Fundamentals of hyperbolic geometry :: selected expositions /
"Here are re-issued articles from two classic sources on hyperbolic manifolds. The book covers the basic properties, and explains the mathematical framework for understanding the 3-dimensional spaces that support a hyperbolic metric. Part I is an exposition of Chapters 8 and 9 of Thurston'...
Gespeichert in:
Körperschaft: | |
---|---|
Weitere Verfasser: | , , , , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, UK ; New York :
Cambridge University Press,
2006.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
328. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "Here are re-issued articles from two classic sources on hyperbolic manifolds. The book covers the basic properties, and explains the mathematical framework for understanding the 3-dimensional spaces that support a hyperbolic metric. Part I is an exposition of Chapters 8 and 9 of Thurston's pioneering Princeton Notes; in addition, there is a new introduction describing recent advances, with an up-to-date bibliography, giving a contemporary context in which the classic articles can be set."--Jacket |
Beschreibung: | Selected papers presented at two symposia held in 1984 at the Universities of Warwick and Durham and originally published in: Low-dimensional topology and Kleinian groups. ©1986. (London Mathematical Society lecture note series; 112), and Analytic and geometric aspects of hyperbolic space. ©1987. (London Mathematical Society lecture note series; 111). |
Beschreibung: | 1 online resource (xii, 335 pages :) |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9781139126939 1139126938 9781139106986 1139106988 1107142253 9781107142251 1283295512 9781283295512 1139122010 9781139122016 9786613295514 6613295515 1139116274 9781139116275 1139111914 9781139111911 1139114107 9781139114103 0521615585 9780521615587 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn761861567 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 111122r20061986enka ob 100 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d REDDC |d OCLCQ |d OCLCA |d OCLCQ |d CAMBR |d OCLCO |d OCLCQ |d OCLCF |d YDXCP |d OCL |d OCLCQ |d AU@ |d OCLCQ |d OCL |d VLY |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d YDX |d INARC | ||
015 | |a GBA564933 |2 bnb | ||
016 | 7 | |a 013265045 |2 Uk | |
019 | |a 818781361 |a 1059280480 |a 1162259948 |a 1241819238 |a 1424693119 | ||
020 | |a 9781139126939 |q (electronic bk.) | ||
020 | |a 1139126938 |q (electronic bk.) | ||
020 | |a 9781139106986 |q (electronic bk.) | ||
020 | |a 1139106988 |q (electronic bk.) | ||
020 | |a 1107142253 | ||
020 | |a 9781107142251 | ||
020 | |a 1283295512 | ||
020 | |a 9781283295512 | ||
020 | |a 1139122010 | ||
020 | |a 9781139122016 | ||
020 | |a 9786613295514 | ||
020 | |a 6613295515 | ||
020 | |a 1139116274 | ||
020 | |a 9781139116275 | ||
020 | |a 1139111914 | ||
020 | |a 9781139111911 | ||
020 | |a 1139114107 | ||
020 | |a 9781139114103 | ||
020 | |z 0521615585 | ||
020 | |z 9780521615587 | ||
020 | |a 0521615585 | ||
020 | |a 9780521615587 | ||
024 | 3 | |a 9780521615587 | |
035 | |a (OCoLC)761861567 |z (OCoLC)818781361 |z (OCoLC)1059280480 |z (OCoLC)1162259948 |z (OCoLC)1241819238 |z (OCoLC)1424693119 | ||
050 | 4 | |a QA685 |b .F89 2006eb | |
072 | 7 | |a MAT |x 038000 |2 bisacsh | |
082 | 7 | |a 514.34 |2 22 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Fundamentals of hyperbolic geometry : |b selected expositions / |c edited by Richard D. Canary, David Epstein, Albert Marden. |
246 | 1 | 4 | |a Fundamentals of hyperbolic manifolds |
246 | 3 | 0 | |a Hyperbolic geometry |
246 | 3 | |a Hyperbolic manifolds | |
260 | |a Cambridge, UK ; |a New York : |b Cambridge University Press, |c 2006. | ||
300 | |a 1 online resource (xii, 335 pages :) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 328 | |
500 | |a Selected papers presented at two symposia held in 1984 at the Universities of Warwick and Durham and originally published in: Low-dimensional topology and Kleinian groups. ©1986. (London Mathematical Society lecture note series; 112), and Analytic and geometric aspects of hyperbolic space. ©1987. (London Mathematical Society lecture note series; 111). | ||
504 | |a Includes bibliographical references. | ||
505 | 0 | |a Preface -- Preface 2005 -- Notes on notes of Thurston / R.D. Canary, D.B.A. Epstein, P.L. Green -- Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated survaces / D.B.A. Epstein, A. Marden -- Earthquakes in 2-dimensional hyperbolic geometry / W.P. Thurston -- Lectures on measures on limit sets of Kleinian groups / S.J. Patterson. | |
588 | 0 | |a Print version record. | |
520 | 1 | |a "Here are re-issued articles from two classic sources on hyperbolic manifolds. The book covers the basic properties, and explains the mathematical framework for understanding the 3-dimensional spaces that support a hyperbolic metric. Part I is an exposition of Chapters 8 and 9 of Thurston's pioneering Princeton Notes; in addition, there is a new introduction describing recent advances, with an up-to-date bibliography, giving a contemporary context in which the classic articles can be set."--Jacket | |
546 | |a English. | ||
650 | 0 | |a Geometry, Hyperbolic |v Congresses. | |
650 | 0 | |a Hyperbolic spaces |v Congresses. | |
650 | 0 | |a Three-manifolds (Topology) |v Congresses. | |
650 | 0 | |a Kleinian groups |v Congresses. | |
650 | 6 | |a Géométrie hyperbolique |v Congrès. | |
650 | 6 | |a Espaces hyperboliques |v Congrès. | |
650 | 6 | |a Variétés topologiques à 3 dimensions |v Congrès. | |
650 | 6 | |a Groupes de Klein |v Congrès. | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 7 | |a Geometry, Hyperbolic |2 fast | |
650 | 7 | |a Hyperbolic spaces |2 fast | |
650 | 7 | |a Kleinian groups |2 fast | |
650 | 7 | |a Three-manifolds (Topology) |2 fast | |
650 | 7 | |a Espaços hiperbólicos. |2 larpcal | |
650 | 7 | |a Geometria hiperbólica. |2 larpcal | |
650 | 7 | |a Topologia geométrica. |2 larpcal | |
653 | 1 | |a Hyperbolic geometry | |
653 | 1 | |a Kleinian groups | |
653 | 1 | |a 3-dimensional topology | |
655 | 7 | |a Conference papers and proceedings |2 fast | |
700 | 1 | |a Canary, Richard Douglas. |0 http://id.loc.gov/authorities/names/nr89006126 | |
700 | 1 | |a Marden, Albert. |0 http://id.loc.gov/authorities/names/no2006074049 | |
700 | 1 | |a Epstein, D. B. A. |0 http://id.loc.gov/authorities/names/n85300763 | |
700 | 1 | 2 | |a Thurston, William P., |d 1946-2012. |t Earthquakes in 2-dimensional hyperbolic geometry. |
700 | 1 | 2 | |a Patterson, S. J. |t Lectures on measures on limit sets of Kleinian groups. |
710 | 2 | |a London Mathematical Society. |0 http://id.loc.gov/authorities/names/n79118957 | |
740 | 0 | |a Low-dimensional topology and Kleinian groups. | |
740 | 0 | |a Analytic and geometric aspects of hyperbolic space. | |
758 | |i has work: |a Fundamentals of hyperbolic geometry (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFFR3Q7D7q8MRvJ3KgKFBq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Fundamentals of hyperbolic geometry. |d Cambridge, UK ; New York : Cambridge University Press, 2006 |z 0521615585 |w (DLC) 2006284256 |w (OCoLC)61217601 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 328. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399244 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399244 |3 Volltext | |
938 | |a ebrary |b EBRY |n ebr10502849 | ||
938 | |a EBSCOhost |b EBSC |n 399244 | ||
938 | |a YBP Library Services |b YANK |n 7236510 | ||
938 | |a YBP Library Services |b YANK |n 7205379 | ||
938 | |a YBP Library Services |b YANK |n 7280891 | ||
938 | |a Internet Archive |b INAR |n fundamentalsofhy0000unse | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn761861567 |
---|---|
_version_ | 1813903418756956161 |
adam_text | |
any_adam_object | |
author2 | Canary, Richard Douglas Marden, Albert Epstein, D. B. A. Thurston, William P., 1946-2012 Patterson, S. J. |
author2_role | |
author2_variant | r d c rd rdc a m am d b a e dba dbae w p t wp wpt s j p sj sjp |
author_GND | http://id.loc.gov/authorities/names/nr89006126 http://id.loc.gov/authorities/names/no2006074049 http://id.loc.gov/authorities/names/n85300763 |
author_corporate | London Mathematical Society |
author_corporate_role | |
author_facet | Canary, Richard Douglas Marden, Albert Epstein, D. B. A. Thurston, William P., 1946-2012 Patterson, S. J. London Mathematical Society |
author_sort | Canary, Richard Douglas |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA685 |
callnumber-raw | QA685 .F89 2006eb |
callnumber-search | QA685 .F89 2006eb |
callnumber-sort | QA 3685 F89 42006EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Preface -- Preface 2005 -- Notes on notes of Thurston / R.D. Canary, D.B.A. Epstein, P.L. Green -- Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated survaces / D.B.A. Epstein, A. Marden -- Earthquakes in 2-dimensional hyperbolic geometry / W.P. Thurston -- Lectures on measures on limit sets of Kleinian groups / S.J. Patterson. |
ctrlnum | (OCoLC)761861567 |
dewey-full | 514.34 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.34 |
dewey-search | 514.34 |
dewey-sort | 3514.34 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05994cam a2201141 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn761861567</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">111122r20061986enka ob 100 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCL</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">YDX</subfield><subfield code="d">INARC</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA564933</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">013265045</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">818781361</subfield><subfield code="a">1059280480</subfield><subfield code="a">1162259948</subfield><subfield code="a">1241819238</subfield><subfield code="a">1424693119</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139126939</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139126938</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139106986</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139106988</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107142253</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107142251</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283295512</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283295512</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139122010</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139122016</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786613295514</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6613295515</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139116274</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139116275</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139111914</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139111911</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139114107</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139114103</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521615585</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521615587</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521615585</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521615587</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780521615587</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)761861567</subfield><subfield code="z">(OCoLC)818781361</subfield><subfield code="z">(OCoLC)1059280480</subfield><subfield code="z">(OCoLC)1162259948</subfield><subfield code="z">(OCoLC)1241819238</subfield><subfield code="z">(OCoLC)1424693119</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA685</subfield><subfield code="b">.F89 2006eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">514.34</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Fundamentals of hyperbolic geometry :</subfield><subfield code="b">selected expositions /</subfield><subfield code="c">edited by Richard D. Canary, David Epstein, Albert Marden.</subfield></datafield><datafield tag="246" ind1="1" ind2="4"><subfield code="a">Fundamentals of hyperbolic manifolds</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Hyperbolic geometry</subfield></datafield><datafield tag="246" ind1="3" ind2=" "><subfield code="a">Hyperbolic manifolds</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, UK ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2006.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 335 pages :)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">328</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Selected papers presented at two symposia held in 1984 at the Universities of Warwick and Durham and originally published in: Low-dimensional topology and Kleinian groups. ©1986. (London Mathematical Society lecture note series; 112), and Analytic and geometric aspects of hyperbolic space. ©1987. (London Mathematical Society lecture note series; 111).</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface -- Preface 2005 -- Notes on notes of Thurston / R.D. Canary, D.B.A. Epstein, P.L. Green -- Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated survaces / D.B.A. Epstein, A. Marden -- Earthquakes in 2-dimensional hyperbolic geometry / W.P. Thurston -- Lectures on measures on limit sets of Kleinian groups / S.J. Patterson.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"Here are re-issued articles from two classic sources on hyperbolic manifolds. The book covers the basic properties, and explains the mathematical framework for understanding the 3-dimensional spaces that support a hyperbolic metric. Part I is an exposition of Chapters 8 and 9 of Thurston's pioneering Princeton Notes; in addition, there is a new introduction describing recent advances, with an up-to-date bibliography, giving a contemporary context in which the classic articles can be set."--Jacket</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometry, Hyperbolic</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Hyperbolic spaces</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Three-manifolds (Topology)</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Kleinian groups</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie hyperbolique</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces hyperboliques</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variétés topologiques à 3 dimensions</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes de Klein</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Topology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Hyperbolic</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hyperbolic spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kleinian groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Three-manifolds (Topology)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Espaços hiperbólicos.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometria hiperbólica.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topologia geométrica.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="653" ind1="1" ind2=" "><subfield code="a">Hyperbolic geometry</subfield></datafield><datafield tag="653" ind1="1" ind2=" "><subfield code="a">Kleinian groups</subfield></datafield><datafield tag="653" ind1="1" ind2=" "><subfield code="a">3-dimensional topology</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Conference papers and proceedings</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Canary, Richard Douglas.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nr89006126</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marden, Albert.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2006074049</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Epstein, D. B. A.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n85300763</subfield></datafield><datafield tag="700" ind1="1" ind2="2"><subfield code="a">Thurston, William P.,</subfield><subfield code="d">1946-2012.</subfield><subfield code="t">Earthquakes in 2-dimensional hyperbolic geometry.</subfield></datafield><datafield tag="700" ind1="1" ind2="2"><subfield code="a">Patterson, S. J.</subfield><subfield code="t">Lectures on measures on limit sets of Kleinian groups.</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">London Mathematical Society.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n79118957</subfield></datafield><datafield tag="740" ind1="0" ind2=" "><subfield code="a">Low-dimensional topology and Kleinian groups.</subfield></datafield><datafield tag="740" ind1="0" ind2=" "><subfield code="a">Analytic and geometric aspects of hyperbolic space.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Fundamentals of hyperbolic geometry (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFFR3Q7D7q8MRvJ3KgKFBq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Fundamentals of hyperbolic geometry.</subfield><subfield code="d">Cambridge, UK ; New York : Cambridge University Press, 2006</subfield><subfield code="z">0521615585</subfield><subfield code="w">(DLC) 2006284256</subfield><subfield code="w">(OCoLC)61217601</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">328.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399244</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399244</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10502849</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">399244</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7236510</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7205379</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7280891</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">fundamentalsofhy0000unse</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
genre | Conference papers and proceedings fast |
genre_facet | Conference papers and proceedings |
id | ZDB-4-EBA-ocn761861567 |
illustrated | Illustrated |
indexdate | 2024-10-25T16:18:22Z |
institution | BVB |
institution_GND | http://id.loc.gov/authorities/names/n79118957 |
isbn | 9781139126939 1139126938 9781139106986 1139106988 1107142253 9781107142251 1283295512 9781283295512 1139122010 9781139122016 9786613295514 6613295515 1139116274 9781139116275 1139111914 9781139111911 1139114107 9781139114103 0521615585 9780521615587 |
language | English |
oclc_num | 761861567 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (xii, 335 pages :) |
psigel | ZDB-4-EBA |
publishDate | 2006 |
publishDateSearch | 1986 2006 |
publishDateSort | 2006 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Fundamentals of hyperbolic geometry : selected expositions / edited by Richard D. Canary, David Epstein, Albert Marden. Fundamentals of hyperbolic manifolds Hyperbolic geometry Hyperbolic manifolds Cambridge, UK ; New York : Cambridge University Press, 2006. 1 online resource (xii, 335 pages :) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 328 Selected papers presented at two symposia held in 1984 at the Universities of Warwick and Durham and originally published in: Low-dimensional topology and Kleinian groups. ©1986. (London Mathematical Society lecture note series; 112), and Analytic and geometric aspects of hyperbolic space. ©1987. (London Mathematical Society lecture note series; 111). Includes bibliographical references. Preface -- Preface 2005 -- Notes on notes of Thurston / R.D. Canary, D.B.A. Epstein, P.L. Green -- Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated survaces / D.B.A. Epstein, A. Marden -- Earthquakes in 2-dimensional hyperbolic geometry / W.P. Thurston -- Lectures on measures on limit sets of Kleinian groups / S.J. Patterson. Print version record. "Here are re-issued articles from two classic sources on hyperbolic manifolds. The book covers the basic properties, and explains the mathematical framework for understanding the 3-dimensional spaces that support a hyperbolic metric. Part I is an exposition of Chapters 8 and 9 of Thurston's pioneering Princeton Notes; in addition, there is a new introduction describing recent advances, with an up-to-date bibliography, giving a contemporary context in which the classic articles can be set."--Jacket English. Geometry, Hyperbolic Congresses. Hyperbolic spaces Congresses. Three-manifolds (Topology) Congresses. Kleinian groups Congresses. Géométrie hyperbolique Congrès. Espaces hyperboliques Congrès. Variétés topologiques à 3 dimensions Congrès. Groupes de Klein Congrès. MATHEMATICS Topology. bisacsh Geometry, Hyperbolic fast Hyperbolic spaces fast Kleinian groups fast Three-manifolds (Topology) fast Espaços hiperbólicos. larpcal Geometria hiperbólica. larpcal Topologia geométrica. larpcal Kleinian groups 3-dimensional topology Conference papers and proceedings fast Canary, Richard Douglas. http://id.loc.gov/authorities/names/nr89006126 Marden, Albert. http://id.loc.gov/authorities/names/no2006074049 Epstein, D. B. A. http://id.loc.gov/authorities/names/n85300763 Thurston, William P., 1946-2012. Earthquakes in 2-dimensional hyperbolic geometry. Patterson, S. J. Lectures on measures on limit sets of Kleinian groups. London Mathematical Society. http://id.loc.gov/authorities/names/n79118957 Low-dimensional topology and Kleinian groups. Analytic and geometric aspects of hyperbolic space. has work: Fundamentals of hyperbolic geometry (Text) https://id.oclc.org/worldcat/entity/E39PCFFR3Q7D7q8MRvJ3KgKFBq https://id.oclc.org/worldcat/ontology/hasWork Print version: Fundamentals of hyperbolic geometry. Cambridge, UK ; New York : Cambridge University Press, 2006 0521615585 (DLC) 2006284256 (OCoLC)61217601 London Mathematical Society lecture note series ; 328. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399244 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399244 Volltext |
spellingShingle | Fundamentals of hyperbolic geometry : selected expositions / London Mathematical Society lecture note series ; Preface -- Preface 2005 -- Notes on notes of Thurston / R.D. Canary, D.B.A. Epstein, P.L. Green -- Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated survaces / D.B.A. Epstein, A. Marden -- Earthquakes in 2-dimensional hyperbolic geometry / W.P. Thurston -- Lectures on measures on limit sets of Kleinian groups / S.J. Patterson. Geometry, Hyperbolic Congresses. Hyperbolic spaces Congresses. Three-manifolds (Topology) Congresses. Kleinian groups Congresses. Géométrie hyperbolique Congrès. Espaces hyperboliques Congrès. Variétés topologiques à 3 dimensions Congrès. Groupes de Klein Congrès. MATHEMATICS Topology. bisacsh Geometry, Hyperbolic fast Hyperbolic spaces fast Kleinian groups fast Three-manifolds (Topology) fast Espaços hiperbólicos. larpcal Geometria hiperbólica. larpcal Topologia geométrica. larpcal |
title | Fundamentals of hyperbolic geometry : selected expositions / |
title_alt | Fundamentals of hyperbolic manifolds Hyperbolic geometry Hyperbolic manifolds Earthquakes in 2-dimensional hyperbolic geometry. Lectures on measures on limit sets of Kleinian groups. Low-dimensional topology and Kleinian groups. Analytic and geometric aspects of hyperbolic space. |
title_auth | Fundamentals of hyperbolic geometry : selected expositions / |
title_exact_search | Fundamentals of hyperbolic geometry : selected expositions / |
title_full | Fundamentals of hyperbolic geometry : selected expositions / edited by Richard D. Canary, David Epstein, Albert Marden. |
title_fullStr | Fundamentals of hyperbolic geometry : selected expositions / edited by Richard D. Canary, David Epstein, Albert Marden. |
title_full_unstemmed | Fundamentals of hyperbolic geometry : selected expositions / edited by Richard D. Canary, David Epstein, Albert Marden. |
title_short | Fundamentals of hyperbolic geometry : |
title_sort | fundamentals of hyperbolic geometry selected expositions |
title_sub | selected expositions / |
topic | Geometry, Hyperbolic Congresses. Hyperbolic spaces Congresses. Three-manifolds (Topology) Congresses. Kleinian groups Congresses. Géométrie hyperbolique Congrès. Espaces hyperboliques Congrès. Variétés topologiques à 3 dimensions Congrès. Groupes de Klein Congrès. MATHEMATICS Topology. bisacsh Geometry, Hyperbolic fast Hyperbolic spaces fast Kleinian groups fast Three-manifolds (Topology) fast Espaços hiperbólicos. larpcal Geometria hiperbólica. larpcal Topologia geométrica. larpcal |
topic_facet | Geometry, Hyperbolic Congresses. Hyperbolic spaces Congresses. Three-manifolds (Topology) Congresses. Kleinian groups Congresses. Géométrie hyperbolique Congrès. Espaces hyperboliques Congrès. Variétés topologiques à 3 dimensions Congrès. Groupes de Klein Congrès. MATHEMATICS Topology. Geometry, Hyperbolic Hyperbolic spaces Kleinian groups Three-manifolds (Topology) Espaços hiperbólicos. Geometria hiperbólica. Topologia geométrica. Conference papers and proceedings |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399244 |
work_keys_str_mv | AT canaryricharddouglas fundamentalsofhyperbolicgeometryselectedexpositions AT mardenalbert fundamentalsofhyperbolicgeometryselectedexpositions AT epsteindba fundamentalsofhyperbolicgeometryselectedexpositions AT thurstonwilliamp fundamentalsofhyperbolicgeometryselectedexpositions AT pattersonsj fundamentalsofhyperbolicgeometryselectedexpositions AT londonmathematicalsociety fundamentalsofhyperbolicgeometryselectedexpositions AT canaryricharddouglas fundamentalsofhyperbolicmanifolds AT mardenalbert fundamentalsofhyperbolicmanifolds AT epsteindba fundamentalsofhyperbolicmanifolds AT thurstonwilliamp fundamentalsofhyperbolicmanifolds AT pattersonsj fundamentalsofhyperbolicmanifolds AT londonmathematicalsociety fundamentalsofhyperbolicmanifolds AT canaryricharddouglas hyperbolicgeometry AT mardenalbert hyperbolicgeometry AT epsteindba hyperbolicgeometry AT thurstonwilliamp hyperbolicgeometry AT pattersonsj hyperbolicgeometry AT londonmathematicalsociety hyperbolicgeometry AT canaryricharddouglas hyperbolicmanifolds AT mardenalbert hyperbolicmanifolds AT epsteindba hyperbolicmanifolds AT thurstonwilliamp hyperbolicmanifolds AT pattersonsj hyperbolicmanifolds AT londonmathematicalsociety hyperbolicmanifolds |