Chance in biology :: using probability to explore nature /
Through the application of probability theory, this text makes predictions about how plants and animals work in a stochastic universe. It uses real-world examples, numerous illustrations and chapter summaries.
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton :
Princeton University Press,
©2000.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Through the application of probability theory, this text makes predictions about how plants and animals work in a stochastic universe. It uses real-world examples, numerous illustrations and chapter summaries. |
Beschreibung: | 1 online resource (xiii, 291 pages) : illustrations |
Bibliographie: | Includes bibliographical references and indexes. |
ISBN: | 9781400841400 1400841402 9780691005218 0691005214 1283303361 9781283303361 9786613303363 6613303364 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn769188188 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 000322s2000 njua ob 001 0 eng d | ||
010 | |z 00036687 | ||
040 | |a E7B |b eng |e pn |c E7B |d N$T |d REDDC |d OCLCQ |d DEBSZ |d OCLCQ |d JSTOR |d OCLCF |d P@U |d YDXCP |d COO |d OCLCQ |d AZK |d LOA |d JBG |d COCUF |d AGLDB |d MOR |d PIFAG |d OTZ |d CUS |d OCLCQ |d IOG |d U3W |d EZ9 |d STF |d WRM |d VTS |d NRAMU |d INT |d VT2 |d AU@ |d OCLCQ |d LVT |d OCLCQ |d VLY |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d TKN |d INARC | ||
016 | 7 | |a 000021426095 |2 AU | |
019 | |a 889219805 |a 961594384 |a 962595880 |a 966265350 |a 988474694 |a 991994248 |a 995040698 |a 1037790472 |a 1038690614 |a 1045541457 |a 1055348716 |a 1057975664 |a 1063890018 |a 1162461496 | ||
020 | |a 9781400841400 |q (electronic bk.) | ||
020 | |a 1400841402 |q (electronic bk.) | ||
020 | |a 9780691005218 | ||
020 | |a 0691005214 | ||
020 | |z 0691005214 |q (alk. paper) | ||
020 | |z 0691094942 | ||
020 | |z 9780691094946 | ||
020 | |a 1283303361 | ||
020 | |a 9781283303361 | ||
020 | |a 9786613303363 | ||
020 | |a 6613303364 | ||
035 | |a (OCoLC)769188188 |z (OCoLC)889219805 |z (OCoLC)961594384 |z (OCoLC)962595880 |z (OCoLC)966265350 |z (OCoLC)988474694 |z (OCoLC)991994248 |z (OCoLC)995040698 |z (OCoLC)1037790472 |z (OCoLC)1038690614 |z (OCoLC)1045541457 |z (OCoLC)1055348716 |z (OCoLC)1057975664 |z (OCoLC)1063890018 |z (OCoLC)1162461496 | ||
037 | |a 22573/cttsn6j |b JSTOR | ||
050 | 4 | |a QH323.5 |b .D46 2000eb | |
072 | 7 | |a NAT |x 027000 |2 bisacsh | |
072 | 7 | |a SCI |x 008000 |2 bisacsh | |
072 | 7 | |a SCI |x 086000 |2 bisacsh | |
072 | 7 | |a SCI008000 |2 bisacsh | |
082 | 7 | |a 570/.1/5192 |2 21 | |
049 | |a MAIN | ||
100 | 1 | |a Denny, Mark W., |d 1951- |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJxmG7hKVTyDwpVr7T34v3 |0 http://id.loc.gov/authorities/names/n87935887 | |
245 | 1 | 0 | |a Chance in biology : |b using probability to explore nature / |c Mark Denny and Steven Gaines. |
260 | |a Princeton : |b Princeton University Press, |c ©2000. | ||
300 | |a 1 online resource (xiii, 291 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
380 | |a Bibliography | ||
504 | |a Includes bibliographical references and indexes. | ||
505 | 0 | |a Machine derived contents note: Table of contents for Chance in biology : using probability to explore nature / Mark Denny and Steven Gaines. -- Bibliographic record and links to related information available from the Library of Congress catalog -- Information from electronic data provided by the publisher. May be incomplete or contain other coding. -- Preface xi -- 1 The Nature of Chance 3 -- 1.1 Silk, Strength, and Statistics 3 -- 1.2 What Is Certain?7 -- 1.3 Determinism versus Chance 8 -- 1.4 Chaos 9 -- 1.5 A Road Map 11 -- 2 Rules of Disorder 12 -- 2.1 Events, Experiments, and Outcomes 12 -- 2.1.1 Sarcastic Fish 13 -- 2.1.2 Bipolar Smut 14 -- 2.1.3 Discrete versus Continuous 17 -- 2.1.4 Drawing Pictures 18 -- 2.2 Probability 19 -- 2.3 Rules and Tools 20 -- 2.3.1 Events Are the Sum of Their Parts 20 -- 2.3.2 The Union of Sets 21 -- 2.3.3 The Probability of a Union 23 -- 2.3.4 Probability and the Intersection of Sets 24 -- 2.3.5 The Complement of a Set 25 -- 2.3.6 Additional Information and Conditional Probabilities 27 -- 2.3.7 Bayes' Formula 29 -- 2.3.8 AIDS and Bayes' Formula 30 -- 2.3.9 The Independence of Sets 32 -- 2.4 Probability Distributions 34 -- 2.5 Summary 37 -- 2.6 Problems 37 -- 3 Discrete Patterns of Disorder 40 -- 3.1 Random Variables 40 -- 3.2 Expectations Defined 42 -- 3.3 The Variance 46 -- 3.4 The Trials of Bernoulli 48 -- 3.5 Beyond 0 's and 1 's 50 -- 3.6 Bernoulli = Binomial 51 -- 3.6.1 Permutations and Combinations 53 -- 3.7 Waiting Forever 60 -- 3.8 Summary 65 -- 3.9 Problems 66 -- 4 Continuous Patterns of Disorder 68 -- 4.1 The Uniform Distribution 69 -- 4.1.1 The Cumulative Probability Distribution 70 -- 4.1.2 The Probability Density Function 71 -- 4.1.3 The Expectation 74 -- 4.1.4 The Variance 76 -- 4.2 The Shape of Distributions 77 -- 4.3 The Normal Curve 79 -- 4.4 Why Is the Normal Curve Normal?82 -- 4.5 The Cumulative Normal Curve 84 -- 4.6 The Standard Error 86 -- 4.7 A Brief Detour to Statistics 89 -- 4.8 Summary 92 -- 4.9 Problems 93 -- 4.10 Appendix 1:The Normal Distribution 94 -- 4.11 Appendix 2:The Central Limit Theorem 98 -- 5 Random Walks 106 -- 5.1 The Motion of Molecules 106 -- 5.2 Rules of a Random Walk 110 -- 5.2.1 The Average 110 -- 5.2.2 The Variance 112 -- 5.2.3 Diffusive Speed 115 -- 5.3 Diffusion and the Real World 115 -- 5.4 A Digression on the Binomial Theorem 117 -- 5.5 The Biology of Diffusion 119 -- 5.6 Fick's Equation 123 -- 5.7 A Use of Fick's Equation: Limits to Size 126 -- 5.8 Receptors and Channels 130 -- 5.9 Summary 136 -- 5.10 Problems 137 -- 6 More Random Walks 139 -- 6.1 Diffusion to Capture 139 -- 6.1.1 Two Absorbing Walls 142 -- 6.1.2 One Reflecting Wall 144 -- 6.2 Adrift at Sea: Turbulent Mixing of Plankton 145 -- 6.3 Genetic Drift 148 -- 6.3.1 A Genetic Diffusion Coefficient 149 -- 6.3.2 Drift and Fixation 151 -- 6.4 Genetic Drift and Irreproducible Pigs 154 -- 6.5 The Biology of Elastic Materials 156 -- 6.5.1 Elasticity Defined 156 -- 6.5.2 Biological Rubbers 157 -- 6.5.3 The Limits to Energy Storage 161 -- 6.6 Random Walks in Three Dimensions 163 -- 6.7 Random Protein Con .gurations 167 -- 6.8 A Segue to Thermodynamics 169 -- 6.9 Summary 173 -- 6.10 Problems 173 -- 7 The Statistics of Extremes 175 -- 7.1 The Danger of Cocktail Parties 175 -- 7.2 Calculating the Maximum 182 -- 7.3 Mean and Modal Maxima 185 -- 7.4 Ocean Waves 186 -- 7.5 The Statistics of Extremes 189 -- 7.6 Life and Death in Rhode Island 194 -- 7.7 Play Ball!196 -- 7.8 A Note on Extrapolation 204 -- 7.9 Summary 206 -- 7.10 Problems 206 -- 8 Noise and Perception 208 -- 8.1 Noise Is Inevitable 208 -- 8.2 Dim Lights and Fuzzy Images 212 -- 8.3 The Poisson Distribution 213 -- 8.4 Bayes' Formula and the Design of Rods 218 -- 8.5 Designing Error-Free Rods 219 -- 8.5.1 The Origin of Membrane Potentials 220 -- 8.5.2 Membrane Potential in Rod Cells 222 -- 8.6 Noise and Ion Channels 225 -- 8.6.1 An Electrical Analog 226 -- 8.6.2 Calculating the Membrane Voltage 227 -- 8.6.3 Calculating the Size 229 -- 8.7 Noise and Hearing 230 -- 8.7.1 Fluctuations in Pressure 231 -- 8.7.2 The Rate of Impact 232 -- 8.7.3 Fluctuations in Velocity 233 -- 8.7.4 Fluctuations in Momentum 235 -- 8.7.5 The Standard Error of Pressure 235 -- 8.7.6 Quantifying the Answer 236 -- 8.8 The Rest of the Story 239 -- 8.9 Stochastic Resonance 239 -- 8.9.1 The Utility of Noise 239 -- 8.9.2 Nonlinear Systems 242 -- 8.9.3 The History of Stochastic Resonance 244 -- 8.10 Summary 245 -- 8.11 A Word at the End 246 -- 8.12 A Problem 247 -- 8.13 Appendix 248 -- 9 The Answers 250 -- 9.1 Chapter 2 250 -- 9.2 Chapter 3 256 -- 9.3 Chapter 4 262 -- 9.4 Chapter 5 266 -- 9.5 Chapter 6 269 -- 9.6 Chapter 7 271 -- 9.7 Chapter 8 273 -- Symbol Index 279 -- Author Index 284 -- Subject Index 286 -- Library of Congress subject headings for this publication: Biomathematics, Probabilities. | |
520 | |a Through the application of probability theory, this text makes predictions about how plants and animals work in a stochastic universe. It uses real-world examples, numerous illustrations and chapter summaries. | ||
546 | |a English. | ||
650 | 0 | |a Biomathematics. |0 http://id.loc.gov/authorities/subjects/sh85014235 | |
650 | 0 | |a Probabilities. |0 http://id.loc.gov/authorities/subjects/sh85107090 | |
650 | 6 | |a Biomathématiques. | |
650 | 6 | |a Probabilités. | |
650 | 7 | |a probability. |2 aat | |
650 | 7 | |a NATURE |x Reference. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Life Sciences |x Biology. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Life Sciences |x General. |2 bisacsh | |
650 | 7 | |a Biomathematics |2 fast | |
650 | 7 | |a Probabilities |2 fast | |
653 | |a Biological sciences. | ||
653 | |a Statistics & probability. | ||
653 | |a Applied mathematics. | ||
700 | 1 | |a Gaines, Steven, |d 1951- |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjKkvxHmgMDbdQ9B9YTVfq |0 http://id.loc.gov/authorities/names/n00003475 | |
758 | |i has work: |a Chance in biology (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGPqMJTvff4JHy86JRHmcX |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Denny, Mark W., 1951- |t Chance in biology. |d Princeton : Princeton University Press, ©2000 |w (DLC) 00036687 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399089 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10504758 | ||
938 | |a EBSCOhost |b EBSC |n 399089 | ||
938 | |a Project MUSE |b MUSE |n muse37049 | ||
938 | |a YBP Library Services |b YANK |n 7201826 | ||
938 | |a Internet Archive |b INAR |n chanceinbiologyu0000denn | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn769188188 |
---|---|
_version_ | 1816881779933446145 |
adam_text | |
any_adam_object | |
author | Denny, Mark W., 1951- Gaines, Steven, 1951- |
author_GND | http://id.loc.gov/authorities/names/n87935887 http://id.loc.gov/authorities/names/n00003475 |
author_facet | Denny, Mark W., 1951- Gaines, Steven, 1951- |
author_role | aut aut |
author_sort | Denny, Mark W., 1951- |
author_variant | m w d mw mwd s g sg |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QH323 |
callnumber-raw | QH323.5 .D46 2000eb |
callnumber-search | QH323.5 .D46 2000eb |
callnumber-sort | QH 3323.5 D46 42000EB |
callnumber-subject | QH - Natural History and Biology |
collection | ZDB-4-EBA |
contents | Machine derived contents note: Table of contents for Chance in biology : using probability to explore nature / Mark Denny and Steven Gaines. -- Bibliographic record and links to related information available from the Library of Congress catalog -- Information from electronic data provided by the publisher. May be incomplete or contain other coding. -- Preface xi -- 1 The Nature of Chance 3 -- 1.1 Silk, Strength, and Statistics 3 -- 1.2 What Is Certain?7 -- 1.3 Determinism versus Chance 8 -- 1.4 Chaos 9 -- 1.5 A Road Map 11 -- 2 Rules of Disorder 12 -- 2.1 Events, Experiments, and Outcomes 12 -- 2.1.1 Sarcastic Fish 13 -- 2.1.2 Bipolar Smut 14 -- 2.1.3 Discrete versus Continuous 17 -- 2.1.4 Drawing Pictures 18 -- 2.2 Probability 19 -- 2.3 Rules and Tools 20 -- 2.3.1 Events Are the Sum of Their Parts 20 -- 2.3.2 The Union of Sets 21 -- 2.3.3 The Probability of a Union 23 -- 2.3.4 Probability and the Intersection of Sets 24 -- 2.3.5 The Complement of a Set 25 -- 2.3.6 Additional Information and Conditional Probabilities 27 -- 2.3.7 Bayes' Formula 29 -- 2.3.8 AIDS and Bayes' Formula 30 -- 2.3.9 The Independence of Sets 32 -- 2.4 Probability Distributions 34 -- 2.5 Summary 37 -- 2.6 Problems 37 -- 3 Discrete Patterns of Disorder 40 -- 3.1 Random Variables 40 -- 3.2 Expectations Defined 42 -- 3.3 The Variance 46 -- 3.4 The Trials of Bernoulli 48 -- 3.5 Beyond 0 's and 1 's 50 -- 3.6 Bernoulli = Binomial 51 -- 3.6.1 Permutations and Combinations 53 -- 3.7 Waiting Forever 60 -- 3.8 Summary 65 -- 3.9 Problems 66 -- 4 Continuous Patterns of Disorder 68 -- 4.1 The Uniform Distribution 69 -- 4.1.1 The Cumulative Probability Distribution 70 -- 4.1.2 The Probability Density Function 71 -- 4.1.3 The Expectation 74 -- 4.1.4 The Variance 76 -- 4.2 The Shape of Distributions 77 -- 4.3 The Normal Curve 79 -- 4.4 Why Is the Normal Curve Normal?82 -- 4.5 The Cumulative Normal Curve 84 -- 4.6 The Standard Error 86 -- 4.7 A Brief Detour to Statistics 89 -- 4.8 Summary 92 -- 4.9 Problems 93 -- 4.10 Appendix 1:The Normal Distribution 94 -- 4.11 Appendix 2:The Central Limit Theorem 98 -- 5 Random Walks 106 -- 5.1 The Motion of Molecules 106 -- 5.2 Rules of a Random Walk 110 -- 5.2.1 The Average 110 -- 5.2.2 The Variance 112 -- 5.2.3 Diffusive Speed 115 -- 5.3 Diffusion and the Real World 115 -- 5.4 A Digression on the Binomial Theorem 117 -- 5.5 The Biology of Diffusion 119 -- 5.6 Fick's Equation 123 -- 5.7 A Use of Fick's Equation: Limits to Size 126 -- 5.8 Receptors and Channels 130 -- 5.9 Summary 136 -- 5.10 Problems 137 -- 6 More Random Walks 139 -- 6.1 Diffusion to Capture 139 -- 6.1.1 Two Absorbing Walls 142 -- 6.1.2 One Reflecting Wall 144 -- 6.2 Adrift at Sea: Turbulent Mixing of Plankton 145 -- 6.3 Genetic Drift 148 -- 6.3.1 A Genetic Diffusion Coefficient 149 -- 6.3.2 Drift and Fixation 151 -- 6.4 Genetic Drift and Irreproducible Pigs 154 -- 6.5 The Biology of Elastic Materials 156 -- 6.5.1 Elasticity Defined 156 -- 6.5.2 Biological Rubbers 157 -- 6.5.3 The Limits to Energy Storage 161 -- 6.6 Random Walks in Three Dimensions 163 -- 6.7 Random Protein Con .gurations 167 -- 6.8 A Segue to Thermodynamics 169 -- 6.9 Summary 173 -- 6.10 Problems 173 -- 7 The Statistics of Extremes 175 -- 7.1 The Danger of Cocktail Parties 175 -- 7.2 Calculating the Maximum 182 -- 7.3 Mean and Modal Maxima 185 -- 7.4 Ocean Waves 186 -- 7.5 The Statistics of Extremes 189 -- 7.6 Life and Death in Rhode Island 194 -- 7.7 Play Ball!196 -- 7.8 A Note on Extrapolation 204 -- 7.9 Summary 206 -- 7.10 Problems 206 -- 8 Noise and Perception 208 -- 8.1 Noise Is Inevitable 208 -- 8.2 Dim Lights and Fuzzy Images 212 -- 8.3 The Poisson Distribution 213 -- 8.4 Bayes' Formula and the Design of Rods 218 -- 8.5 Designing Error-Free Rods 219 -- 8.5.1 The Origin of Membrane Potentials 220 -- 8.5.2 Membrane Potential in Rod Cells 222 -- 8.6 Noise and Ion Channels 225 -- 8.6.1 An Electrical Analog 226 -- 8.6.2 Calculating the Membrane Voltage 227 -- 8.6.3 Calculating the Size 229 -- 8.7 Noise and Hearing 230 -- 8.7.1 Fluctuations in Pressure 231 -- 8.7.2 The Rate of Impact 232 -- 8.7.3 Fluctuations in Velocity 233 -- 8.7.4 Fluctuations in Momentum 235 -- 8.7.5 The Standard Error of Pressure 235 -- 8.7.6 Quantifying the Answer 236 -- 8.8 The Rest of the Story 239 -- 8.9 Stochastic Resonance 239 -- 8.9.1 The Utility of Noise 239 -- 8.9.2 Nonlinear Systems 242 -- 8.9.3 The History of Stochastic Resonance 244 -- 8.10 Summary 245 -- 8.11 A Word at the End 246 -- 8.12 A Problem 247 -- 8.13 Appendix 248 -- 9 The Answers 250 -- 9.1 Chapter 2 250 -- 9.2 Chapter 3 256 -- 9.3 Chapter 4 262 -- 9.4 Chapter 5 266 -- 9.5 Chapter 6 269 -- 9.6 Chapter 7 271 -- 9.7 Chapter 8 273 -- Symbol Index 279 -- Author Index 284 -- Subject Index 286 -- Library of Congress subject headings for this publication: Biomathematics, Probabilities. |
ctrlnum | (OCoLC)769188188 |
dewey-full | 570/.1/5192 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 570 - Biology |
dewey-raw | 570/.1/5192 |
dewey-search | 570/.1/5192 |
dewey-sort | 3570 11 45192 |
dewey-tens | 570 - Biology |
discipline | Biologie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08864cam a2200817Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn769188188</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">000322s2000 njua ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 00036687 </subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">N$T</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">P@U</subfield><subfield code="d">YDXCP</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">JBG</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OTZ</subfield><subfield code="d">CUS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IOG</subfield><subfield code="d">U3W</subfield><subfield code="d">EZ9</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LVT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VLY</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">TKN</subfield><subfield code="d">INARC</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">000021426095</subfield><subfield code="2">AU</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">889219805</subfield><subfield code="a">961594384</subfield><subfield code="a">962595880</subfield><subfield code="a">966265350</subfield><subfield code="a">988474694</subfield><subfield code="a">991994248</subfield><subfield code="a">995040698</subfield><subfield code="a">1037790472</subfield><subfield code="a">1038690614</subfield><subfield code="a">1045541457</subfield><subfield code="a">1055348716</subfield><subfield code="a">1057975664</subfield><subfield code="a">1063890018</subfield><subfield code="a">1162461496</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400841400</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400841402</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691005218</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691005214</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691005214</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691094942</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691094946</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283303361</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283303361</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786613303363</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6613303364</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)769188188</subfield><subfield code="z">(OCoLC)889219805</subfield><subfield code="z">(OCoLC)961594384</subfield><subfield code="z">(OCoLC)962595880</subfield><subfield code="z">(OCoLC)966265350</subfield><subfield code="z">(OCoLC)988474694</subfield><subfield code="z">(OCoLC)991994248</subfield><subfield code="z">(OCoLC)995040698</subfield><subfield code="z">(OCoLC)1037790472</subfield><subfield code="z">(OCoLC)1038690614</subfield><subfield code="z">(OCoLC)1045541457</subfield><subfield code="z">(OCoLC)1055348716</subfield><subfield code="z">(OCoLC)1057975664</subfield><subfield code="z">(OCoLC)1063890018</subfield><subfield code="z">(OCoLC)1162461496</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/cttsn6j</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QH323.5</subfield><subfield code="b">.D46 2000eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">NAT</subfield><subfield code="x">027000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">008000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">086000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI008000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">570/.1/5192</subfield><subfield code="2">21</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Denny, Mark W.,</subfield><subfield code="d">1951-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJxmG7hKVTyDwpVr7T34v3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n87935887</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chance in biology :</subfield><subfield code="b">using probability to explore nature /</subfield><subfield code="c">Mark Denny and Steven Gaines.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">©2000.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 291 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="380" ind1=" " ind2=" "><subfield code="a">Bibliography</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Machine derived contents note: Table of contents for Chance in biology : using probability to explore nature / Mark Denny and Steven Gaines. -- Bibliographic record and links to related information available from the Library of Congress catalog -- Information from electronic data provided by the publisher. May be incomplete or contain other coding. -- Preface xi -- 1 The Nature of Chance 3 -- 1.1 Silk, Strength, and Statistics 3 -- 1.2 What Is Certain?7 -- 1.3 Determinism versus Chance 8 -- 1.4 Chaos 9 -- 1.5 A Road Map 11 -- 2 Rules of Disorder 12 -- 2.1 Events, Experiments, and Outcomes 12 -- 2.1.1 Sarcastic Fish 13 -- 2.1.2 Bipolar Smut 14 -- 2.1.3 Discrete versus Continuous 17 -- 2.1.4 Drawing Pictures 18 -- 2.2 Probability 19 -- 2.3 Rules and Tools 20 -- 2.3.1 Events Are the Sum of Their Parts 20 -- 2.3.2 The Union of Sets 21 -- 2.3.3 The Probability of a Union 23 -- 2.3.4 Probability and the Intersection of Sets 24 -- 2.3.5 The Complement of a Set 25 -- 2.3.6 Additional Information and Conditional Probabilities 27 -- 2.3.7 Bayes' Formula 29 -- 2.3.8 AIDS and Bayes' Formula 30 -- 2.3.9 The Independence of Sets 32 -- 2.4 Probability Distributions 34 -- 2.5 Summary 37 -- 2.6 Problems 37 -- 3 Discrete Patterns of Disorder 40 -- 3.1 Random Variables 40 -- 3.2 Expectations Defined 42 -- 3.3 The Variance 46 -- 3.4 The Trials of Bernoulli 48 -- 3.5 Beyond 0 's and 1 's 50 -- 3.6 Bernoulli = Binomial 51 -- 3.6.1 Permutations and Combinations 53 -- 3.7 Waiting Forever 60 -- 3.8 Summary 65 -- 3.9 Problems 66 -- 4 Continuous Patterns of Disorder 68 -- 4.1 The Uniform Distribution 69 -- 4.1.1 The Cumulative Probability Distribution 70 -- 4.1.2 The Probability Density Function 71 -- 4.1.3 The Expectation 74 -- 4.1.4 The Variance 76 -- 4.2 The Shape of Distributions 77 -- 4.3 The Normal Curve 79 -- 4.4 Why Is the Normal Curve Normal?82 -- 4.5 The Cumulative Normal Curve 84 -- 4.6 The Standard Error 86 -- 4.7 A Brief Detour to Statistics 89 -- 4.8 Summary 92 -- 4.9 Problems 93 -- 4.10 Appendix 1:The Normal Distribution 94 -- 4.11 Appendix 2:The Central Limit Theorem 98 -- 5 Random Walks 106 -- 5.1 The Motion of Molecules 106 -- 5.2 Rules of a Random Walk 110 -- 5.2.1 The Average 110 -- 5.2.2 The Variance 112 -- 5.2.3 Diffusive Speed 115 -- 5.3 Diffusion and the Real World 115 -- 5.4 A Digression on the Binomial Theorem 117 -- 5.5 The Biology of Diffusion 119 -- 5.6 Fick's Equation 123 -- 5.7 A Use of Fick's Equation: Limits to Size 126 -- 5.8 Receptors and Channels 130 -- 5.9 Summary 136 -- 5.10 Problems 137 -- 6 More Random Walks 139 -- 6.1 Diffusion to Capture 139 -- 6.1.1 Two Absorbing Walls 142 -- 6.1.2 One Reflecting Wall 144 -- 6.2 Adrift at Sea: Turbulent Mixing of Plankton 145 -- 6.3 Genetic Drift 148 -- 6.3.1 A Genetic Diffusion Coefficient 149 -- 6.3.2 Drift and Fixation 151 -- 6.4 Genetic Drift and Irreproducible Pigs 154 -- 6.5 The Biology of Elastic Materials 156 -- 6.5.1 Elasticity Defined 156 -- 6.5.2 Biological Rubbers 157 -- 6.5.3 The Limits to Energy Storage 161 -- 6.6 Random Walks in Three Dimensions 163 -- 6.7 Random Protein Con .gurations 167 -- 6.8 A Segue to Thermodynamics 169 -- 6.9 Summary 173 -- 6.10 Problems 173 -- 7 The Statistics of Extremes 175 -- 7.1 The Danger of Cocktail Parties 175 -- 7.2 Calculating the Maximum 182 -- 7.3 Mean and Modal Maxima 185 -- 7.4 Ocean Waves 186 -- 7.5 The Statistics of Extremes 189 -- 7.6 Life and Death in Rhode Island 194 -- 7.7 Play Ball!196 -- 7.8 A Note on Extrapolation 204 -- 7.9 Summary 206 -- 7.10 Problems 206 -- 8 Noise and Perception 208 -- 8.1 Noise Is Inevitable 208 -- 8.2 Dim Lights and Fuzzy Images 212 -- 8.3 The Poisson Distribution 213 -- 8.4 Bayes' Formula and the Design of Rods 218 -- 8.5 Designing Error-Free Rods 219 -- 8.5.1 The Origin of Membrane Potentials 220 -- 8.5.2 Membrane Potential in Rod Cells 222 -- 8.6 Noise and Ion Channels 225 -- 8.6.1 An Electrical Analog 226 -- 8.6.2 Calculating the Membrane Voltage 227 -- 8.6.3 Calculating the Size 229 -- 8.7 Noise and Hearing 230 -- 8.7.1 Fluctuations in Pressure 231 -- 8.7.2 The Rate of Impact 232 -- 8.7.3 Fluctuations in Velocity 233 -- 8.7.4 Fluctuations in Momentum 235 -- 8.7.5 The Standard Error of Pressure 235 -- 8.7.6 Quantifying the Answer 236 -- 8.8 The Rest of the Story 239 -- 8.9 Stochastic Resonance 239 -- 8.9.1 The Utility of Noise 239 -- 8.9.2 Nonlinear Systems 242 -- 8.9.3 The History of Stochastic Resonance 244 -- 8.10 Summary 245 -- 8.11 A Word at the End 246 -- 8.12 A Problem 247 -- 8.13 Appendix 248 -- 9 The Answers 250 -- 9.1 Chapter 2 250 -- 9.2 Chapter 3 256 -- 9.3 Chapter 4 262 -- 9.4 Chapter 5 266 -- 9.5 Chapter 6 269 -- 9.6 Chapter 7 271 -- 9.7 Chapter 8 273 -- Symbol Index 279 -- Author Index 284 -- Subject Index 286 -- Library of Congress subject headings for this publication: Biomathematics, Probabilities.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Through the application of probability theory, this text makes predictions about how plants and animals work in a stochastic universe. It uses real-world examples, numerous illustrations and chapter summaries.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Biomathematics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85014235</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Probabilities.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85107090</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Biomathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Probabilités.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">probability.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NATURE</subfield><subfield code="x">Reference.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Life Sciences</subfield><subfield code="x">Biology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Life Sciences</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biomathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Probabilities</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biological sciences.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Statistics & probability.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Applied mathematics.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gaines, Steven,</subfield><subfield code="d">1951-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjKkvxHmgMDbdQ9B9YTVfq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n00003475</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Chance in biology (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGPqMJTvff4JHy86JRHmcX</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Denny, Mark W., 1951-</subfield><subfield code="t">Chance in biology.</subfield><subfield code="d">Princeton : Princeton University Press, ©2000</subfield><subfield code="w">(DLC) 00036687</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399089</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10504758</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">399089</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Project MUSE</subfield><subfield code="b">MUSE</subfield><subfield code="n">muse37049</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7201826</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">chanceinbiologyu0000denn</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn769188188 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:18:09Z |
institution | BVB |
isbn | 9781400841400 1400841402 9780691005218 0691005214 1283303361 9781283303361 9786613303363 6613303364 |
language | English |
oclc_num | 769188188 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiii, 291 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Princeton University Press, |
record_format | marc |
spelling | Denny, Mark W., 1951- author. https://id.oclc.org/worldcat/entity/E39PBJxmG7hKVTyDwpVr7T34v3 http://id.loc.gov/authorities/names/n87935887 Chance in biology : using probability to explore nature / Mark Denny and Steven Gaines. Princeton : Princeton University Press, ©2000. 1 online resource (xiii, 291 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda Bibliography Includes bibliographical references and indexes. Machine derived contents note: Table of contents for Chance in biology : using probability to explore nature / Mark Denny and Steven Gaines. -- Bibliographic record and links to related information available from the Library of Congress catalog -- Information from electronic data provided by the publisher. May be incomplete or contain other coding. -- Preface xi -- 1 The Nature of Chance 3 -- 1.1 Silk, Strength, and Statistics 3 -- 1.2 What Is Certain?7 -- 1.3 Determinism versus Chance 8 -- 1.4 Chaos 9 -- 1.5 A Road Map 11 -- 2 Rules of Disorder 12 -- 2.1 Events, Experiments, and Outcomes 12 -- 2.1.1 Sarcastic Fish 13 -- 2.1.2 Bipolar Smut 14 -- 2.1.3 Discrete versus Continuous 17 -- 2.1.4 Drawing Pictures 18 -- 2.2 Probability 19 -- 2.3 Rules and Tools 20 -- 2.3.1 Events Are the Sum of Their Parts 20 -- 2.3.2 The Union of Sets 21 -- 2.3.3 The Probability of a Union 23 -- 2.3.4 Probability and the Intersection of Sets 24 -- 2.3.5 The Complement of a Set 25 -- 2.3.6 Additional Information and Conditional Probabilities 27 -- 2.3.7 Bayes' Formula 29 -- 2.3.8 AIDS and Bayes' Formula 30 -- 2.3.9 The Independence of Sets 32 -- 2.4 Probability Distributions 34 -- 2.5 Summary 37 -- 2.6 Problems 37 -- 3 Discrete Patterns of Disorder 40 -- 3.1 Random Variables 40 -- 3.2 Expectations Defined 42 -- 3.3 The Variance 46 -- 3.4 The Trials of Bernoulli 48 -- 3.5 Beyond 0 's and 1 's 50 -- 3.6 Bernoulli = Binomial 51 -- 3.6.1 Permutations and Combinations 53 -- 3.7 Waiting Forever 60 -- 3.8 Summary 65 -- 3.9 Problems 66 -- 4 Continuous Patterns of Disorder 68 -- 4.1 The Uniform Distribution 69 -- 4.1.1 The Cumulative Probability Distribution 70 -- 4.1.2 The Probability Density Function 71 -- 4.1.3 The Expectation 74 -- 4.1.4 The Variance 76 -- 4.2 The Shape of Distributions 77 -- 4.3 The Normal Curve 79 -- 4.4 Why Is the Normal Curve Normal?82 -- 4.5 The Cumulative Normal Curve 84 -- 4.6 The Standard Error 86 -- 4.7 A Brief Detour to Statistics 89 -- 4.8 Summary 92 -- 4.9 Problems 93 -- 4.10 Appendix 1:The Normal Distribution 94 -- 4.11 Appendix 2:The Central Limit Theorem 98 -- 5 Random Walks 106 -- 5.1 The Motion of Molecules 106 -- 5.2 Rules of a Random Walk 110 -- 5.2.1 The Average 110 -- 5.2.2 The Variance 112 -- 5.2.3 Diffusive Speed 115 -- 5.3 Diffusion and the Real World 115 -- 5.4 A Digression on the Binomial Theorem 117 -- 5.5 The Biology of Diffusion 119 -- 5.6 Fick's Equation 123 -- 5.7 A Use of Fick's Equation: Limits to Size 126 -- 5.8 Receptors and Channels 130 -- 5.9 Summary 136 -- 5.10 Problems 137 -- 6 More Random Walks 139 -- 6.1 Diffusion to Capture 139 -- 6.1.1 Two Absorbing Walls 142 -- 6.1.2 One Reflecting Wall 144 -- 6.2 Adrift at Sea: Turbulent Mixing of Plankton 145 -- 6.3 Genetic Drift 148 -- 6.3.1 A Genetic Diffusion Coefficient 149 -- 6.3.2 Drift and Fixation 151 -- 6.4 Genetic Drift and Irreproducible Pigs 154 -- 6.5 The Biology of Elastic Materials 156 -- 6.5.1 Elasticity Defined 156 -- 6.5.2 Biological Rubbers 157 -- 6.5.3 The Limits to Energy Storage 161 -- 6.6 Random Walks in Three Dimensions 163 -- 6.7 Random Protein Con .gurations 167 -- 6.8 A Segue to Thermodynamics 169 -- 6.9 Summary 173 -- 6.10 Problems 173 -- 7 The Statistics of Extremes 175 -- 7.1 The Danger of Cocktail Parties 175 -- 7.2 Calculating the Maximum 182 -- 7.3 Mean and Modal Maxima 185 -- 7.4 Ocean Waves 186 -- 7.5 The Statistics of Extremes 189 -- 7.6 Life and Death in Rhode Island 194 -- 7.7 Play Ball!196 -- 7.8 A Note on Extrapolation 204 -- 7.9 Summary 206 -- 7.10 Problems 206 -- 8 Noise and Perception 208 -- 8.1 Noise Is Inevitable 208 -- 8.2 Dim Lights and Fuzzy Images 212 -- 8.3 The Poisson Distribution 213 -- 8.4 Bayes' Formula and the Design of Rods 218 -- 8.5 Designing Error-Free Rods 219 -- 8.5.1 The Origin of Membrane Potentials 220 -- 8.5.2 Membrane Potential in Rod Cells 222 -- 8.6 Noise and Ion Channels 225 -- 8.6.1 An Electrical Analog 226 -- 8.6.2 Calculating the Membrane Voltage 227 -- 8.6.3 Calculating the Size 229 -- 8.7 Noise and Hearing 230 -- 8.7.1 Fluctuations in Pressure 231 -- 8.7.2 The Rate of Impact 232 -- 8.7.3 Fluctuations in Velocity 233 -- 8.7.4 Fluctuations in Momentum 235 -- 8.7.5 The Standard Error of Pressure 235 -- 8.7.6 Quantifying the Answer 236 -- 8.8 The Rest of the Story 239 -- 8.9 Stochastic Resonance 239 -- 8.9.1 The Utility of Noise 239 -- 8.9.2 Nonlinear Systems 242 -- 8.9.3 The History of Stochastic Resonance 244 -- 8.10 Summary 245 -- 8.11 A Word at the End 246 -- 8.12 A Problem 247 -- 8.13 Appendix 248 -- 9 The Answers 250 -- 9.1 Chapter 2 250 -- 9.2 Chapter 3 256 -- 9.3 Chapter 4 262 -- 9.4 Chapter 5 266 -- 9.5 Chapter 6 269 -- 9.6 Chapter 7 271 -- 9.7 Chapter 8 273 -- Symbol Index 279 -- Author Index 284 -- Subject Index 286 -- Library of Congress subject headings for this publication: Biomathematics, Probabilities. Through the application of probability theory, this text makes predictions about how plants and animals work in a stochastic universe. It uses real-world examples, numerous illustrations and chapter summaries. English. Biomathematics. http://id.loc.gov/authorities/subjects/sh85014235 Probabilities. http://id.loc.gov/authorities/subjects/sh85107090 Biomathématiques. Probabilités. probability. aat NATURE Reference. bisacsh SCIENCE Life Sciences Biology. bisacsh SCIENCE Life Sciences General. bisacsh Biomathematics fast Probabilities fast Biological sciences. Statistics & probability. Applied mathematics. Gaines, Steven, 1951- author. https://id.oclc.org/worldcat/entity/E39PCjKkvxHmgMDbdQ9B9YTVfq http://id.loc.gov/authorities/names/n00003475 has work: Chance in biology (Text) https://id.oclc.org/worldcat/entity/E39PCGPqMJTvff4JHy86JRHmcX https://id.oclc.org/worldcat/ontology/hasWork Print version: Denny, Mark W., 1951- Chance in biology. Princeton : Princeton University Press, ©2000 (DLC) 00036687 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399089 Volltext |
spellingShingle | Denny, Mark W., 1951- Gaines, Steven, 1951- Chance in biology : using probability to explore nature / Machine derived contents note: Table of contents for Chance in biology : using probability to explore nature / Mark Denny and Steven Gaines. -- Bibliographic record and links to related information available from the Library of Congress catalog -- Information from electronic data provided by the publisher. May be incomplete or contain other coding. -- Preface xi -- 1 The Nature of Chance 3 -- 1.1 Silk, Strength, and Statistics 3 -- 1.2 What Is Certain?7 -- 1.3 Determinism versus Chance 8 -- 1.4 Chaos 9 -- 1.5 A Road Map 11 -- 2 Rules of Disorder 12 -- 2.1 Events, Experiments, and Outcomes 12 -- 2.1.1 Sarcastic Fish 13 -- 2.1.2 Bipolar Smut 14 -- 2.1.3 Discrete versus Continuous 17 -- 2.1.4 Drawing Pictures 18 -- 2.2 Probability 19 -- 2.3 Rules and Tools 20 -- 2.3.1 Events Are the Sum of Their Parts 20 -- 2.3.2 The Union of Sets 21 -- 2.3.3 The Probability of a Union 23 -- 2.3.4 Probability and the Intersection of Sets 24 -- 2.3.5 The Complement of a Set 25 -- 2.3.6 Additional Information and Conditional Probabilities 27 -- 2.3.7 Bayes' Formula 29 -- 2.3.8 AIDS and Bayes' Formula 30 -- 2.3.9 The Independence of Sets 32 -- 2.4 Probability Distributions 34 -- 2.5 Summary 37 -- 2.6 Problems 37 -- 3 Discrete Patterns of Disorder 40 -- 3.1 Random Variables 40 -- 3.2 Expectations Defined 42 -- 3.3 The Variance 46 -- 3.4 The Trials of Bernoulli 48 -- 3.5 Beyond 0 's and 1 's 50 -- 3.6 Bernoulli = Binomial 51 -- 3.6.1 Permutations and Combinations 53 -- 3.7 Waiting Forever 60 -- 3.8 Summary 65 -- 3.9 Problems 66 -- 4 Continuous Patterns of Disorder 68 -- 4.1 The Uniform Distribution 69 -- 4.1.1 The Cumulative Probability Distribution 70 -- 4.1.2 The Probability Density Function 71 -- 4.1.3 The Expectation 74 -- 4.1.4 The Variance 76 -- 4.2 The Shape of Distributions 77 -- 4.3 The Normal Curve 79 -- 4.4 Why Is the Normal Curve Normal?82 -- 4.5 The Cumulative Normal Curve 84 -- 4.6 The Standard Error 86 -- 4.7 A Brief Detour to Statistics 89 -- 4.8 Summary 92 -- 4.9 Problems 93 -- 4.10 Appendix 1:The Normal Distribution 94 -- 4.11 Appendix 2:The Central Limit Theorem 98 -- 5 Random Walks 106 -- 5.1 The Motion of Molecules 106 -- 5.2 Rules of a Random Walk 110 -- 5.2.1 The Average 110 -- 5.2.2 The Variance 112 -- 5.2.3 Diffusive Speed 115 -- 5.3 Diffusion and the Real World 115 -- 5.4 A Digression on the Binomial Theorem 117 -- 5.5 The Biology of Diffusion 119 -- 5.6 Fick's Equation 123 -- 5.7 A Use of Fick's Equation: Limits to Size 126 -- 5.8 Receptors and Channels 130 -- 5.9 Summary 136 -- 5.10 Problems 137 -- 6 More Random Walks 139 -- 6.1 Diffusion to Capture 139 -- 6.1.1 Two Absorbing Walls 142 -- 6.1.2 One Reflecting Wall 144 -- 6.2 Adrift at Sea: Turbulent Mixing of Plankton 145 -- 6.3 Genetic Drift 148 -- 6.3.1 A Genetic Diffusion Coefficient 149 -- 6.3.2 Drift and Fixation 151 -- 6.4 Genetic Drift and Irreproducible Pigs 154 -- 6.5 The Biology of Elastic Materials 156 -- 6.5.1 Elasticity Defined 156 -- 6.5.2 Biological Rubbers 157 -- 6.5.3 The Limits to Energy Storage 161 -- 6.6 Random Walks in Three Dimensions 163 -- 6.7 Random Protein Con .gurations 167 -- 6.8 A Segue to Thermodynamics 169 -- 6.9 Summary 173 -- 6.10 Problems 173 -- 7 The Statistics of Extremes 175 -- 7.1 The Danger of Cocktail Parties 175 -- 7.2 Calculating the Maximum 182 -- 7.3 Mean and Modal Maxima 185 -- 7.4 Ocean Waves 186 -- 7.5 The Statistics of Extremes 189 -- 7.6 Life and Death in Rhode Island 194 -- 7.7 Play Ball!196 -- 7.8 A Note on Extrapolation 204 -- 7.9 Summary 206 -- 7.10 Problems 206 -- 8 Noise and Perception 208 -- 8.1 Noise Is Inevitable 208 -- 8.2 Dim Lights and Fuzzy Images 212 -- 8.3 The Poisson Distribution 213 -- 8.4 Bayes' Formula and the Design of Rods 218 -- 8.5 Designing Error-Free Rods 219 -- 8.5.1 The Origin of Membrane Potentials 220 -- 8.5.2 Membrane Potential in Rod Cells 222 -- 8.6 Noise and Ion Channels 225 -- 8.6.1 An Electrical Analog 226 -- 8.6.2 Calculating the Membrane Voltage 227 -- 8.6.3 Calculating the Size 229 -- 8.7 Noise and Hearing 230 -- 8.7.1 Fluctuations in Pressure 231 -- 8.7.2 The Rate of Impact 232 -- 8.7.3 Fluctuations in Velocity 233 -- 8.7.4 Fluctuations in Momentum 235 -- 8.7.5 The Standard Error of Pressure 235 -- 8.7.6 Quantifying the Answer 236 -- 8.8 The Rest of the Story 239 -- 8.9 Stochastic Resonance 239 -- 8.9.1 The Utility of Noise 239 -- 8.9.2 Nonlinear Systems 242 -- 8.9.3 The History of Stochastic Resonance 244 -- 8.10 Summary 245 -- 8.11 A Word at the End 246 -- 8.12 A Problem 247 -- 8.13 Appendix 248 -- 9 The Answers 250 -- 9.1 Chapter 2 250 -- 9.2 Chapter 3 256 -- 9.3 Chapter 4 262 -- 9.4 Chapter 5 266 -- 9.5 Chapter 6 269 -- 9.6 Chapter 7 271 -- 9.7 Chapter 8 273 -- Symbol Index 279 -- Author Index 284 -- Subject Index 286 -- Library of Congress subject headings for this publication: Biomathematics, Probabilities. Biomathematics. http://id.loc.gov/authorities/subjects/sh85014235 Probabilities. http://id.loc.gov/authorities/subjects/sh85107090 Biomathématiques. Probabilités. probability. aat NATURE Reference. bisacsh SCIENCE Life Sciences Biology. bisacsh SCIENCE Life Sciences General. bisacsh Biomathematics fast Probabilities fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85014235 http://id.loc.gov/authorities/subjects/sh85107090 |
title | Chance in biology : using probability to explore nature / |
title_auth | Chance in biology : using probability to explore nature / |
title_exact_search | Chance in biology : using probability to explore nature / |
title_full | Chance in biology : using probability to explore nature / Mark Denny and Steven Gaines. |
title_fullStr | Chance in biology : using probability to explore nature / Mark Denny and Steven Gaines. |
title_full_unstemmed | Chance in biology : using probability to explore nature / Mark Denny and Steven Gaines. |
title_short | Chance in biology : |
title_sort | chance in biology using probability to explore nature |
title_sub | using probability to explore nature / |
topic | Biomathematics. http://id.loc.gov/authorities/subjects/sh85014235 Probabilities. http://id.loc.gov/authorities/subjects/sh85107090 Biomathématiques. Probabilités. probability. aat NATURE Reference. bisacsh SCIENCE Life Sciences Biology. bisacsh SCIENCE Life Sciences General. bisacsh Biomathematics fast Probabilities fast |
topic_facet | Biomathematics. Probabilities. Biomathématiques. Probabilités. probability. NATURE Reference. SCIENCE Life Sciences Biology. SCIENCE Life Sciences General. Biomathematics Probabilities |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399089 |
work_keys_str_mv | AT dennymarkw chanceinbiologyusingprobabilitytoexplorenature AT gainessteven chanceinbiologyusingprobabilitytoexplorenature |