Triangulated Categories.:
"The first two chapters of this book offer a modern, self-contained exposition of the elementary theory of triangulated categories and their quotients. The simple, elegant presentation of these known results makes these chapters eminently suitable as a text for graduate students. The remainder...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton : Ewing :
Princeton University Press California Princeton Fulfillment Services [distributor]
Jan. 2001
|
Schriftenreihe: | Annals of mathematics studies ;
no. 148. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "The first two chapters of this book offer a modern, self-contained exposition of the elementary theory of triangulated categories and their quotients. The simple, elegant presentation of these known results makes these chapters eminently suitable as a text for graduate students. The remainder of the book is devoted to new research, providing, among other material, some remarkable improvements on Brown's classical representability theorem. In addition, the author introduces a class of triangulated categories"--The "well generated triangulated categories"--and studies their properties. This exercise is particularly worthwhile in that many examples of triangulated categories are well generated, and the book proves several powerful theorems for this broad class. These chapters will interest researchers in the fields of algebra, algebraic geometry, homotopy theory, and mathematical physics"--Publisher description. |
Beschreibung: | 1 online resource (449 pages) illustrations |
Zielpublikum: | College Audience |
Bibliographie: | Includes bibliographical references (pages 443-444) and index. |
ISBN: | 9781400837212 1400837219 |
Internformat
MARC
LEADER | 00000cam a2200000M 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn757993359 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 001116e20010103njua eob 001 0 eng d | ||
040 | |a REB |b eng |e pn |c REB |d OCLCO |d OCLCQ |d N$T |d E7B |d JSTOR |d DEBBG |d YDXCP |d EBLCP |d DEBSZ |d COO |d OCLCQ |d OCLCO |d N$T |d OCLCO |d JBG |d OCLCA |d UIU |d COCUF |d AGLDB |d MOR |d CCO |d PIFAG |d ZCU |d VT2 |d WT2 |d MERUC |d OCLCQ |d IOG |d DEGRU |d U3W |d EZ9 |d TXI |d STF |d VTS |d ICG |d INT |d REC |d OCLCQ |d WYU |d LVT |d TKN |d OCLCQ |d LEAUB |d OCLCO |d DKC |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d VLB |d MM9 |d OCLCQ |d OCLCO |d INARC |d OCLCO |d OCL |d OCLCQ |d OCLCO |d N$T | ||
066 | |c (S | ||
019 | |a 887802775 |a 888743941 |a 961536425 |a 962611632 |a 979954343 |a 992921894 |a 1162536589 |a 1264845763 | ||
020 | |a 9781400837212 |q (electronic bk.) | ||
020 | |a 1400837219 |q (electronic bk.) | ||
020 | |z 9780691086866 | ||
020 | |z 0691086869 | ||
020 | |z 0691086850 | ||
020 | |z 9780691086859 | ||
024 | 7 | |a 10.1515/9781400837212 |2 doi | |
035 | |a (OCoLC)757993359 |z (OCoLC)887802775 |z (OCoLC)888743941 |z (OCoLC)961536425 |z (OCoLC)962611632 |z (OCoLC)979954343 |z (OCoLC)992921894 |z (OCoLC)1162536589 |z (OCoLC)1264845763 | ||
037 | |b 00021620 | ||
037 | |a 22573/ctt767zrp |b JSTOR | ||
050 | 4 | |a QA1.A626 no.148 | |
072 | 7 | |a MAT |x 039000 |2 bisacsh | |
072 | 7 | |a MAT |x 023000 |2 bisacsh | |
072 | 7 | |a MAT |x 026000 |2 bisacsh | |
072 | 7 | |a MAT002010 |2 bisacsh | |
072 | 7 | |a MAT012010 |2 bisacsh | |
082 | 7 | |a 510 s 512/.55 |2 21 | |
084 | |a 31.27 |2 bcl | ||
084 | |a SI 830 |2 rvk | ||
084 | |a SK 320 |2 rvk | ||
084 | |a MAT 183f |2 stub | ||
084 | |a MAT 552f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a Neeman, Amnon, |e author. |0 http://id.loc.gov/authorities/names/n87811126 | |
245 | 1 | 0 | |a Triangulated Categories. |
260 | |a Princeton : |b Princeton University Press |c Jan. 2001 |a Ewing : |b California Princeton Fulfillment Services [distributor] | ||
300 | |a 1 online resource (449 pages) |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file |b PDF |2 rda | ||
490 | 1 | |a Annals of Mathematics Studies |v Vol. 148 | |
521 | |a College Audience |b Princeton University Press. | ||
504 | |a Includes bibliographical references (pages 443-444) and index. | ||
520 | |a "The first two chapters of this book offer a modern, self-contained exposition of the elementary theory of triangulated categories and their quotients. The simple, elegant presentation of these known results makes these chapters eminently suitable as a text for graduate students. The remainder of the book is devoted to new research, providing, among other material, some remarkable improvements on Brown's classical representability theorem. In addition, the author introduces a class of triangulated categories"--The "well generated triangulated categories"--and studies their properties. This exercise is particularly worthwhile in that many examples of triangulated categories are well generated, and the book proves several powerful theorems for this broad class. These chapters will interest researchers in the fields of algebra, algebraic geometry, homotopy theory, and mathematical physics"--Publisher description. | ||
546 | |a In English. | ||
505 | 0 | 0 | |t Definition and elementary properties of triangulated categories -- |t Triangulated functors and localizations of tringulated categories -- |t Perfection of classes -- |t Small objects, and Thomason's localisation theorem -- |t Category A(S) -- |t Category Ex(Sop, Ab) -- |t Homological properties of Ex(Sop, Ab) -- |t Brown representability -- |t Bousfield localisation. |
650 | 0 | |a Triangulated categories. |0 http://id.loc.gov/authorities/subjects/sh2010007133 | |
650 | 0 | |a Categories (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85020992 | |
650 | 4 | |a Algebra and Number Theory. | |
650 | 4 | |a Categorieën (wiskunde) | |
650 | 4 | |a Categories (Mathematics) | |
650 | 4 | |a Catégories (Mathématiques) | |
650 | 4 | |a Kategorie (Mathematik) | |
650 | 4 | |a Mathematics. | |
650 | 4 | |a Triangulated categories. | |
650 | 4 | |a Triangulation. | |
650 | 4 | |a Mathematik. | |
650 | 6 | |a Catégories (Mathématiques) | |
650 | 6 | |a Catégories triangulées. | |
650 | 7 | |a MATHEMATICS |x Essays. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Pre-Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Reference. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Algebra |x Abstract. |2 bisacsh | |
650 | 7 | |a Categories (Mathematics) |2 fast | |
650 | 7 | |a Triangulated categories |2 fast | |
650 | 7 | |a Kategorie |g Mathematik |2 gnd |0 http://d-nb.info/gnd/4129930-9 | |
650 | 7 | |a Triangulation |2 gnd | |
650 | 1 | 7 | |a Categorieën (wiskunde) |2 gtt |
776 | 0 | 8 | |i Print version: |a Neeman, Amnon. |t Triangulated categories |z 0691086850 |w (DLC) 00051631 |w (OCoLC)45202119 |
830 | 0 | |a Annals of mathematics studies ; |v no. 148. |0 http://id.loc.gov/authorities/names/n42002129 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=818433 |3 Volltext |
880 | 0 | 0 | |6 505-00/(S |t Definition and elementary properties of triangulated categories -- |t Triangulated functors and localizations of tringulated categories -- |t Perfection of classes -- |t Small objects, and Thomason's localisation theorem -- |t Category A(S) -- |t Category Ex(S[superscript op], Ab) -- |t Homological properties of Ex(S[superscript op], Ab) -- |t Brown representability -- |t Bousfield localisation -- |g Appendix A. |t Abelian categories -- |g Appendix B. |t Homological functors into [AB5[superscript infinity]] categories -- |g Appendix C. |t Counterexamples concerning the abelian category A(Τ) -- |g Appendix D. |t Where Τ is the homotopy category of spectra -- |g Appendix E. |t Examples of non-perfectly-generated categories -- |g Bibliography -- |g Index. |
938 | |a De Gruyter |b DEGR |n 9781400837212 | ||
938 | |a YBP Library Services |b YANK |n 12038297 | ||
938 | |a EBSCOhost |b EBSC |n 818433 | ||
938 | |a ebrary |b EBRY |n ebr10909208 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1756198 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH28073854 | ||
938 | |a Internet Archive |b INAR |n triangulatedcate0000neem | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn757993359 |
---|---|
_version_ | 1816881773697564673 |
adam_text | |
any_adam_object | |
author | Neeman, Amnon |
author_GND | http://id.loc.gov/authorities/names/n87811126 |
author_facet | Neeman, Amnon |
author_role | aut |
author_sort | Neeman, Amnon |
author_variant | a n an |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA1 |
callnumber-raw | QA1.A626 no.148 |
callnumber-search | QA1.A626 no.148 |
callnumber-sort | QA 11 A626 NO 3148 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 830 SK 320 |
classification_tum | MAT 183f MAT 552f |
collection | ZDB-4-EBA |
contents | Definition and elementary properties of triangulated categories -- Triangulated functors and localizations of tringulated categories -- Perfection of classes -- Small objects, and Thomason's localisation theorem -- Category A(S) -- Category Ex(Sop, Ab) -- Homological properties of Ex(Sop, Ab) -- Brown representability -- Bousfield localisation. |
ctrlnum | (OCoLC)757993359 |
dewey-full | 510S512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 s 512/.55 |
dewey-search | 510 s 512/.55 |
dewey-sort | 3510 S 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06189cam a2200985M 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn757993359</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">001116e20010103njua eob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">REB</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">REB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">JSTOR</subfield><subfield code="d">DEBBG</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCO</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCA</subfield><subfield code="d">UIU</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">VT2</subfield><subfield code="d">WT2</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IOG</subfield><subfield code="d">DEGRU</subfield><subfield code="d">U3W</subfield><subfield code="d">EZ9</subfield><subfield code="d">TXI</subfield><subfield code="d">STF</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VLB</subfield><subfield code="d">MM9</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">887802775</subfield><subfield code="a">888743941</subfield><subfield code="a">961536425</subfield><subfield code="a">962611632</subfield><subfield code="a">979954343</subfield><subfield code="a">992921894</subfield><subfield code="a">1162536589</subfield><subfield code="a">1264845763</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400837212</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400837219</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691086866</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691086869</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691086850</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691086859</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400837212</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)757993359</subfield><subfield code="z">(OCoLC)887802775</subfield><subfield code="z">(OCoLC)888743941</subfield><subfield code="z">(OCoLC)961536425</subfield><subfield code="z">(OCoLC)962611632</subfield><subfield code="z">(OCoLC)979954343</subfield><subfield code="z">(OCoLC)992921894</subfield><subfield code="z">(OCoLC)1162536589</subfield><subfield code="z">(OCoLC)1264845763</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="b">00021620</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/ctt767zrp</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA1.A626 no.148</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">039000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">023000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">026000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT002010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT012010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">510 s 512/.55</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.27</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 183f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 552f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Neeman, Amnon,</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n87811126</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Triangulated Categories.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton :</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">Jan. 2001</subfield><subfield code="a">Ewing :</subfield><subfield code="b">California Princeton Fulfillment Services [distributor]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (449 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield><subfield code="b">PDF</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">Vol. 148</subfield></datafield><datafield tag="521" ind1=" " ind2=" "><subfield code="a">College Audience</subfield><subfield code="b">Princeton University Press.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 443-444) and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"The first two chapters of this book offer a modern, self-contained exposition of the elementary theory of triangulated categories and their quotients. The simple, elegant presentation of these known results makes these chapters eminently suitable as a text for graduate students. The remainder of the book is devoted to new research, providing, among other material, some remarkable improvements on Brown's classical representability theorem. In addition, the author introduces a class of triangulated categories"--The "well generated triangulated categories"--and studies their properties. This exercise is particularly worthwhile in that many examples of triangulated categories are well generated, and the book proves several powerful theorems for this broad class. These chapters will interest researchers in the fields of algebra, algebraic geometry, homotopy theory, and mathematical physics"--Publisher description.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Definition and elementary properties of triangulated categories --</subfield><subfield code="t">Triangulated functors and localizations of tringulated categories --</subfield><subfield code="t">Perfection of classes --</subfield><subfield code="t">Small objects, and Thomason's localisation theorem --</subfield><subfield code="t">Category A(S) --</subfield><subfield code="t">Category Ex(Sop, Ab) --</subfield><subfield code="t">Homological properties of Ex(Sop, Ab) --</subfield><subfield code="t">Brown representability --</subfield><subfield code="t">Bousfield localisation.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Triangulated categories.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2010007133</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Categories (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85020992</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra and Number Theory.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Categorieën (wiskunde)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Categories (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Catégories (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kategorie (Mathematik)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Triangulated categories.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Triangulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Catégories (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Catégories triangulées.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Essays.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Pre-Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Reference.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Abstract.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Categories (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Triangulated categories</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kategorie</subfield><subfield code="g">Mathematik</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4129930-9</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Triangulation</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Categorieën (wiskunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Neeman, Amnon.</subfield><subfield code="t">Triangulated categories</subfield><subfield code="z">0691086850</subfield><subfield code="w">(DLC) 00051631</subfield><subfield code="w">(OCoLC)45202119</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">no. 148.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42002129</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=818433</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="0" ind2="0"><subfield code="6">505-00/(S</subfield><subfield code="t">Definition and elementary properties of triangulated categories --</subfield><subfield code="t">Triangulated functors and localizations of tringulated categories --</subfield><subfield code="t">Perfection of classes --</subfield><subfield code="t">Small objects, and Thomason's localisation theorem --</subfield><subfield code="t">Category A(S) --</subfield><subfield code="t">Category Ex(S[superscript op], Ab) --</subfield><subfield code="t">Homological properties of Ex(S[superscript op], Ab) --</subfield><subfield code="t">Brown representability --</subfield><subfield code="t">Bousfield localisation --</subfield><subfield code="g">Appendix A.</subfield><subfield code="t">Abelian categories --</subfield><subfield code="g">Appendix B.</subfield><subfield code="t">Homological functors into [AB5[superscript infinity]] categories --</subfield><subfield code="g">Appendix C.</subfield><subfield code="t">Counterexamples concerning the abelian category A(Τ) --</subfield><subfield code="g">Appendix D.</subfield><subfield code="t">Where Τ is the homotopy category of spectra --</subfield><subfield code="g">Appendix E.</subfield><subfield code="t">Examples of non-perfectly-generated categories --</subfield><subfield code="g">Bibliography --</subfield><subfield code="g">Index.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9781400837212</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12038297</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">818433</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10909208</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1756198</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH28073854</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">triangulatedcate0000neem</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn757993359 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:18:03Z |
institution | BVB |
isbn | 9781400837212 1400837219 |
language | English |
oclc_num | 757993359 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (449 pages) illustrations |
psigel | ZDB-4-EBA |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Princeton University Press California Princeton Fulfillment Services [distributor] |
record_format | marc |
series | Annals of mathematics studies ; |
series2 | Annals of Mathematics Studies |
spelling | Neeman, Amnon, author. http://id.loc.gov/authorities/names/n87811126 Triangulated Categories. Princeton : Princeton University Press Jan. 2001 Ewing : California Princeton Fulfillment Services [distributor] 1 online resource (449 pages) illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier text file PDF rda Annals of Mathematics Studies Vol. 148 College Audience Princeton University Press. Includes bibliographical references (pages 443-444) and index. "The first two chapters of this book offer a modern, self-contained exposition of the elementary theory of triangulated categories and their quotients. The simple, elegant presentation of these known results makes these chapters eminently suitable as a text for graduate students. The remainder of the book is devoted to new research, providing, among other material, some remarkable improvements on Brown's classical representability theorem. In addition, the author introduces a class of triangulated categories"--The "well generated triangulated categories"--and studies their properties. This exercise is particularly worthwhile in that many examples of triangulated categories are well generated, and the book proves several powerful theorems for this broad class. These chapters will interest researchers in the fields of algebra, algebraic geometry, homotopy theory, and mathematical physics"--Publisher description. In English. Definition and elementary properties of triangulated categories -- Triangulated functors and localizations of tringulated categories -- Perfection of classes -- Small objects, and Thomason's localisation theorem -- Category A(S) -- Category Ex(Sop, Ab) -- Homological properties of Ex(Sop, Ab) -- Brown representability -- Bousfield localisation. Triangulated categories. http://id.loc.gov/authorities/subjects/sh2010007133 Categories (Mathematics) http://id.loc.gov/authorities/subjects/sh85020992 Algebra and Number Theory. Categorieën (wiskunde) Categories (Mathematics) Catégories (Mathématiques) Kategorie (Mathematik) Mathematics. Triangulated categories. Triangulation. Mathematik. Catégories triangulées. MATHEMATICS Essays. bisacsh MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh MATHEMATICS Algebra Abstract. bisacsh Categories (Mathematics) fast Triangulated categories fast Kategorie Mathematik gnd http://d-nb.info/gnd/4129930-9 Triangulation gnd Categorieën (wiskunde) gtt Print version: Neeman, Amnon. Triangulated categories 0691086850 (DLC) 00051631 (OCoLC)45202119 Annals of mathematics studies ; no. 148. http://id.loc.gov/authorities/names/n42002129 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=818433 Volltext 505-00/(S Definition and elementary properties of triangulated categories -- Triangulated functors and localizations of tringulated categories -- Perfection of classes -- Small objects, and Thomason's localisation theorem -- Category A(S) -- Category Ex(S[superscript op], Ab) -- Homological properties of Ex(S[superscript op], Ab) -- Brown representability -- Bousfield localisation -- Appendix A. Abelian categories -- Appendix B. Homological functors into [AB5[superscript infinity]] categories -- Appendix C. Counterexamples concerning the abelian category A(Τ) -- Appendix D. Where Τ is the homotopy category of spectra -- Appendix E. Examples of non-perfectly-generated categories -- Bibliography -- Index. |
spellingShingle | Neeman, Amnon Triangulated Categories. Annals of mathematics studies ; Definition and elementary properties of triangulated categories -- Triangulated functors and localizations of tringulated categories -- Perfection of classes -- Small objects, and Thomason's localisation theorem -- Category A(S) -- Category Ex(Sop, Ab) -- Homological properties of Ex(Sop, Ab) -- Brown representability -- Bousfield localisation. Triangulated categories. http://id.loc.gov/authorities/subjects/sh2010007133 Categories (Mathematics) http://id.loc.gov/authorities/subjects/sh85020992 Algebra and Number Theory. Categorieën (wiskunde) Categories (Mathematics) Catégories (Mathématiques) Kategorie (Mathematik) Mathematics. Triangulated categories. Triangulation. Mathematik. Catégories triangulées. MATHEMATICS Essays. bisacsh MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh MATHEMATICS Algebra Abstract. bisacsh Categories (Mathematics) fast Triangulated categories fast Kategorie Mathematik gnd http://d-nb.info/gnd/4129930-9 Triangulation gnd Categorieën (wiskunde) gtt |
subject_GND | http://id.loc.gov/authorities/subjects/sh2010007133 http://id.loc.gov/authorities/subjects/sh85020992 http://d-nb.info/gnd/4129930-9 |
title | Triangulated Categories. |
title_alt | Definition and elementary properties of triangulated categories -- Triangulated functors and localizations of tringulated categories -- Perfection of classes -- Small objects, and Thomason's localisation theorem -- Category A(S) -- Category Ex(Sop, Ab) -- Homological properties of Ex(Sop, Ab) -- Brown representability -- Bousfield localisation. |
title_auth | Triangulated Categories. |
title_exact_search | Triangulated Categories. |
title_full | Triangulated Categories. |
title_fullStr | Triangulated Categories. |
title_full_unstemmed | Triangulated Categories. |
title_short | Triangulated Categories. |
title_sort | triangulated categories |
topic | Triangulated categories. http://id.loc.gov/authorities/subjects/sh2010007133 Categories (Mathematics) http://id.loc.gov/authorities/subjects/sh85020992 Algebra and Number Theory. Categorieën (wiskunde) Categories (Mathematics) Catégories (Mathématiques) Kategorie (Mathematik) Mathematics. Triangulated categories. Triangulation. Mathematik. Catégories triangulées. MATHEMATICS Essays. bisacsh MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh MATHEMATICS Algebra Abstract. bisacsh Categories (Mathematics) fast Triangulated categories fast Kategorie Mathematik gnd http://d-nb.info/gnd/4129930-9 Triangulation gnd Categorieën (wiskunde) gtt |
topic_facet | Triangulated categories. Categories (Mathematics) Algebra and Number Theory. Categorieën (wiskunde) Catégories (Mathématiques) Kategorie (Mathematik) Mathematics. Triangulation. Mathematik. Catégories triangulées. MATHEMATICS Essays. MATHEMATICS Pre-Calculus. MATHEMATICS Reference. MATHEMATICS Algebra Abstract. Triangulated categories Kategorie Mathematik Triangulation |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=818433 |
work_keys_str_mv | AT neemanamnon triangulatedcategories |