Feynman-Kac-type theorems and Gibbs measures on path space :: with applications to rigorous quantum field theory /
This monograph offers a state-of-the-art mathematical account of functional integration methods in the context of self-adjoint operators and semigroups using the concepts and tools of modern stochastic analysis. These ideas are then applied principally to a rigorous treatment of some fundamental mod...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; New York :
De Gruyter,
©2011.
|
Schriftenreihe: | De Gruyter studies in mathematics ;
34. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This monograph offers a state-of-the-art mathematical account of functional integration methods in the context of self-adjoint operators and semigroups using the concepts and tools of modern stochastic analysis. These ideas are then applied principally to a rigorous treatment of some fundamental models of quantum field theory. In this self-contained presentation of the material both beginners and experts are addressed, while putting emphasis on the interdisciplinary character of the subject. |
Beschreibung: | 1 online resource (xi, 505 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9783110203738 3110203731 9783110201482 3110201488 1283396793 9781283396790 |
ISSN: | 0179-0986 ; |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn763156949 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 110216s2011 gw a ob 001 0 eng d | ||
040 | |a E7B |b eng |e pn |c E7B |d OCLCQ |d AZU |d IDEBK |d OCLCQ |d N$T |d OCLCQ |d DEBSZ |d OCLCQ |d YDXCP |d OCLCQ |d OCLCF |d OCLCQ |d EBLCP |d MHW |d CDX |d MERUC |d DEBBG |d OCLCQ |d S3O |d COO |d OCLCQ |d LOA |d COCUF |d UIU |d AGLDB |d MOR |d PIFAG |d VGM |d ZCU |d OTZ |d OCLCQ |d CUY |d OCLCQ |d DEGRU |d AZK |d U3W |d OCLCQ |d VTS |d ICG |d OCLCQ |d INT |d VT2 |d OCLCQ |d WYU |d MTU |d TKN |d OCLCQ |d STF |d OCLCQ |d LEAUB |d DKC |d OCLCQ |d UKAHL |d OCLCQ |d UKCRE |d U9X |d AUD |d AJS |d OCLCQ |d S2H |d OCLCO |d OCLCQ |d OCLCO |d UEJ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d NUI | ||
019 | |a 751963450 |a 773481693 |a 793012509 |a 816881194 |a 961495685 |a 966265022 |a 979749314 |a 988408770 |a 992027454 |a 992915788 |a 994925741 |a 1037713834 |a 1153470414 |a 1261922876 | ||
020 | |a 9783110203738 |q (electronic bk.) | ||
020 | |a 3110203731 |q (electronic bk.) | ||
020 | |a 9783110201482 | ||
020 | |a 3110201488 | ||
020 | |a 1283396793 | ||
020 | |a 9781283396790 | ||
020 | |z 3110201488 | ||
024 | 7 | |a 10.1515/9783110203738 |2 doi | |
024 | 8 | |a 9786613396792 | |
024 | 8 | |a ebc771211 | |
035 | |a (OCoLC)763156949 |z (OCoLC)751963450 |z (OCoLC)773481693 |z (OCoLC)793012509 |z (OCoLC)816881194 |z (OCoLC)961495685 |z (OCoLC)966265022 |z (OCoLC)979749314 |z (OCoLC)988408770 |z (OCoLC)992027454 |z (OCoLC)992915788 |z (OCoLC)994925741 |z (OCoLC)1037713834 |z (OCoLC)1153470414 |z (OCoLC)1261922876 | ||
050 | 4 | |a QC20.7.F85 |b L67 2011eb | |
072 | 7 | |a MAT |x 037000 |2 bisacsh | |
082 | 7 | |a 515/.724 |2 22 | |
084 | |a SK 820 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Lörinczi, József. | |
245 | 1 | 0 | |a Feynman-Kac-type theorems and Gibbs measures on path space : |b with applications to rigorous quantum field theory / |c by József Lörinczi, Fumio Hiroshima, Volker Betz. |
260 | |a Berlin ; |a New York : |b De Gruyter, |c ©2011. | ||
300 | |a 1 online resource (xi, 505 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file | ||
347 | |b PDF | ||
490 | 1 | |a De gruyter studies in mathematics, |x 0179-0986 ; |v 34 | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a pt. 1. Feynman-Kac-type theorems and Gibbs measures on path space -- pt. 2. Rigorous quantumfield theory. | |
520 | |a This monograph offers a state-of-the-art mathematical account of functional integration methods in the context of self-adjoint operators and semigroups using the concepts and tools of modern stochastic analysis. These ideas are then applied principally to a rigorous treatment of some fundamental models of quantum field theory. In this self-contained presentation of the material both beginners and experts are addressed, while putting emphasis on the interdisciplinary character of the subject. | ||
588 | 0 | |a Print version record. | |
546 | |a In English. | ||
650 | 0 | |a Integration, Functional. |0 http://id.loc.gov/authorities/subjects/sh85067131 | |
650 | 0 | |a Stochastic analysis. |0 http://id.loc.gov/authorities/subjects/sh85128175 | |
650 | 0 | |a Quantum field theory |x Mathematics. | |
650 | 6 | |a Intégration de fonctions. | |
650 | 6 | |a Analyse stochastique. | |
650 | 6 | |a Théorie quantique des champs |x Mathématiques. | |
650 | 7 | |a MATHEMATICS |x Functional Analysis. |2 bisacsh | |
650 | 7 | |a Integration, Functional |2 fast | |
650 | 7 | |a Quantum field theory |x Mathematics |2 fast | |
650 | 7 | |a Stochastic analysis |2 fast | |
650 | 7 | |a Pfadintegral |2 gnd |0 http://d-nb.info/gnd/4173973-5 | |
650 | 7 | |a Selbstadjungierter Operator |2 gnd |0 http://d-nb.info/gnd/4180810-1 | |
650 | 7 | |a Gibbs-Maß |2 gnd |0 http://d-nb.info/gnd/4157328-6 | |
650 | 7 | |a Stochastische Analysis |2 gnd |0 http://d-nb.info/gnd/4132272-1 | |
650 | 7 | |a Quantenfeldtheorie |2 gnd |0 http://d-nb.info/gnd/4047984-5 | |
650 | 7 | |a Feynman-Kac-Formel |2 gnd |0 http://d-nb.info/gnd/4820124-8 | |
653 | |a Brownian Motion. | ||
653 | |a Feynman-Kac-TypeTheorems. | ||
653 | |a Gibbs Measures. | ||
653 | |a Quantum Field Theory. | ||
700 | 1 | |a Hiroshima, Fumio. | |
700 | 1 | |a Betz, Volker. | |
758 | |i has work: |a Feynman-Kac-type theorems and Gibbs measures on path space (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFH7gpdjBJxP64CvkQbVBX |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Lörinczi, József. |t Feynman-Kac-type theorems and Gibbs measures on path space. |d Berlin ; New York : De Gruyter, ©2011 |w (DLC) 2011005708 |
830 | 0 | |a De Gruyter studies in mathematics ; |v 34. | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=414619 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH25307926 | ||
938 | |a Coutts Information Services |b COUT |n 20503825 | ||
938 | |a De Gruyter |b DEGR |n 9783110203738 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL771211 | ||
938 | |a ebrary |b EBRY |n ebr10498746 | ||
938 | |a EBSCOhost |b EBSC |n 414619 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 339679 | ||
938 | |a YBP Library Services |b YANK |n 3671783 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn763156949 |
---|---|
_version_ | 1816881777522769920 |
adam_text | |
any_adam_object | |
author | Lörinczi, József |
author2 | Hiroshima, Fumio Betz, Volker |
author2_role | |
author2_variant | f h fh v b vb |
author_facet | Lörinczi, József Hiroshima, Fumio Betz, Volker |
author_role | |
author_sort | Lörinczi, József |
author_variant | j l jl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20.7.F85 L67 2011eb |
callnumber-search | QC20.7.F85 L67 2011eb |
callnumber-sort | QC 220.7 F85 L67 42011EB |
callnumber-subject | QC - Physics |
classification_rvk | SK 820 |
collection | ZDB-4-EBA |
contents | pt. 1. Feynman-Kac-type theorems and Gibbs measures on path space -- pt. 2. Rigorous quantumfield theory. |
ctrlnum | (OCoLC)763156949 |
dewey-full | 515/.724 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.724 |
dewey-search | 515/.724 |
dewey-sort | 3515 3724 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05216cam a2200925 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn763156949</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">110216s2011 gw a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZU</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">MHW</subfield><subfield code="d">CDX</subfield><subfield code="d">MERUC</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S3O</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">COCUF</subfield><subfield code="d">UIU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">VGM</subfield><subfield code="d">ZCU</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CUY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEGRU</subfield><subfield code="d">AZK</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">MTU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">U9X</subfield><subfield code="d">AUD</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S2H</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NUI</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">751963450</subfield><subfield code="a">773481693</subfield><subfield code="a">793012509</subfield><subfield code="a">816881194</subfield><subfield code="a">961495685</subfield><subfield code="a">966265022</subfield><subfield code="a">979749314</subfield><subfield code="a">988408770</subfield><subfield code="a">992027454</subfield><subfield code="a">992915788</subfield><subfield code="a">994925741</subfield><subfield code="a">1037713834</subfield><subfield code="a">1153470414</subfield><subfield code="a">1261922876</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110203738</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110203731</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110201482</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110201488</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283396793</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283396790</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110201488</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110203738</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">9786613396792</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">ebc771211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)763156949</subfield><subfield code="z">(OCoLC)751963450</subfield><subfield code="z">(OCoLC)773481693</subfield><subfield code="z">(OCoLC)793012509</subfield><subfield code="z">(OCoLC)816881194</subfield><subfield code="z">(OCoLC)961495685</subfield><subfield code="z">(OCoLC)966265022</subfield><subfield code="z">(OCoLC)979749314</subfield><subfield code="z">(OCoLC)988408770</subfield><subfield code="z">(OCoLC)992027454</subfield><subfield code="z">(OCoLC)992915788</subfield><subfield code="z">(OCoLC)994925741</subfield><subfield code="z">(OCoLC)1037713834</subfield><subfield code="z">(OCoLC)1153470414</subfield><subfield code="z">(OCoLC)1261922876</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC20.7.F85</subfield><subfield code="b">L67 2011eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">037000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.724</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lörinczi, József.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Feynman-Kac-type theorems and Gibbs measures on path space :</subfield><subfield code="b">with applications to rigorous quantum field theory /</subfield><subfield code="c">by József Lörinczi, Fumio Hiroshima, Volker Betz.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin ;</subfield><subfield code="a">New York :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">©2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 505 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="b">PDF</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De gruyter studies in mathematics,</subfield><subfield code="x">0179-0986 ;</subfield><subfield code="v">34</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">pt. 1. Feynman-Kac-type theorems and Gibbs measures on path space -- pt. 2. Rigorous quantumfield theory.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This monograph offers a state-of-the-art mathematical account of functional integration methods in the context of self-adjoint operators and semigroups using the concepts and tools of modern stochastic analysis. These ideas are then applied principally to a rigorous treatment of some fundamental models of quantum field theory. In this self-contained presentation of the material both beginners and experts are addressed, while putting emphasis on the interdisciplinary character of the subject.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Integration, Functional.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85067131</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Stochastic analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85128175</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantum field theory</subfield><subfield code="x">Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Intégration de fonctions.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse stochastique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie quantique des champs</subfield><subfield code="x">Mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Functional Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Integration, Functional</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum field theory</subfield><subfield code="x">Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastic analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pfadintegral</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4173973-5</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Selbstadjungierter Operator</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4180810-1</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gibbs-Maß</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4157328-6</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastische Analysis</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4132272-1</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4047984-5</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Feynman-Kac-Formel</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4820124-8</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Brownian Motion.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Feynman-Kac-TypeTheorems.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Gibbs Measures.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Quantum Field Theory.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hiroshima, Fumio.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Betz, Volker.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Feynman-Kac-type theorems and Gibbs measures on path space (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFH7gpdjBJxP64CvkQbVBX</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Lörinczi, József.</subfield><subfield code="t">Feynman-Kac-type theorems and Gibbs measures on path space.</subfield><subfield code="d">Berlin ; New York : De Gruyter, ©2011</subfield><subfield code="w">(DLC) 2011005708</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematics ;</subfield><subfield code="v">34.</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=414619</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25307926</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">20503825</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110203738</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL771211</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10498746</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">414619</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">339679</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3671783</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn763156949 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:18:07Z |
institution | BVB |
isbn | 9783110203738 3110203731 9783110201482 3110201488 1283396793 9781283396790 |
issn | 0179-0986 ; |
language | English |
oclc_num | 763156949 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xi, 505 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | De Gruyter, |
record_format | marc |
series | De Gruyter studies in mathematics ; |
series2 | De gruyter studies in mathematics, |
spelling | Lörinczi, József. Feynman-Kac-type theorems and Gibbs measures on path space : with applications to rigorous quantum field theory / by József Lörinczi, Fumio Hiroshima, Volker Betz. Berlin ; New York : De Gruyter, ©2011. 1 online resource (xi, 505 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier text file De gruyter studies in mathematics, 0179-0986 ; 34 Includes bibliographical references and index. pt. 1. Feynman-Kac-type theorems and Gibbs measures on path space -- pt. 2. Rigorous quantumfield theory. This monograph offers a state-of-the-art mathematical account of functional integration methods in the context of self-adjoint operators and semigroups using the concepts and tools of modern stochastic analysis. These ideas are then applied principally to a rigorous treatment of some fundamental models of quantum field theory. In this self-contained presentation of the material both beginners and experts are addressed, while putting emphasis on the interdisciplinary character of the subject. Print version record. In English. Integration, Functional. http://id.loc.gov/authorities/subjects/sh85067131 Stochastic analysis. http://id.loc.gov/authorities/subjects/sh85128175 Quantum field theory Mathematics. Intégration de fonctions. Analyse stochastique. Théorie quantique des champs Mathématiques. MATHEMATICS Functional Analysis. bisacsh Integration, Functional fast Quantum field theory Mathematics fast Stochastic analysis fast Pfadintegral gnd http://d-nb.info/gnd/4173973-5 Selbstadjungierter Operator gnd http://d-nb.info/gnd/4180810-1 Gibbs-Maß gnd http://d-nb.info/gnd/4157328-6 Stochastische Analysis gnd http://d-nb.info/gnd/4132272-1 Quantenfeldtheorie gnd http://d-nb.info/gnd/4047984-5 Feynman-Kac-Formel gnd http://d-nb.info/gnd/4820124-8 Brownian Motion. Feynman-Kac-TypeTheorems. Gibbs Measures. Quantum Field Theory. Hiroshima, Fumio. Betz, Volker. has work: Feynman-Kac-type theorems and Gibbs measures on path space (Text) https://id.oclc.org/worldcat/entity/E39PCFH7gpdjBJxP64CvkQbVBX https://id.oclc.org/worldcat/ontology/hasWork Print version: Lörinczi, József. Feynman-Kac-type theorems and Gibbs measures on path space. Berlin ; New York : De Gruyter, ©2011 (DLC) 2011005708 De Gruyter studies in mathematics ; 34. FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=414619 Volltext |
spellingShingle | Lörinczi, József Feynman-Kac-type theorems and Gibbs measures on path space : with applications to rigorous quantum field theory / De Gruyter studies in mathematics ; pt. 1. Feynman-Kac-type theorems and Gibbs measures on path space -- pt. 2. Rigorous quantumfield theory. Integration, Functional. http://id.loc.gov/authorities/subjects/sh85067131 Stochastic analysis. http://id.loc.gov/authorities/subjects/sh85128175 Quantum field theory Mathematics. Intégration de fonctions. Analyse stochastique. Théorie quantique des champs Mathématiques. MATHEMATICS Functional Analysis. bisacsh Integration, Functional fast Quantum field theory Mathematics fast Stochastic analysis fast Pfadintegral gnd http://d-nb.info/gnd/4173973-5 Selbstadjungierter Operator gnd http://d-nb.info/gnd/4180810-1 Gibbs-Maß gnd http://d-nb.info/gnd/4157328-6 Stochastische Analysis gnd http://d-nb.info/gnd/4132272-1 Quantenfeldtheorie gnd http://d-nb.info/gnd/4047984-5 Feynman-Kac-Formel gnd http://d-nb.info/gnd/4820124-8 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85067131 http://id.loc.gov/authorities/subjects/sh85128175 http://d-nb.info/gnd/4173973-5 http://d-nb.info/gnd/4180810-1 http://d-nb.info/gnd/4157328-6 http://d-nb.info/gnd/4132272-1 http://d-nb.info/gnd/4047984-5 http://d-nb.info/gnd/4820124-8 |
title | Feynman-Kac-type theorems and Gibbs measures on path space : with applications to rigorous quantum field theory / |
title_auth | Feynman-Kac-type theorems and Gibbs measures on path space : with applications to rigorous quantum field theory / |
title_exact_search | Feynman-Kac-type theorems and Gibbs measures on path space : with applications to rigorous quantum field theory / |
title_full | Feynman-Kac-type theorems and Gibbs measures on path space : with applications to rigorous quantum field theory / by József Lörinczi, Fumio Hiroshima, Volker Betz. |
title_fullStr | Feynman-Kac-type theorems and Gibbs measures on path space : with applications to rigorous quantum field theory / by József Lörinczi, Fumio Hiroshima, Volker Betz. |
title_full_unstemmed | Feynman-Kac-type theorems and Gibbs measures on path space : with applications to rigorous quantum field theory / by József Lörinczi, Fumio Hiroshima, Volker Betz. |
title_short | Feynman-Kac-type theorems and Gibbs measures on path space : |
title_sort | feynman kac type theorems and gibbs measures on path space with applications to rigorous quantum field theory |
title_sub | with applications to rigorous quantum field theory / |
topic | Integration, Functional. http://id.loc.gov/authorities/subjects/sh85067131 Stochastic analysis. http://id.loc.gov/authorities/subjects/sh85128175 Quantum field theory Mathematics. Intégration de fonctions. Analyse stochastique. Théorie quantique des champs Mathématiques. MATHEMATICS Functional Analysis. bisacsh Integration, Functional fast Quantum field theory Mathematics fast Stochastic analysis fast Pfadintegral gnd http://d-nb.info/gnd/4173973-5 Selbstadjungierter Operator gnd http://d-nb.info/gnd/4180810-1 Gibbs-Maß gnd http://d-nb.info/gnd/4157328-6 Stochastische Analysis gnd http://d-nb.info/gnd/4132272-1 Quantenfeldtheorie gnd http://d-nb.info/gnd/4047984-5 Feynman-Kac-Formel gnd http://d-nb.info/gnd/4820124-8 |
topic_facet | Integration, Functional. Stochastic analysis. Quantum field theory Mathematics. Intégration de fonctions. Analyse stochastique. Théorie quantique des champs Mathématiques. MATHEMATICS Functional Analysis. Integration, Functional Quantum field theory Mathematics Stochastic analysis Pfadintegral Selbstadjungierter Operator Gibbs-Maß Stochastische Analysis Quantenfeldtheorie Feynman-Kac-Formel |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=414619 |
work_keys_str_mv | AT lorinczijozsef feynmankactypetheoremsandgibbsmeasuresonpathspacewithapplicationstorigorousquantumfieldtheory AT hiroshimafumio feynmankactypetheoremsandgibbsmeasuresonpathspacewithapplicationstorigorousquantumfieldtheory AT betzvolker feynmankactypetheoremsandgibbsmeasuresonpathspacewithapplicationstorigorousquantumfieldtheory |