Proof Analysis :: a Contribution to Hilbert's Last Problem.
This book continues from where the authors' previous book, Structural Proof Theory, ended. It presents an extension of the methods of analysis of proofs in pure logic to elementary axiomatic systems and to what is known as philosophical logic. A self-contained brief introduction to the proof th...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge University Press
2011.
|
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | This book continues from where the authors' previous book, Structural Proof Theory, ended. It presents an extension of the methods of analysis of proofs in pure logic to elementary axiomatic systems and to what is known as philosophical logic. A self-contained brief introduction to the proof theory of pure logic is included that serves both the mathematically and philosophically oriented reader. The method is built up gradually, with examples drawn from theories of order, lattice theory and elementary geometry. The aim is, in each of the examples, to help the reader grasp the combinatorial behaviour of an axiom system, which typically leads to decidability results. The last part presents, as an application and extension of all that precedes it, a proof-theoretical approach to the Kripke semantics of modal and related logics, with a great number of new results, providing essential reading for mathematical and philosophical logicians. |
Beschreibung: | 1 online resource (272)) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781139137928 1139137921 9781107008953 1107008956 9781139003513 1139003518 1107222060 9781107222069 1283316765 9781283316767 9786613316769 6613316768 1139139479 9781139139472 1139145258 9781139145251 1139141058 9781139141055 1139141937 9781139141932 |
Internformat
MARC
LEADER | 00000cam a2200000M 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn760055485 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr un|---uuuuu | ||
008 | 111107s2011 xx ob 001 0 eng d | ||
010 | |z 2011023026 | ||
040 | |a IDEBK |b eng |e pn |c IDEBK |d OCLCQ |d N$T |d AZU |d E7B |d COO |d REDDC |d YDXCP |d DEBSZ |d CAMBR |d OSU |d NLGGC |d OCLCF |d EBLCP |d AUD |d S3O |d OCLCQ |d INT |d AU@ |d OCLCQ |d OCLCO |d OCLCQ |d LUN |d OCLCQ |d VLY |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 761720646 |a 763157962 |a 770008862 |a 773530246 |a 816869394 |a 817927239 |a 819630911 |a 1003847279 |a 1020574238 |a 1162201418 |a 1167453485 |a 1264907371 | ||
020 | |a 9781139137928 | ||
020 | |a 1139137921 | ||
020 | |a 9781107008953 |q (hbk.) | ||
020 | |a 1107008956 |q (hbk.) | ||
020 | |a 9781139003513 |q (ebk.) | ||
020 | |a 1139003518 |q (ebk.) | ||
020 | |a 1107222060 | ||
020 | |a 9781107222069 | ||
020 | |a 1283316765 | ||
020 | |a 9781283316767 | ||
020 | |a 9786613316769 | ||
020 | |a 6613316768 | ||
020 | |a 1139139479 | ||
020 | |a 9781139139472 | ||
020 | |a 1139145258 | ||
020 | |a 9781139145251 | ||
020 | |a 1139141058 | ||
020 | |a 9781139141055 | ||
020 | |a 1139141937 | ||
020 | |a 9781139141932 | ||
035 | |a (OCoLC)760055485 |z (OCoLC)761720646 |z (OCoLC)763157962 |z (OCoLC)770008862 |z (OCoLC)773530246 |z (OCoLC)816869394 |z (OCoLC)817927239 |z (OCoLC)819630911 |z (OCoLC)1003847279 |z (OCoLC)1020574238 |z (OCoLC)1162201418 |z (OCoLC)1167453485 |z (OCoLC)1264907371 | ||
050 | 4 | |a QA9.54 .N438 2011 | |
072 | 7 | |a HPL |2 bicssc | |
082 | 7 | |a 511.36 | |
084 | |a MAT018000 |2 bisacsh | ||
049 | |a MAIN | ||
245 | 0 | 0 | |a Proof Analysis : |b a Contribution to Hilbert's Last Problem. |
260 | |b Cambridge University Press |c 2011. | ||
300 | |a 1 online resource (272)) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
520 | |a This book continues from where the authors' previous book, Structural Proof Theory, ended. It presents an extension of the methods of analysis of proofs in pure logic to elementary axiomatic systems and to what is known as philosophical logic. A self-contained brief introduction to the proof theory of pure logic is included that serves both the mathematically and philosophically oriented reader. The method is built up gradually, with examples drawn from theories of order, lattice theory and elementary geometry. The aim is, in each of the examples, to help the reader grasp the combinatorial behaviour of an axiom system, which typically leads to decidability results. The last part presents, as an application and extension of all that precedes it, a proof-theoretical approach to the Kripke semantics of modal and related logics, with a great number of new results, providing essential reading for mathematical and philosophical logicians. | ||
505 | 0 | |a Cover; Title; Copyright; Contents; Preface; Prologue: Hilbert's last problem; 1 Introduction; 1.1 The idea of a proof; 1.2 Proof analysis: an introductory example; (a) Natural deduction.; (b) The theory of equality.; 1.3 Outline; (a) The four parts.; (b) Summary of the individual chapters.; I Proof systems based on natural deduction; 2 Rules of proof: natural deduction; 2.1 Natural deduction with general elimination rules; (a) Introduction rules as determined by the Bhk-conditions.; (b) Inversion principle: determination of elimination rules. | |
505 | 8 | |a (C) Discharge principle: definition of derivations.(d) Derivable and admissible rules.; (e) Classical propositional logic.; 2.2 Normalization of derivations; (a) Convertibility.; (b) Normal derivations.; (c) The subformula structure.; (d) The normalization of derivations.; (e) Strong normalization.; 2.3 From axioms to rules of proof; (a) Mathematical rules.; (b) The subterm property.; (c) Complexity of derivations.; 2.4 The theory of equality; (a) The rules of equality.; (b) Purely syntactic proofs of independence.; 2.5 Predicate logic with equality and its word problem. | |
505 | 8 | |a (A) Replacement rules.(b) The word problem.; Notes to Chapter 2; 3 Axiomatic systems; 3.1 Organization of an axiomatization; (a) Background to axiomatization.; (b) Projective geometry.; (c) Lattice theory.; 3.2 Relational theories and existential axioms; Notes to Chapter 3; 4 Order and lattice theory; 4.1 Order relations; (a) Partial order.; (b) Strict partial order.; 4.2 Lattice theory; (a) The subterm property.; (b) The Whitman conditions.; 4.3 The word problem for groupoids; (a) The axioms and rules for a groupoid.; (b) The subterm property.; (c) Proof search.; (d) Functions. | |
505 | 8 | |a 4.4 Rule systems with eigenvariables(a) Lattice theory.; (b) Strict order with equality.; Notes to Chapter 4; 5 Theories with existence axioms; 5.1 Existence in natural deduction; 5.2 Theories of equality and order again; (a) Non-triviality in equality.; (b) Non-degenerate partial order.; 5.3 Relational lattice theory; (a) The rules of relational lattice theory.; (b) Permutability of rules.; (c) Derivability of universal formulas.; (d) Further decidable classes of formulas.; Notes to Chapter 5; Ii Proof systems based on sequent calculus; 6 Rules of proof: sequent calculus. | |
505 | 8 | |a 6.1 From natural deduction to sequent calculus(a) Notation and rules for sequent calculus.; (b) `Sequents as sets'.; (c) Desiderata on sequent calculi.; (d) Classical propositional logic.; (e) Multisuccedent sequents.; (f) Sequent calculi with invertible rules.; (g) Rules for the quantifiers.; 6.2 Extensions of sequent calculus; (a) Cut elimination in the presence of axioms.; (b) Four approaches to extension by axioms.; (c) Complexity of derivations.; 6.3 Predicate logic with equality; 6.4 Herbrand's theorem for universal theories; Notes to Chapter 6; 7 Linear order. | |
504 | |a Includes bibliographical references and index. | ||
546 | |a English. | ||
650 | 0 | |a Proof theory. |0 http://id.loc.gov/authorities/subjects/sh85107437 | |
650 | 6 | |a Théorie de la preuve. | |
650 | 7 | |a MATHEMATICS |x Logic. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Infinity. |2 bisacsh | |
650 | 7 | |a Proof theory |2 fast | |
700 | 1 | |a Von Plato, Jan. |4 aut | |
720 | |a Negri, Sara. | ||
758 | |i has work: |a Proof analysis (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG9JW4mkXtcBBfhfjfKJ9P |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Proof Analysis. |d Cambridge University Press 2011 |w (DLC) 2011023026 |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=400566 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=400566 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL803043 | ||
938 | |a ebrary |b EBRY |n ebr10506198 | ||
938 | |a EBSCOhost |b EBSC |n 400566 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 331676 | ||
938 | |a YBP Library Services |b YANK |n 7353978 | ||
938 | |a YBP Library Services |b YANK |n 7167239 | ||
938 | |a YBP Library Services |b YANK |n 7214849 | ||
938 | |a YBP Library Services |b YANK |n 7261741 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn760055485 |
---|---|
_version_ | 1826941668526391296 |
adam_text | |
any_adam_object | |
author | Von Plato, Jan |
author_facet | Von Plato, Jan |
author_role | aut |
author_sort | Von Plato, Jan |
author_variant | p j v pj pjv |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA9 |
callnumber-raw | QA9.54 .N438 2011 |
callnumber-search | QA9.54 .N438 2011 |
callnumber-sort | QA 19.54 N438 42011 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Contents; Preface; Prologue: Hilbert's last problem; 1 Introduction; 1.1 The idea of a proof; 1.2 Proof analysis: an introductory example; (a) Natural deduction.; (b) The theory of equality.; 1.3 Outline; (a) The four parts.; (b) Summary of the individual chapters.; I Proof systems based on natural deduction; 2 Rules of proof: natural deduction; 2.1 Natural deduction with general elimination rules; (a) Introduction rules as determined by the Bhk-conditions.; (b) Inversion principle: determination of elimination rules. (C) Discharge principle: definition of derivations.(d) Derivable and admissible rules.; (e) Classical propositional logic.; 2.2 Normalization of derivations; (a) Convertibility.; (b) Normal derivations.; (c) The subformula structure.; (d) The normalization of derivations.; (e) Strong normalization.; 2.3 From axioms to rules of proof; (a) Mathematical rules.; (b) The subterm property.; (c) Complexity of derivations.; 2.4 The theory of equality; (a) The rules of equality.; (b) Purely syntactic proofs of independence.; 2.5 Predicate logic with equality and its word problem. (A) Replacement rules.(b) The word problem.; Notes to Chapter 2; 3 Axiomatic systems; 3.1 Organization of an axiomatization; (a) Background to axiomatization.; (b) Projective geometry.; (c) Lattice theory.; 3.2 Relational theories and existential axioms; Notes to Chapter 3; 4 Order and lattice theory; 4.1 Order relations; (a) Partial order.; (b) Strict partial order.; 4.2 Lattice theory; (a) The subterm property.; (b) The Whitman conditions.; 4.3 The word problem for groupoids; (a) The axioms and rules for a groupoid.; (b) The subterm property.; (c) Proof search.; (d) Functions. 4.4 Rule systems with eigenvariables(a) Lattice theory.; (b) Strict order with equality.; Notes to Chapter 4; 5 Theories with existence axioms; 5.1 Existence in natural deduction; 5.2 Theories of equality and order again; (a) Non-triviality in equality.; (b) Non-degenerate partial order.; 5.3 Relational lattice theory; (a) The rules of relational lattice theory.; (b) Permutability of rules.; (c) Derivability of universal formulas.; (d) Further decidable classes of formulas.; Notes to Chapter 5; Ii Proof systems based on sequent calculus; 6 Rules of proof: sequent calculus. 6.1 From natural deduction to sequent calculus(a) Notation and rules for sequent calculus.; (b) `Sequents as sets'.; (c) Desiderata on sequent calculi.; (d) Classical propositional logic.; (e) Multisuccedent sequents.; (f) Sequent calculi with invertible rules.; (g) Rules for the quantifiers.; 6.2 Extensions of sequent calculus; (a) Cut elimination in the presence of axioms.; (b) Four approaches to extension by axioms.; (c) Complexity of derivations.; 6.3 Predicate logic with equality; 6.4 Herbrand's theorem for universal theories; Notes to Chapter 6; 7 Linear order. |
ctrlnum | (OCoLC)760055485 |
dewey-full | 511.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.36 |
dewey-search | 511.36 |
dewey-sort | 3511.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07005cam a2200841M 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn760055485</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr un|---uuuuu</controlfield><controlfield tag="008">111107s2011 xx ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2011023026</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">IDEBK</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">AZU</subfield><subfield code="d">E7B</subfield><subfield code="d">COO</subfield><subfield code="d">REDDC</subfield><subfield code="d">YDXCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OSU</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCF</subfield><subfield code="d">EBLCP</subfield><subfield code="d">AUD</subfield><subfield code="d">S3O</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LUN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">761720646</subfield><subfield code="a">763157962</subfield><subfield code="a">770008862</subfield><subfield code="a">773530246</subfield><subfield code="a">816869394</subfield><subfield code="a">817927239</subfield><subfield code="a">819630911</subfield><subfield code="a">1003847279</subfield><subfield code="a">1020574238</subfield><subfield code="a">1162201418</subfield><subfield code="a">1167453485</subfield><subfield code="a">1264907371</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139137928</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139137921</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107008953</subfield><subfield code="q">(hbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107008956</subfield><subfield code="q">(hbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139003513</subfield><subfield code="q">(ebk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139003518</subfield><subfield code="q">(ebk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107222060</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107222069</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283316765</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283316767</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786613316769</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6613316768</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139139479</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139139472</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139145258</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139145251</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139141058</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139141055</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139141937</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139141932</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)760055485</subfield><subfield code="z">(OCoLC)761720646</subfield><subfield code="z">(OCoLC)763157962</subfield><subfield code="z">(OCoLC)770008862</subfield><subfield code="z">(OCoLC)773530246</subfield><subfield code="z">(OCoLC)816869394</subfield><subfield code="z">(OCoLC)817927239</subfield><subfield code="z">(OCoLC)819630911</subfield><subfield code="z">(OCoLC)1003847279</subfield><subfield code="z">(OCoLC)1020574238</subfield><subfield code="z">(OCoLC)1162201418</subfield><subfield code="z">(OCoLC)1167453485</subfield><subfield code="z">(OCoLC)1264907371</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA9.54 .N438 2011</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">HPL</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.36</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT018000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Proof Analysis :</subfield><subfield code="b">a Contribution to Hilbert's Last Problem.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="b">Cambridge University Press</subfield><subfield code="c">2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (272))</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book continues from where the authors' previous book, Structural Proof Theory, ended. It presents an extension of the methods of analysis of proofs in pure logic to elementary axiomatic systems and to what is known as philosophical logic. A self-contained brief introduction to the proof theory of pure logic is included that serves both the mathematically and philosophically oriented reader. The method is built up gradually, with examples drawn from theories of order, lattice theory and elementary geometry. The aim is, in each of the examples, to help the reader grasp the combinatorial behaviour of an axiom system, which typically leads to decidability results. The last part presents, as an application and extension of all that precedes it, a proof-theoretical approach to the Kripke semantics of modal and related logics, with a great number of new results, providing essential reading for mathematical and philosophical logicians.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; Preface; Prologue: Hilbert's last problem; 1 Introduction; 1.1 The idea of a proof; 1.2 Proof analysis: an introductory example; (a) Natural deduction.; (b) The theory of equality.; 1.3 Outline; (a) The four parts.; (b) Summary of the individual chapters.; I Proof systems based on natural deduction; 2 Rules of proof: natural deduction; 2.1 Natural deduction with general elimination rules; (a) Introduction rules as determined by the Bhk-conditions.; (b) Inversion principle: determination of elimination rules.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">(C) Discharge principle: definition of derivations.(d) Derivable and admissible rules.; (e) Classical propositional logic.; 2.2 Normalization of derivations; (a) Convertibility.; (b) Normal derivations.; (c) The subformula structure.; (d) The normalization of derivations.; (e) Strong normalization.; 2.3 From axioms to rules of proof; (a) Mathematical rules.; (b) The subterm property.; (c) Complexity of derivations.; 2.4 The theory of equality; (a) The rules of equality.; (b) Purely syntactic proofs of independence.; 2.5 Predicate logic with equality and its word problem.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">(A) Replacement rules.(b) The word problem.; Notes to Chapter 2; 3 Axiomatic systems; 3.1 Organization of an axiomatization; (a) Background to axiomatization.; (b) Projective geometry.; (c) Lattice theory.; 3.2 Relational theories and existential axioms; Notes to Chapter 3; 4 Order and lattice theory; 4.1 Order relations; (a) Partial order.; (b) Strict partial order.; 4.2 Lattice theory; (a) The subterm property.; (b) The Whitman conditions.; 4.3 The word problem for groupoids; (a) The axioms and rules for a groupoid.; (b) The subterm property.; (c) Proof search.; (d) Functions.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.4 Rule systems with eigenvariables(a) Lattice theory.; (b) Strict order with equality.; Notes to Chapter 4; 5 Theories with existence axioms; 5.1 Existence in natural deduction; 5.2 Theories of equality and order again; (a) Non-triviality in equality.; (b) Non-degenerate partial order.; 5.3 Relational lattice theory; (a) The rules of relational lattice theory.; (b) Permutability of rules.; (c) Derivability of universal formulas.; (d) Further decidable classes of formulas.; Notes to Chapter 5; Ii Proof systems based on sequent calculus; 6 Rules of proof: sequent calculus.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.1 From natural deduction to sequent calculus(a) Notation and rules for sequent calculus.; (b) `Sequents as sets'.; (c) Desiderata on sequent calculi.; (d) Classical propositional logic.; (e) Multisuccedent sequents.; (f) Sequent calculi with invertible rules.; (g) Rules for the quantifiers.; 6.2 Extensions of sequent calculus; (a) Cut elimination in the presence of axioms.; (b) Four approaches to extension by axioms.; (c) Complexity of derivations.; 6.3 Predicate logic with equality; 6.4 Herbrand's theorem for universal theories; Notes to Chapter 6; 7 Linear order.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Proof theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85107437</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie de la preuve.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Logic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Infinity.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Proof theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Von Plato, Jan.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="720" ind1=" " ind2=" "><subfield code="a">Negri, Sara.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Proof analysis (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG9JW4mkXtcBBfhfjfKJ9P</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Proof Analysis.</subfield><subfield code="d">Cambridge University Press 2011</subfield><subfield code="w">(DLC) 2011023026</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=400566</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=400566</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL803043</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10506198</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">400566</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">331676</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7353978</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7167239</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7214849</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7261741</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn760055485 |
illustrated | Not Illustrated |
indexdate | 2025-03-18T14:15:46Z |
institution | BVB |
isbn | 9781139137928 1139137921 9781107008953 1107008956 9781139003513 1139003518 1107222060 9781107222069 1283316765 9781283316767 9786613316769 6613316768 1139139479 9781139139472 1139145258 9781139145251 1139141058 9781139141055 1139141937 9781139141932 |
language | English |
oclc_num | 760055485 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (272)) |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Proof Analysis : a Contribution to Hilbert's Last Problem. Cambridge University Press 2011. 1 online resource (272)) text txt rdacontent computer c rdamedia online resource cr rdacarrier This book continues from where the authors' previous book, Structural Proof Theory, ended. It presents an extension of the methods of analysis of proofs in pure logic to elementary axiomatic systems and to what is known as philosophical logic. A self-contained brief introduction to the proof theory of pure logic is included that serves both the mathematically and philosophically oriented reader. The method is built up gradually, with examples drawn from theories of order, lattice theory and elementary geometry. The aim is, in each of the examples, to help the reader grasp the combinatorial behaviour of an axiom system, which typically leads to decidability results. The last part presents, as an application and extension of all that precedes it, a proof-theoretical approach to the Kripke semantics of modal and related logics, with a great number of new results, providing essential reading for mathematical and philosophical logicians. Cover; Title; Copyright; Contents; Preface; Prologue: Hilbert's last problem; 1 Introduction; 1.1 The idea of a proof; 1.2 Proof analysis: an introductory example; (a) Natural deduction.; (b) The theory of equality.; 1.3 Outline; (a) The four parts.; (b) Summary of the individual chapters.; I Proof systems based on natural deduction; 2 Rules of proof: natural deduction; 2.1 Natural deduction with general elimination rules; (a) Introduction rules as determined by the Bhk-conditions.; (b) Inversion principle: determination of elimination rules. (C) Discharge principle: definition of derivations.(d) Derivable and admissible rules.; (e) Classical propositional logic.; 2.2 Normalization of derivations; (a) Convertibility.; (b) Normal derivations.; (c) The subformula structure.; (d) The normalization of derivations.; (e) Strong normalization.; 2.3 From axioms to rules of proof; (a) Mathematical rules.; (b) The subterm property.; (c) Complexity of derivations.; 2.4 The theory of equality; (a) The rules of equality.; (b) Purely syntactic proofs of independence.; 2.5 Predicate logic with equality and its word problem. (A) Replacement rules.(b) The word problem.; Notes to Chapter 2; 3 Axiomatic systems; 3.1 Organization of an axiomatization; (a) Background to axiomatization.; (b) Projective geometry.; (c) Lattice theory.; 3.2 Relational theories and existential axioms; Notes to Chapter 3; 4 Order and lattice theory; 4.1 Order relations; (a) Partial order.; (b) Strict partial order.; 4.2 Lattice theory; (a) The subterm property.; (b) The Whitman conditions.; 4.3 The word problem for groupoids; (a) The axioms and rules for a groupoid.; (b) The subterm property.; (c) Proof search.; (d) Functions. 4.4 Rule systems with eigenvariables(a) Lattice theory.; (b) Strict order with equality.; Notes to Chapter 4; 5 Theories with existence axioms; 5.1 Existence in natural deduction; 5.2 Theories of equality and order again; (a) Non-triviality in equality.; (b) Non-degenerate partial order.; 5.3 Relational lattice theory; (a) The rules of relational lattice theory.; (b) Permutability of rules.; (c) Derivability of universal formulas.; (d) Further decidable classes of formulas.; Notes to Chapter 5; Ii Proof systems based on sequent calculus; 6 Rules of proof: sequent calculus. 6.1 From natural deduction to sequent calculus(a) Notation and rules for sequent calculus.; (b) `Sequents as sets'.; (c) Desiderata on sequent calculi.; (d) Classical propositional logic.; (e) Multisuccedent sequents.; (f) Sequent calculi with invertible rules.; (g) Rules for the quantifiers.; 6.2 Extensions of sequent calculus; (a) Cut elimination in the presence of axioms.; (b) Four approaches to extension by axioms.; (c) Complexity of derivations.; 6.3 Predicate logic with equality; 6.4 Herbrand's theorem for universal theories; Notes to Chapter 6; 7 Linear order. Includes bibliographical references and index. English. Proof theory. http://id.loc.gov/authorities/subjects/sh85107437 Théorie de la preuve. MATHEMATICS Logic. bisacsh MATHEMATICS Infinity. bisacsh Proof theory fast Von Plato, Jan. aut Negri, Sara. has work: Proof analysis (Text) https://id.oclc.org/worldcat/entity/E39PCG9JW4mkXtcBBfhfjfKJ9P https://id.oclc.org/worldcat/ontology/hasWork Print version: Proof Analysis. Cambridge University Press 2011 (DLC) 2011023026 |
spellingShingle | Von Plato, Jan Proof Analysis : a Contribution to Hilbert's Last Problem. Cover; Title; Copyright; Contents; Preface; Prologue: Hilbert's last problem; 1 Introduction; 1.1 The idea of a proof; 1.2 Proof analysis: an introductory example; (a) Natural deduction.; (b) The theory of equality.; 1.3 Outline; (a) The four parts.; (b) Summary of the individual chapters.; I Proof systems based on natural deduction; 2 Rules of proof: natural deduction; 2.1 Natural deduction with general elimination rules; (a) Introduction rules as determined by the Bhk-conditions.; (b) Inversion principle: determination of elimination rules. (C) Discharge principle: definition of derivations.(d) Derivable and admissible rules.; (e) Classical propositional logic.; 2.2 Normalization of derivations; (a) Convertibility.; (b) Normal derivations.; (c) The subformula structure.; (d) The normalization of derivations.; (e) Strong normalization.; 2.3 From axioms to rules of proof; (a) Mathematical rules.; (b) The subterm property.; (c) Complexity of derivations.; 2.4 The theory of equality; (a) The rules of equality.; (b) Purely syntactic proofs of independence.; 2.5 Predicate logic with equality and its word problem. (A) Replacement rules.(b) The word problem.; Notes to Chapter 2; 3 Axiomatic systems; 3.1 Organization of an axiomatization; (a) Background to axiomatization.; (b) Projective geometry.; (c) Lattice theory.; 3.2 Relational theories and existential axioms; Notes to Chapter 3; 4 Order and lattice theory; 4.1 Order relations; (a) Partial order.; (b) Strict partial order.; 4.2 Lattice theory; (a) The subterm property.; (b) The Whitman conditions.; 4.3 The word problem for groupoids; (a) The axioms and rules for a groupoid.; (b) The subterm property.; (c) Proof search.; (d) Functions. 4.4 Rule systems with eigenvariables(a) Lattice theory.; (b) Strict order with equality.; Notes to Chapter 4; 5 Theories with existence axioms; 5.1 Existence in natural deduction; 5.2 Theories of equality and order again; (a) Non-triviality in equality.; (b) Non-degenerate partial order.; 5.3 Relational lattice theory; (a) The rules of relational lattice theory.; (b) Permutability of rules.; (c) Derivability of universal formulas.; (d) Further decidable classes of formulas.; Notes to Chapter 5; Ii Proof systems based on sequent calculus; 6 Rules of proof: sequent calculus. 6.1 From natural deduction to sequent calculus(a) Notation and rules for sequent calculus.; (b) `Sequents as sets'.; (c) Desiderata on sequent calculi.; (d) Classical propositional logic.; (e) Multisuccedent sequents.; (f) Sequent calculi with invertible rules.; (g) Rules for the quantifiers.; 6.2 Extensions of sequent calculus; (a) Cut elimination in the presence of axioms.; (b) Four approaches to extension by axioms.; (c) Complexity of derivations.; 6.3 Predicate logic with equality; 6.4 Herbrand's theorem for universal theories; Notes to Chapter 6; 7 Linear order. Proof theory. http://id.loc.gov/authorities/subjects/sh85107437 Théorie de la preuve. MATHEMATICS Logic. bisacsh MATHEMATICS Infinity. bisacsh Proof theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85107437 |
title | Proof Analysis : a Contribution to Hilbert's Last Problem. |
title_auth | Proof Analysis : a Contribution to Hilbert's Last Problem. |
title_exact_search | Proof Analysis : a Contribution to Hilbert's Last Problem. |
title_full | Proof Analysis : a Contribution to Hilbert's Last Problem. |
title_fullStr | Proof Analysis : a Contribution to Hilbert's Last Problem. |
title_full_unstemmed | Proof Analysis : a Contribution to Hilbert's Last Problem. |
title_short | Proof Analysis : |
title_sort | proof analysis a contribution to hilbert s last problem |
title_sub | a Contribution to Hilbert's Last Problem. |
topic | Proof theory. http://id.loc.gov/authorities/subjects/sh85107437 Théorie de la preuve. MATHEMATICS Logic. bisacsh MATHEMATICS Infinity. bisacsh Proof theory fast |
topic_facet | Proof theory. Théorie de la preuve. MATHEMATICS Logic. MATHEMATICS Infinity. Proof theory |
work_keys_str_mv | AT vonplatojan proofanalysisacontributiontohilbertslastproblem |