifolds; 3.5 Symmetric Spaces; 3.6 Spaces with S1 Action; 3.7 Mapping Tori; 3.8 Fibrations; 4 The Atiyah Conjecture; 4.1 Reformulations of the Atiyah Conjecture; 4.2 The Ring Theoretic Version of the Atiyah Conjecture; 4.3 The Atiyah Conjecture for Torsion-Free Groups; 4.4 The Atiyah Conjecture Implies the Kaplanski Conjecture. 4.5 The Status of the Atiyah Conjecture4.6 Groups Without Bound on the Order of Its Finite Subgroups; 5 Flatness Properties of the Group von Neumann Algebra; 6 Applications to Group Theory; 6.1 L2-Betti Numbers of Groups; 6.2 Vanishing of L2-Betti Numbers of Groups; 6.3 L2-Betti Numbers of Some Specific Groups; 6.4 Deficiency and L2-Betti Numbers of Groups; 7 G- and K-Theory; 7.1 The K0- group of a Group von Neumann Algebra; 7.2 The K1- and L-groups of a Group von Neumann Algebra; 7.3 Applications to G-theory of Group Rings; 7.4 Applications to the Whitehead Group; 8 Measurable Group Theory. Geometric group theory Congresses. Homology theory Congresses. Théorie géométrique des groupes Congrès. Homologie Congrès. MATHEMATICS Group Theory. bisacsh Geometric group theory fast Homology theory fast |
title | Geometric and Cohomological Methods in Group Theory. |
title_auth | Geometric and Cohomological Methods in Group Theory. |
title_exact_search | Geometric and Cohomological Methods in Group Theory. |
title_full | Geometric and Cohomological Methods in Group Theory. |
title_fullStr | Geometric and Cohomological Methods in Group Theory. |
title_full_unstemmed | Geometric and Cohomological Methods in Group Theory. |
title_short | Geometric and Cohomological Methods in Group Theory. |
title_sort | geometric and cohomological methods in group theory |
topic | Geometric group theory Congresses. Homology theory Congresses. Théorie géométrique des groupes Congrès. Homologie Congrès. MATHEMATICS Group Theory. bisacsh Geometric group theory fast Homology theory fast |
topic_facet | Geometric group theory Congresses. Homology theory Congresses. Théorie géométrique des groupes Congrès. Homologie Congrès. MATHEMATICS Group Theory. Geometric group theory Homology theory Conference papers and proceedings |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399263 |
work_keys_str_mv | AT bridsonmartinr geometricandcohomologicalmethodsingrouptheory AT krophollerpeterh geometricandcohomologicalmethodsingrouptheory AT learyianj geometricandcohomologicalmethodsingrouptheory |