Algebraic graph theory :: morphisms, monoids, and matrices /
This is a highly self-contained book about algebraic graph theory which is written with a view to keep the lively and unconventional atmosphere of a spoken text to communicate the enthusiasm the author feels about this subject. The focus is on homomorphisms and endomorphisms, matrices and eigenvalue...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston :
De Gruyter,
©2011.
|
Schriftenreihe: | De Gruyter studies in mathematics ;
41. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This is a highly self-contained book about algebraic graph theory which is written with a view to keep the lively and unconventional atmosphere of a spoken text to communicate the enthusiasm the author feels about this subject. The focus is on homomorphisms and endomorphisms, matrices and eigenvalues. Graph models are extremely useful for almost all applications and applicators as they play an important role as structuring tools. They allow to model net structures - like roads, computers, telephones - instances of abstract data structures - like lists, stacks, trees - and functional or object oriented programming. |
Beschreibung: | 1 online resource (xvi, 308 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9783110255096 311025509X 1283400448 9781283400442 3110254085 9783110254082 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn769190162 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 110531s2011 gw ob 001 0 eng d | ||
040 | |a E7B |b eng |e pn |c E7B |d N$T |d IDEBK |d OCLCQ |d DEBSZ |d OCLCQ |d YDXCP |d OCLCQ |d OCLCF |d OCLCQ |d EBLCP |d CDX |d DEBBG |d OCLCQ |d COO |d OCLCQ |d D6H |d AZK |d COCUF |d UIU |d AGLDB |d MOR |d OTZ |d ZCU |d OCLCQ |d MERUC |d OCLCQ |d JBG |d OCLCQ |d DEGRU |d U3W |d STF |d WRM |d OCLCQ |d VTS |d NRAMU |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d TKN |d OCLCQ |d AU@ |d LEAUB |d DKC |d OCLCQ |d UKAHL |d OCLCQ |d NOC |d BRF |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
016 | 7 | |a 015948696 |2 Uk | |
019 | |a 757261228 |a 816881903 |a 961570949 |a 962688764 |a 1057991632 |a 1189801785 | ||
020 | |a 9783110255096 |q (electronic bk.) | ||
020 | |a 311025509X |q (electronic bk.) | ||
020 | |a 1283400448 | ||
020 | |a 9781283400442 | ||
020 | |a 3110254085 |q (alk. paper) | ||
020 | |a 9783110254082 | ||
020 | |z 9783110254082 |q (alk. paper) | ||
024 | 7 | |a 10.1515/9783110255096 |2 doi | |
035 | |a (OCoLC)769190162 |z (OCoLC)757261228 |z (OCoLC)816881903 |z (OCoLC)961570949 |z (OCoLC)962688764 |z (OCoLC)1057991632 |z (OCoLC)1189801785 | ||
050 | 4 | |a QA166 |b .K53 2011eb | |
072 | 7 | |a MAT |x 013000 |2 bisacsh | |
082 | 7 | |a 511/.5 |2 23 | |
084 | |a SK 890 |q SEPA |2 rvk |0 (DE-625)rvk/143267: | ||
049 | |a MAIN | ||
100 | 1 | |a Knauer, Ulrich, |d 1942- |1 https://id.oclc.org/worldcat/entity/E39PCjqJWwt4MYVgJMwtPkTwP3 |0 http://id.loc.gov/authorities/names/n96084962 | |
245 | 1 | 0 | |a Algebraic graph theory : |b morphisms, monoids, and matrices / |c by Ulrich Knauer. |
260 | |a Berlin ; |a Boston : |b De Gruyter, |c ©2011. | ||
300 | |a 1 online resource (xvi, 308 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
490 | 1 | |a De Gruyter studies in mathematics ; |v 41 | |
504 | |a Includes bibliographical references and index. | ||
520 | |a This is a highly self-contained book about algebraic graph theory which is written with a view to keep the lively and unconventional atmosphere of a spoken text to communicate the enthusiasm the author feels about this subject. The focus is on homomorphisms and endomorphisms, matrices and eigenvalues. Graph models are extremely useful for almost all applications and applicators as they play an important role as structuring tools. They allow to model net structures - like roads, computers, telephones - instances of abstract data structures - like lists, stacks, trees - and functional or object oriented programming. | ||
505 | 0 | |a Preface; 1 Directed and undirected graphs; 2 Graphs and matrices; 3 Categories and functors; 4 Binary graph operations; 5 Line graph and other unary graph operations; 6 Graphs and vector spaces; 7 Graphs, groups and monoids; 8 The characteristic polynomial of graphs; 9 Graphs and monoids; 10 Compositions, unretractivities and monoids; 11 Cayley graphs of semigroups; 12 Vertex transitive Cayley graphs; 13 Embeddings of Cayley graphs -- genus of semigroups; Bibliography; Index; Index of symbols. | |
546 | |a In English. | ||
650 | 0 | |a Graph theory. |0 http://id.loc.gov/authorities/subjects/sh85056471 | |
650 | 0 | |a Algebraic topology. |0 http://id.loc.gov/authorities/subjects/sh85003438 | |
650 | 6 | |a Topologie algébrique. | |
650 | 7 | |a MATHEMATICS |x Graphic Methods. |2 bisacsh | |
650 | 7 | |a Algebraic topology |2 fast | |
650 | 7 | |a Graph theory |2 fast | |
650 | 7 | |a Online-Ressource |2 gnd |0 http://d-nb.info/gnd/4511937-5 | |
776 | 0 | 8 | |i Print version: |a Knauer, U., 1942- |t Algebraic graph theory. |d Berlin ; Boston : De Gruyter, ©2011 |w (DLC) 2011017050 |
830 | 0 | |a De Gruyter studies in mathematics ; |v 41. |0 http://id.loc.gov/authorities/names/n83742913 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=398953 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH25310937 | ||
938 | |a Coutts Information Services |b COUT |n 20504114 | ||
938 | |a De Gruyter |b DEGR |n 9783110255096 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL787195 | ||
938 | |a ebrary |b EBRY |n ebr10512209 | ||
938 | |a EBSCOhost |b EBSC |n 398953 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 340044 | ||
938 | |a YBP Library Services |b YANK |n 7184157 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn769190162 |
---|---|
_version_ | 1816881780577271808 |
adam_text | |
any_adam_object | |
author | Knauer, Ulrich, 1942- |
author_GND | http://id.loc.gov/authorities/names/n96084962 |
author_facet | Knauer, Ulrich, 1942- |
author_role | |
author_sort | Knauer, Ulrich, 1942- |
author_variant | u k uk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA166 |
callnumber-raw | QA166 .K53 2011eb |
callnumber-search | QA166 .K53 2011eb |
callnumber-sort | QA 3166 K53 42011EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 890 |
collection | ZDB-4-EBA |
contents | Preface; 1 Directed and undirected graphs; 2 Graphs and matrices; 3 Categories and functors; 4 Binary graph operations; 5 Line graph and other unary graph operations; 6 Graphs and vector spaces; 7 Graphs, groups and monoids; 8 The characteristic polynomial of graphs; 9 Graphs and monoids; 10 Compositions, unretractivities and monoids; 11 Cayley graphs of semigroups; 12 Vertex transitive Cayley graphs; 13 Embeddings of Cayley graphs -- genus of semigroups; Bibliography; Index; Index of symbols. |
ctrlnum | (OCoLC)769190162 |
dewey-full | 511/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.5 |
dewey-search | 511/.5 |
dewey-sort | 3511 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04342cam a2200685Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn769190162</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">110531s2011 gw ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">CDX</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">D6H</subfield><subfield code="d">AZK</subfield><subfield code="d">COCUF</subfield><subfield code="d">UIU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">OTZ</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEGRU</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NOC</subfield><subfield code="d">BRF</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">015948696</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">757261228</subfield><subfield code="a">816881903</subfield><subfield code="a">961570949</subfield><subfield code="a">962688764</subfield><subfield code="a">1057991632</subfield><subfield code="a">1189801785</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110255096</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">311025509X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283400448</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283400442</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110254085</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110254082</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110254082</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110255096</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)769190162</subfield><subfield code="z">(OCoLC)757261228</subfield><subfield code="z">(OCoLC)816881903</subfield><subfield code="z">(OCoLC)961570949</subfield><subfield code="z">(OCoLC)962688764</subfield><subfield code="z">(OCoLC)1057991632</subfield><subfield code="z">(OCoLC)1189801785</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA166</subfield><subfield code="b">.K53 2011eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">013000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511/.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="q">SEPA</subfield><subfield code="2">rvk</subfield><subfield code="0">(DE-625)rvk/143267:</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Knauer, Ulrich,</subfield><subfield code="d">1942-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjqJWwt4MYVgJMwtPkTwP3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n96084962</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic graph theory :</subfield><subfield code="b">morphisms, monoids, and matrices /</subfield><subfield code="c">by Ulrich Knauer.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin ;</subfield><subfield code="a">Boston :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">©2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 308 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter studies in mathematics ;</subfield><subfield code="v">41</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is a highly self-contained book about algebraic graph theory which is written with a view to keep the lively and unconventional atmosphere of a spoken text to communicate the enthusiasm the author feels about this subject. The focus is on homomorphisms and endomorphisms, matrices and eigenvalues. Graph models are extremely useful for almost all applications and applicators as they play an important role as structuring tools. They allow to model net structures - like roads, computers, telephones - instances of abstract data structures - like lists, stacks, trees - and functional or object oriented programming.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface; 1 Directed and undirected graphs; 2 Graphs and matrices; 3 Categories and functors; 4 Binary graph operations; 5 Line graph and other unary graph operations; 6 Graphs and vector spaces; 7 Graphs, groups and monoids; 8 The characteristic polynomial of graphs; 9 Graphs and monoids; 10 Compositions, unretractivities and monoids; 11 Cayley graphs of semigroups; 12 Vertex transitive Cayley graphs; 13 Embeddings of Cayley graphs -- genus of semigroups; Bibliography; Index; Index of symbols.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Graph theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85056471</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algebraic topology.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85003438</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Topologie algébrique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Graphic Methods.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraic topology</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Graph theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Online-Ressource</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4511937-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Knauer, U., 1942-</subfield><subfield code="t">Algebraic graph theory.</subfield><subfield code="d">Berlin ; Boston : De Gruyter, ©2011</subfield><subfield code="w">(DLC) 2011017050</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematics ;</subfield><subfield code="v">41.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83742913</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=398953</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25310937</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">20504114</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110255096</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL787195</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10512209</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">398953</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">340044</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7184157</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn769190162 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:18:10Z |
institution | BVB |
isbn | 9783110255096 311025509X 1283400448 9781283400442 3110254085 9783110254082 |
language | English |
oclc_num | 769190162 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xvi, 308 pages) |
psigel | ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | De Gruyter, |
record_format | marc |
series | De Gruyter studies in mathematics ; |
series2 | De Gruyter studies in mathematics ; |
spelling | Knauer, Ulrich, 1942- https://id.oclc.org/worldcat/entity/E39PCjqJWwt4MYVgJMwtPkTwP3 http://id.loc.gov/authorities/names/n96084962 Algebraic graph theory : morphisms, monoids, and matrices / by Ulrich Knauer. Berlin ; Boston : De Gruyter, ©2011. 1 online resource (xvi, 308 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda De Gruyter studies in mathematics ; 41 Includes bibliographical references and index. This is a highly self-contained book about algebraic graph theory which is written with a view to keep the lively and unconventional atmosphere of a spoken text to communicate the enthusiasm the author feels about this subject. The focus is on homomorphisms and endomorphisms, matrices and eigenvalues. Graph models are extremely useful for almost all applications and applicators as they play an important role as structuring tools. They allow to model net structures - like roads, computers, telephones - instances of abstract data structures - like lists, stacks, trees - and functional or object oriented programming. Preface; 1 Directed and undirected graphs; 2 Graphs and matrices; 3 Categories and functors; 4 Binary graph operations; 5 Line graph and other unary graph operations; 6 Graphs and vector spaces; 7 Graphs, groups and monoids; 8 The characteristic polynomial of graphs; 9 Graphs and monoids; 10 Compositions, unretractivities and monoids; 11 Cayley graphs of semigroups; 12 Vertex transitive Cayley graphs; 13 Embeddings of Cayley graphs -- genus of semigroups; Bibliography; Index; Index of symbols. In English. Graph theory. http://id.loc.gov/authorities/subjects/sh85056471 Algebraic topology. http://id.loc.gov/authorities/subjects/sh85003438 Topologie algébrique. MATHEMATICS Graphic Methods. bisacsh Algebraic topology fast Graph theory fast Online-Ressource gnd http://d-nb.info/gnd/4511937-5 Print version: Knauer, U., 1942- Algebraic graph theory. Berlin ; Boston : De Gruyter, ©2011 (DLC) 2011017050 De Gruyter studies in mathematics ; 41. http://id.loc.gov/authorities/names/n83742913 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=398953 Volltext |
spellingShingle | Knauer, Ulrich, 1942- Algebraic graph theory : morphisms, monoids, and matrices / De Gruyter studies in mathematics ; Preface; 1 Directed and undirected graphs; 2 Graphs and matrices; 3 Categories and functors; 4 Binary graph operations; 5 Line graph and other unary graph operations; 6 Graphs and vector spaces; 7 Graphs, groups and monoids; 8 The characteristic polynomial of graphs; 9 Graphs and monoids; 10 Compositions, unretractivities and monoids; 11 Cayley graphs of semigroups; 12 Vertex transitive Cayley graphs; 13 Embeddings of Cayley graphs -- genus of semigroups; Bibliography; Index; Index of symbols. Graph theory. http://id.loc.gov/authorities/subjects/sh85056471 Algebraic topology. http://id.loc.gov/authorities/subjects/sh85003438 Topologie algébrique. MATHEMATICS Graphic Methods. bisacsh Algebraic topology fast Graph theory fast Online-Ressource gnd http://d-nb.info/gnd/4511937-5 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85056471 http://id.loc.gov/authorities/subjects/sh85003438 http://d-nb.info/gnd/4511937-5 |
title | Algebraic graph theory : morphisms, monoids, and matrices / |
title_auth | Algebraic graph theory : morphisms, monoids, and matrices / |
title_exact_search | Algebraic graph theory : morphisms, monoids, and matrices / |
title_full | Algebraic graph theory : morphisms, monoids, and matrices / by Ulrich Knauer. |
title_fullStr | Algebraic graph theory : morphisms, monoids, and matrices / by Ulrich Knauer. |
title_full_unstemmed | Algebraic graph theory : morphisms, monoids, and matrices / by Ulrich Knauer. |
title_short | Algebraic graph theory : |
title_sort | algebraic graph theory morphisms monoids and matrices |
title_sub | morphisms, monoids, and matrices / |
topic | Graph theory. http://id.loc.gov/authorities/subjects/sh85056471 Algebraic topology. http://id.loc.gov/authorities/subjects/sh85003438 Topologie algébrique. MATHEMATICS Graphic Methods. bisacsh Algebraic topology fast Graph theory fast Online-Ressource gnd http://d-nb.info/gnd/4511937-5 |
topic_facet | Graph theory. Algebraic topology. Topologie algébrique. MATHEMATICS Graphic Methods. Algebraic topology Graph theory Online-Ressource |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=398953 |
work_keys_str_mv | AT knauerulrich algebraicgraphtheorymorphismsmonoidsandmatrices |