Stable Domination and Independence in Algebraically Closed Valued Fields.:
This 2008 book presents research in model theory and its applications to valued fields.
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2007.
|
Schriftenreihe: | Lecture Notes in Logic, 30.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This 2008 book presents research in model theory and its applications to valued fields. |
Beschreibung: | 1 online resource (196 pages) |
Bibliographie: | Includes bibliographical references (pages 177-179) and index. |
ISBN: | 9780511546471 0511546475 9780511371042 0511371047 0521889812 9780521889810 9786611156237 6611156232 9780521335157 0521335159 |
Internformat
MARC
LEADER | 00000cam a2200000Mu 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn761647085 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 111121s2007 enk ob 001 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d MNU |d OCLCQ |d CAMBR |d DEBSZ |d OL$ |d OCLCQ |d OCLCF |d N$T |d YDXCP |d IDEBK |d E7B |d REDDC |d COO |d OCLCQ |d NJR |d OCLCQ |d LUN |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 192045622 |a 648345866 |a 666904358 |a 668204304 |a 847967974 |a 1011839109 |a 1172706610 |a 1264824698 | ||
020 | |a 9780511546471 |q (electronic bk.) | ||
020 | |a 0511546475 |q (electronic bk.) | ||
020 | |a 9780511371042 |q (electronic bk.) | ||
020 | |a 0511371047 |q (electronic bk.) | ||
020 | |a 0521889812 |q (hardback) | ||
020 | |a 9780521889810 |q (hardback) | ||
020 | |a 9786611156237 | ||
020 | |a 6611156232 | ||
020 | |z 9780511370038 | ||
020 | |z 0511370032 | ||
020 | |a 9780521335157 |q (paperback) | ||
020 | |a 0521335159 | ||
035 | |a (OCoLC)761647085 |z (OCoLC)192045622 |z (OCoLC)648345866 |z (OCoLC)666904358 |z (OCoLC)668204304 |z (OCoLC)847967974 |z (OCoLC)1011839109 |z (OCoLC)1172706610 |z (OCoLC)1264824698 | ||
037 | |a 115623 |b MIL | ||
050 | 4 | |a QA9.7 .H377 2007 | |
072 | 7 | |a MAT |x 016000 |2 bisacsh | |
072 | 7 | |a MAT |x 018000 |2 bisacsh | |
082 | 7 | |a 511.3 |a 511.34 | |
049 | |a MAIN | ||
100 | 1 | |a Haskell, Deirdre. | |
245 | 1 | 0 | |a Stable Domination and Independence in Algebraically Closed Valued Fields. |
260 | |a Cambridge : |b Cambridge University Press, |c 2007. | ||
300 | |a 1 online resource (196 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture Notes in Logic, 30 ; |v v. 30 | |
505 | 0 | |a COVER; HALF-TITLE; SERIES-TITLE; TITLE; COPYRIGHT; CONTENTS; PREFACE; Acknowledgments; CHAPTER 1 INTRODUCTION; PART 1 STABLE DOMINATION; CHAPTER 2 SOME BACKGROUND ON STABILITY THEORY; 2.1. Saturation, the universal domain, imaginaries; 2.2. Invariant types; 2.3. Conditions equivalent to stability; 2.4. Independence and forking; 2.5. Totally transcendental theories andMorley rank; 2.6. Prime models; 2.7. Indiscernibles, Morley sequences; 2.8. Stably embedded sets; CHAPTER 3 DEFINITION AND BASIC PROPERTIES OF StC; CHAPTER 4 INVARIANT TYPES AND CHANGE OF BASE; CHAPTER 5 A COMBINATORIAL LEMMA. | |
505 | 8 | |a CHAPTER 6 STRONG CODES FOR GERMSPART 2 INDEPENDENCE IN ACVF; CHAPTER 7 SOME BACKGROUND ON ALGEBRAICALLY CLOSED VALUED FIELDS; 7.1. Background on valued?elds; 7.2. Some model theory of valued?elds; 7.3. Basics of ACVF; 7.4. Imaginaries, and the ACVF sorts; 7.5. The sorts internal to the residue?eld; 7.6. Unary sets, 1-torsors, and generic 1-types; 7.7. One-types orthogonal to G; 7.8. Generic bases of lattices; CHAPTER 8 SEQUENTIAL INDEPENDENCE; CHAPTER 9 GROWTH OF THE STABLE PART; CHAPTER 10 TYPES ORTHOGONAL TO G; CHAPTER 11 OPACITY AND PRIME RESOLUTIONS. | |
505 | 8 | |a CHAPTER 12 MAXIMALLY COMPLETE FIELDS AND DOMINATIONCHAPTER 13 INVARIANT TYPES; 13.1. Examples of sequential independence; 13.2. Invariant types, dividing and sequential independence; CHAPTER 14 A MAXIMUMMODULUS PRINCIPLE; CHAPTER 15 CANONICAL BASES AND INDEPENDENCE GIVEN BY MODULES; CHAPTER 16 OTHER HENSELIAN FIELDS; REFERENCES; INDEX. | |
520 | |a This 2008 book presents research in model theory and its applications to valued fields. | ||
588 | 0 | |a Print version record. | |
504 | |a Includes bibliographical references (pages 177-179) and index. | ||
650 | 0 | |a Model theory. |0 http://id.loc.gov/authorities/subjects/sh85086421 | |
650 | 0 | |a Valued fields. |0 http://id.loc.gov/authorities/subjects/sh85141938 | |
650 | 0 | |a Domination (Graph theory) |0 http://id.loc.gov/authorities/subjects/sh97008149 | |
650 | 6 | |a Théorie des modèles. | |
650 | 6 | |a Corps valués. | |
650 | 6 | |a Domination (Théorie des graphes) | |
650 | 7 | |a MATHEMATICS |x Infinity. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Logic. |2 bisacsh | |
650 | 7 | |a Domination (Graph theory) |2 fast | |
650 | 7 | |a Model theory |2 fast | |
650 | 7 | |a Valued fields |2 fast | |
700 | 1 | |a Hrushovski, Ehud. | |
700 | 1 | |a Macpherson, Dugald. |0 http://id.loc.gov/authorities/names/n94052177 | |
776 | 0 | 8 | |i Print version: |a Haskell, Deirdre. |t Stable Domination and Independence in Algebraically Closed Valued Fields. |d Cambridge : Cambridge University Press, ©2007 |z 9780521889810 |
830 | 0 | |a Lecture Notes in Logic, 30. | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=218005 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL802949 | ||
938 | |a ebrary |b EBRY |n ebr10213924 | ||
938 | |a EBSCOhost |b EBSC |n 218005 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 115623 | ||
938 | |a YBP Library Services |b YANK |n 2777150 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn761647085 |
---|---|
_version_ | 1816881776994287616 |
adam_text | |
any_adam_object | |
author | Haskell, Deirdre |
author2 | Hrushovski, Ehud Macpherson, Dugald |
author2_role | |
author2_variant | e h eh d m dm |
author_GND | http://id.loc.gov/authorities/names/n94052177 |
author_facet | Haskell, Deirdre Hrushovski, Ehud Macpherson, Dugald |
author_role | |
author_sort | Haskell, Deirdre |
author_variant | d h dh |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA9 |
callnumber-raw | QA9.7 .H377 2007 |
callnumber-search | QA9.7 .H377 2007 |
callnumber-sort | QA 19.7 H377 42007 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | COVER; HALF-TITLE; SERIES-TITLE; TITLE; COPYRIGHT; CONTENTS; PREFACE; Acknowledgments; CHAPTER 1 INTRODUCTION; PART 1 STABLE DOMINATION; CHAPTER 2 SOME BACKGROUND ON STABILITY THEORY; 2.1. Saturation, the universal domain, imaginaries; 2.2. Invariant types; 2.3. Conditions equivalent to stability; 2.4. Independence and forking; 2.5. Totally transcendental theories andMorley rank; 2.6. Prime models; 2.7. Indiscernibles, Morley sequences; 2.8. Stably embedded sets; CHAPTER 3 DEFINITION AND BASIC PROPERTIES OF StC; CHAPTER 4 INVARIANT TYPES AND CHANGE OF BASE; CHAPTER 5 A COMBINATORIAL LEMMA. CHAPTER 6 STRONG CODES FOR GERMSPART 2 INDEPENDENCE IN ACVF; CHAPTER 7 SOME BACKGROUND ON ALGEBRAICALLY CLOSED VALUED FIELDS; 7.1. Background on valued?elds; 7.2. Some model theory of valued?elds; 7.3. Basics of ACVF; 7.4. Imaginaries, and the ACVF sorts; 7.5. The sorts internal to the residue?eld; 7.6. Unary sets, 1-torsors, and generic 1-types; 7.7. One-types orthogonal to G; 7.8. Generic bases of lattices; CHAPTER 8 SEQUENTIAL INDEPENDENCE; CHAPTER 9 GROWTH OF THE STABLE PART; CHAPTER 10 TYPES ORTHOGONAL TO G; CHAPTER 11 OPACITY AND PRIME RESOLUTIONS. CHAPTER 12 MAXIMALLY COMPLETE FIELDS AND DOMINATIONCHAPTER 13 INVARIANT TYPES; 13.1. Examples of sequential independence; 13.2. Invariant types, dividing and sequential independence; CHAPTER 14 A MAXIMUMMODULUS PRINCIPLE; CHAPTER 15 CANONICAL BASES AND INDEPENDENCE GIVEN BY MODULES; CHAPTER 16 OTHER HENSELIAN FIELDS; REFERENCES; INDEX. |
ctrlnum | (OCoLC)761647085 |
dewey-full | 511.3 511.34 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 511.34 |
dewey-search | 511.3 511.34 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04820cam a2200781Mu 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn761647085</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|---|||||</controlfield><controlfield tag="008">111121s2007 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">MNU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CAMBR</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OL$</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">REDDC</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NJR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LUN</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">192045622</subfield><subfield code="a">648345866</subfield><subfield code="a">666904358</subfield><subfield code="a">668204304</subfield><subfield code="a">847967974</subfield><subfield code="a">1011839109</subfield><subfield code="a">1172706610</subfield><subfield code="a">1264824698</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511546471</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511546475</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511371042</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511371047</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521889812</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521889810</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611156237</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6611156232</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780511370038</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0511370032</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521335157</subfield><subfield code="q">(paperback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521335159</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)761647085</subfield><subfield code="z">(OCoLC)192045622</subfield><subfield code="z">(OCoLC)648345866</subfield><subfield code="z">(OCoLC)666904358</subfield><subfield code="z">(OCoLC)668204304</subfield><subfield code="z">(OCoLC)847967974</subfield><subfield code="z">(OCoLC)1011839109</subfield><subfield code="z">(OCoLC)1172706610</subfield><subfield code="z">(OCoLC)1264824698</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">115623</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA9.7 .H377 2007</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">016000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">018000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.3</subfield><subfield code="a">511.34</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Haskell, Deirdre.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stable Domination and Independence in Algebraically Closed Valued Fields.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2007.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (196 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture Notes in Logic, 30 ;</subfield><subfield code="v">v. 30</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">COVER; HALF-TITLE; SERIES-TITLE; TITLE; COPYRIGHT; CONTENTS; PREFACE; Acknowledgments; CHAPTER 1 INTRODUCTION; PART 1 STABLE DOMINATION; CHAPTER 2 SOME BACKGROUND ON STABILITY THEORY; 2.1. Saturation, the universal domain, imaginaries; 2.2. Invariant types; 2.3. Conditions equivalent to stability; 2.4. Independence and forking; 2.5. Totally transcendental theories andMorley rank; 2.6. Prime models; 2.7. Indiscernibles, Morley sequences; 2.8. Stably embedded sets; CHAPTER 3 DEFINITION AND BASIC PROPERTIES OF StC; CHAPTER 4 INVARIANT TYPES AND CHANGE OF BASE; CHAPTER 5 A COMBINATORIAL LEMMA.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">CHAPTER 6 STRONG CODES FOR GERMSPART 2 INDEPENDENCE IN ACVF; CHAPTER 7 SOME BACKGROUND ON ALGEBRAICALLY CLOSED VALUED FIELDS; 7.1. Background on valued?elds; 7.2. Some model theory of valued?elds; 7.3. Basics of ACVF; 7.4. Imaginaries, and the ACVF sorts; 7.5. The sorts internal to the residue?eld; 7.6. Unary sets, 1-torsors, and generic 1-types; 7.7. One-types orthogonal to G; 7.8. Generic bases of lattices; CHAPTER 8 SEQUENTIAL INDEPENDENCE; CHAPTER 9 GROWTH OF THE STABLE PART; CHAPTER 10 TYPES ORTHOGONAL TO G; CHAPTER 11 OPACITY AND PRIME RESOLUTIONS.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">CHAPTER 12 MAXIMALLY COMPLETE FIELDS AND DOMINATIONCHAPTER 13 INVARIANT TYPES; 13.1. Examples of sequential independence; 13.2. Invariant types, dividing and sequential independence; CHAPTER 14 A MAXIMUMMODULUS PRINCIPLE; CHAPTER 15 CANONICAL BASES AND INDEPENDENCE GIVEN BY MODULES; CHAPTER 16 OTHER HENSELIAN FIELDS; REFERENCES; INDEX.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This 2008 book presents research in model theory and its applications to valued fields.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 177-179) and index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Model theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85086421</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Valued fields.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85141938</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Domination (Graph theory)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh97008149</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des modèles.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Corps valués.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Domination (Théorie des graphes)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Infinity.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Logic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Domination (Graph theory)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Model theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Valued fields</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hrushovski, Ehud.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Macpherson, Dugald.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n94052177</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Haskell, Deirdre.</subfield><subfield code="t">Stable Domination and Independence in Algebraically Closed Valued Fields.</subfield><subfield code="d">Cambridge : Cambridge University Press, ©2007</subfield><subfield code="z">9780521889810</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture Notes in Logic, 30.</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=218005</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL802949</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10213924</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">218005</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">115623</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2777150</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn761647085 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:18:06Z |
institution | BVB |
isbn | 9780511546471 0511546475 9780511371042 0511371047 0521889812 9780521889810 9786611156237 6611156232 9780521335157 0521335159 |
language | English |
oclc_num | 761647085 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (196 pages) |
psigel | ZDB-4-EBA |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge University Press, |
record_format | marc |
series | Lecture Notes in Logic, 30. |
series2 | Lecture Notes in Logic, 30 ; |
spelling | Haskell, Deirdre. Stable Domination and Independence in Algebraically Closed Valued Fields. Cambridge : Cambridge University Press, 2007. 1 online resource (196 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Lecture Notes in Logic, 30 ; v. 30 COVER; HALF-TITLE; SERIES-TITLE; TITLE; COPYRIGHT; CONTENTS; PREFACE; Acknowledgments; CHAPTER 1 INTRODUCTION; PART 1 STABLE DOMINATION; CHAPTER 2 SOME BACKGROUND ON STABILITY THEORY; 2.1. Saturation, the universal domain, imaginaries; 2.2. Invariant types; 2.3. Conditions equivalent to stability; 2.4. Independence and forking; 2.5. Totally transcendental theories andMorley rank; 2.6. Prime models; 2.7. Indiscernibles, Morley sequences; 2.8. Stably embedded sets; CHAPTER 3 DEFINITION AND BASIC PROPERTIES OF StC; CHAPTER 4 INVARIANT TYPES AND CHANGE OF BASE; CHAPTER 5 A COMBINATORIAL LEMMA. CHAPTER 6 STRONG CODES FOR GERMSPART 2 INDEPENDENCE IN ACVF; CHAPTER 7 SOME BACKGROUND ON ALGEBRAICALLY CLOSED VALUED FIELDS; 7.1. Background on valued?elds; 7.2. Some model theory of valued?elds; 7.3. Basics of ACVF; 7.4. Imaginaries, and the ACVF sorts; 7.5. The sorts internal to the residue?eld; 7.6. Unary sets, 1-torsors, and generic 1-types; 7.7. One-types orthogonal to G; 7.8. Generic bases of lattices; CHAPTER 8 SEQUENTIAL INDEPENDENCE; CHAPTER 9 GROWTH OF THE STABLE PART; CHAPTER 10 TYPES ORTHOGONAL TO G; CHAPTER 11 OPACITY AND PRIME RESOLUTIONS. CHAPTER 12 MAXIMALLY COMPLETE FIELDS AND DOMINATIONCHAPTER 13 INVARIANT TYPES; 13.1. Examples of sequential independence; 13.2. Invariant types, dividing and sequential independence; CHAPTER 14 A MAXIMUMMODULUS PRINCIPLE; CHAPTER 15 CANONICAL BASES AND INDEPENDENCE GIVEN BY MODULES; CHAPTER 16 OTHER HENSELIAN FIELDS; REFERENCES; INDEX. This 2008 book presents research in model theory and its applications to valued fields. Print version record. Includes bibliographical references (pages 177-179) and index. Model theory. http://id.loc.gov/authorities/subjects/sh85086421 Valued fields. http://id.loc.gov/authorities/subjects/sh85141938 Domination (Graph theory) http://id.loc.gov/authorities/subjects/sh97008149 Théorie des modèles. Corps valués. Domination (Théorie des graphes) MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh Domination (Graph theory) fast Model theory fast Valued fields fast Hrushovski, Ehud. Macpherson, Dugald. http://id.loc.gov/authorities/names/n94052177 Print version: Haskell, Deirdre. Stable Domination and Independence in Algebraically Closed Valued Fields. Cambridge : Cambridge University Press, ©2007 9780521889810 Lecture Notes in Logic, 30. FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=218005 Volltext |
spellingShingle | Haskell, Deirdre Stable Domination and Independence in Algebraically Closed Valued Fields. Lecture Notes in Logic, 30. COVER; HALF-TITLE; SERIES-TITLE; TITLE; COPYRIGHT; CONTENTS; PREFACE; Acknowledgments; CHAPTER 1 INTRODUCTION; PART 1 STABLE DOMINATION; CHAPTER 2 SOME BACKGROUND ON STABILITY THEORY; 2.1. Saturation, the universal domain, imaginaries; 2.2. Invariant types; 2.3. Conditions equivalent to stability; 2.4. Independence and forking; 2.5. Totally transcendental theories andMorley rank; 2.6. Prime models; 2.7. Indiscernibles, Morley sequences; 2.8. Stably embedded sets; CHAPTER 3 DEFINITION AND BASIC PROPERTIES OF StC; CHAPTER 4 INVARIANT TYPES AND CHANGE OF BASE; CHAPTER 5 A COMBINATORIAL LEMMA. CHAPTER 6 STRONG CODES FOR GERMSPART 2 INDEPENDENCE IN ACVF; CHAPTER 7 SOME BACKGROUND ON ALGEBRAICALLY CLOSED VALUED FIELDS; 7.1. Background on valued?elds; 7.2. Some model theory of valued?elds; 7.3. Basics of ACVF; 7.4. Imaginaries, and the ACVF sorts; 7.5. The sorts internal to the residue?eld; 7.6. Unary sets, 1-torsors, and generic 1-types; 7.7. One-types orthogonal to G; 7.8. Generic bases of lattices; CHAPTER 8 SEQUENTIAL INDEPENDENCE; CHAPTER 9 GROWTH OF THE STABLE PART; CHAPTER 10 TYPES ORTHOGONAL TO G; CHAPTER 11 OPACITY AND PRIME RESOLUTIONS. CHAPTER 12 MAXIMALLY COMPLETE FIELDS AND DOMINATIONCHAPTER 13 INVARIANT TYPES; 13.1. Examples of sequential independence; 13.2. Invariant types, dividing and sequential independence; CHAPTER 14 A MAXIMUMMODULUS PRINCIPLE; CHAPTER 15 CANONICAL BASES AND INDEPENDENCE GIVEN BY MODULES; CHAPTER 16 OTHER HENSELIAN FIELDS; REFERENCES; INDEX. Model theory. http://id.loc.gov/authorities/subjects/sh85086421 Valued fields. http://id.loc.gov/authorities/subjects/sh85141938 Domination (Graph theory) http://id.loc.gov/authorities/subjects/sh97008149 Théorie des modèles. Corps valués. Domination (Théorie des graphes) MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh Domination (Graph theory) fast Model theory fast Valued fields fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85086421 http://id.loc.gov/authorities/subjects/sh85141938 http://id.loc.gov/authorities/subjects/sh97008149 |
title | Stable Domination and Independence in Algebraically Closed Valued Fields. |
title_auth | Stable Domination and Independence in Algebraically Closed Valued Fields. |
title_exact_search | Stable Domination and Independence in Algebraically Closed Valued Fields. |
title_full | Stable Domination and Independence in Algebraically Closed Valued Fields. |
title_fullStr | Stable Domination and Independence in Algebraically Closed Valued Fields. |
title_full_unstemmed | Stable Domination and Independence in Algebraically Closed Valued Fields. |
title_short | Stable Domination and Independence in Algebraically Closed Valued Fields. |
title_sort | stable domination and independence in algebraically closed valued fields |
topic | Model theory. http://id.loc.gov/authorities/subjects/sh85086421 Valued fields. http://id.loc.gov/authorities/subjects/sh85141938 Domination (Graph theory) http://id.loc.gov/authorities/subjects/sh97008149 Théorie des modèles. Corps valués. Domination (Théorie des graphes) MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh Domination (Graph theory) fast Model theory fast Valued fields fast |
topic_facet | Model theory. Valued fields. Domination (Graph theory) Théorie des modèles. Corps valués. Domination (Théorie des graphes) MATHEMATICS Infinity. MATHEMATICS Logic. Model theory Valued fields |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=218005 |
work_keys_str_mv | AT haskelldeirdre stabledominationandindependenceinalgebraicallyclosedvaluedfields AT hrushovskiehud stabledominationandindependenceinalgebraicallyclosedvaluedfields AT macphersondugald stabledominationandindependenceinalgebraicallyclosedvaluedfields |