Henstock-Kurzweil integration on Euclidean spaces /:
The Henstock-Kurzweil integral, which is also known as the generalized Riemann integral, arose from a slight modification of the classical Riemann integral more than 50 years ago. This relatively new integral is known to be equivalent to the classical Perron integral; in particular, it includes the...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey :
World Scientific,
©2011.
|
Schriftenreihe: | Series in real analysis ;
v. 12. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The Henstock-Kurzweil integral, which is also known as the generalized Riemann integral, arose from a slight modification of the classical Riemann integral more than 50 years ago. This relatively new integral is known to be equivalent to the classical Perron integral; in particular, it includes the powerful Lebesgue integral. This book presents an introduction of the multiple Henstock-Kurzweil integral. Along with the classical results, this book contains some recent developments connected with measures, multiple integration by parts, and multiple Fourier series. The book can be understood with a prerequisite of advanced calculus. |
Beschreibung: | 1 online resource (ix, 314 pages). |
Bibliographie: | Includes bibliographical references (pages 295-303) and index. |
ISBN: | 9789814324595 9814324590 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn754793038 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr mnu---unuuu | ||
008 | 110927s2011 nju ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d OSU |d E7B |d OCLCQ |d DEBSZ |d OCLCQ |d NLGGC |d OCLCQ |d OCLCF |d OCLCQ |d LOA |d AGLDB |d MOR |d PIFAG |d OCLCQ |d JBG |d U3W |d STF |d WRM |d VTS |d COCUF |d NRAMU |d INT |d OCLCQ |d ICG |d TKN |d OCLCQ |d LEAUB |d UKAHL |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d OCLCL | ||
020 | |a 9789814324595 |q (electronic bk.) | ||
020 | |a 9814324590 |q (electronic bk.) | ||
020 | |z 9789814324588 | ||
020 | |z 9814324582 | ||
035 | |a (OCoLC)754793038 | ||
050 | 4 | |a QA312 |b .L43 2011eb | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515.4/3 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Lee, Tuo Yeong, |d 1967- |1 https://id.oclc.org/worldcat/entity/E39PCjy8CGYVrCVVcVkxWw4hh3 |0 http://id.loc.gov/authorities/names/no2011083170 | |
245 | 1 | 0 | |a Henstock-Kurzweil integration on Euclidean spaces / |c Lee Tuo Yeong. |
260 | |a New Jersey : |b World Scientific, |c ©2011. | ||
300 | |a 1 online resource (ix, 314 pages). | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Series in real analysis ; |v v. 12 | |
504 | |a Includes bibliographical references (pages 295-303) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a 1. The one-dimensional Henstock-Kurzweil integral. 1.1. Introduction and Cousin's lemma. 1.2. Definition of the Henstock-Kurzweil integral. 1.3. Simple properties. 1.4. Saks-Henstock lemma. 1.5. Notes and remarks -- 2. The multiple Henstock-Kurzweil integral. 2.1. Preliminaries. 2.2. The Henstock-Kurzweil integral. 2.3. Simple properties. 2.4. Saks-Henstock lemma. 2.5. Fubini's theorem. 2.6. Notes and remarks -- 3. Lebesgue integrable functions. 3.1. Introduction. 3.2. Some convergence theorems for Lebesgue integrals. 3.3. [symbol]-measurable sets. 3.4. A characterization of [symbol]-measurable sets. 3.5. [symbol]-measurable functions. 3.6. Vitali covering theorem. 3.7. Further properties of Lebesgue integrable functions. 3.8. The L[symbol] spaces. 3.9. Lebesgue's criterion for Riemann integrability. 3.10. Some characterizations of Lebesgue integrable functions. 3.11. Some results concerning one-dimensional Lebesgue integral. 3.12. Notes and remarks -- 4. Further properties of Henstock-Kurzweil integrable functions. 4.1. A necessary condition for Henstock-Kurzweil integrability. 4.2. A result of Kurzweil and Jarnik. 4.3. Some necessary and sufficient conditions for Henstock-Kurzweil integrability. 4.4. Harnack extension for one-dimensional Henstock-Kurzweil integrals. 4.5. Other results concerning one-dimensional Henstock-Kurzweil integral. 4.6. Notes and remarks -- 5. The Henstock variational measure. 5.1. Lebesgue outer measure. 5.2. Basic properties of the Henstock variational measure. 5.3. Another characterization of Lebesgue integrable functions. 5.4. A result of Kurzweil and Jarnik revisited. 5.5. A measure-theoretic characterization of the Henstock-Kurzweil integral. 5.6. Product variational measures. 5.7. Notes and remarks. | |
505 | 8 | |a 6. Multipliers for the Henstock-Kurzweil integral. 6.1. One-dimensional integration by parts. 6.2. On functions of bounded variation in the sense of Vitali. 6.3. The m-dimensional Riemann-Stieltjes integral. 6.4. A multiple integration by parts for the Henstock-Kurzweil integral. 6.5. Kurzweil's multiple integration by parts formula for the Henstock-Kurzweil integral. 6.6. Riesz representation theorems. 6.7. Characterization of multipliers for the Henstock-Kurzweil integral. 6.8. A Banach-Steinhaus theorem for the space of Henstock-Kurzweil integrable functions. 6.9. Notes and remarks -- 7. Some selected topics in trigonometric series. 7.1. A generalized Dirichlet test. 7.2. Fourier series. 7.3. Some examples of Fourier series. 7.4. Some Lebesgue integrability theorems for trigonometric series. 7.5. Boas' results. 7.6. On a result of Hardy and Littlewood concerning Fourier series. 7.7. Notes and remarks -- 8. Some applications of the Henstock-Kurzweil integral to double trigonometric series. 8.1. Regularly convergent double series. 8.2. Double Fourier series. 8.3. Some examples of double Fourier series. 8.4. A Lebesgue integrability theorem for double cosine series. 8.5. A Lebesgue integrability theorem for double sine series. 8.6. A convergence theorem for Henstock-Kurzweil integrals. 8.7. Applications to double Fourier series. 8.8. Another convergence theorem for Henstock-Kurzweil integrals. 8.9. A two-dimensional analogue of Boas' theorem. 8.10. A convergence theorem for double sine series. 8.11. Some open problems. 8.12. Notes and remarks. | |
520 | |a The Henstock-Kurzweil integral, which is also known as the generalized Riemann integral, arose from a slight modification of the classical Riemann integral more than 50 years ago. This relatively new integral is known to be equivalent to the classical Perron integral; in particular, it includes the powerful Lebesgue integral. This book presents an introduction of the multiple Henstock-Kurzweil integral. Along with the classical results, this book contains some recent developments connected with measures, multiple integration by parts, and multiple Fourier series. The book can be understood with a prerequisite of advanced calculus. | ||
650 | 0 | |a Henstock-Kurzweil integral. |0 http://id.loc.gov/authorities/subjects/sh86004388 | |
650 | 0 | |a Lebesgue integral. |0 http://id.loc.gov/authorities/subjects/sh94008345 | |
650 | 0 | |a Calculus, Integral. |0 http://id.loc.gov/authorities/subjects/sh85018804 | |
650 | 6 | |a Intégrale de Kurzweil-Henstock. | |
650 | 6 | |a Intégrale de Lebesgue. | |
650 | 6 | |a Calcul intégral. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Calculus, Integral |2 fast | |
650 | 7 | |a Henstock-Kurzweil integral |2 fast | |
650 | 7 | |a Lebesgue integral |2 fast | |
758 | |i has work: |a Henstock-Kurzweil integration on Euclidean spaces (Work) |1 https://id.oclc.org/worldcat/entity/E39PCFC3KV6677B4fWg9M6vyh3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Lee, Tuo Yeong, 1967- |t Henstock-Kurzweil integration on Euclidean spaces. |d Singapore ; Hackensack, N.J. : World Scientific, ©2011 |z 9789814324588 |w (OCoLC)724966681 |
830 | 0 | |a Series in real analysis ; |v v. 12. |0 http://id.loc.gov/authorities/names/n88505405 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=389631 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH25565256 | ||
938 | |a ebrary |b EBRY |n ebr10493518 | ||
938 | |a EBSCOhost |b EBSC |n 389631 | ||
938 | |a YBP Library Services |b YANK |n 7135062 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn754793038 |
---|---|
_version_ | 1816881771158962176 |
adam_text | |
any_adam_object | |
author | Lee, Tuo Yeong, 1967- |
author_GND | http://id.loc.gov/authorities/names/no2011083170 |
author_facet | Lee, Tuo Yeong, 1967- |
author_role | |
author_sort | Lee, Tuo Yeong, 1967- |
author_variant | t y l ty tyl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA312 |
callnumber-raw | QA312 .L43 2011eb |
callnumber-search | QA312 .L43 2011eb |
callnumber-sort | QA 3312 L43 42011EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. The one-dimensional Henstock-Kurzweil integral. 1.1. Introduction and Cousin's lemma. 1.2. Definition of the Henstock-Kurzweil integral. 1.3. Simple properties. 1.4. Saks-Henstock lemma. 1.5. Notes and remarks -- 2. The multiple Henstock-Kurzweil integral. 2.1. Preliminaries. 2.2. The Henstock-Kurzweil integral. 2.3. Simple properties. 2.4. Saks-Henstock lemma. 2.5. Fubini's theorem. 2.6. Notes and remarks -- 3. Lebesgue integrable functions. 3.1. Introduction. 3.2. Some convergence theorems for Lebesgue integrals. 3.3. [symbol]-measurable sets. 3.4. A characterization of [symbol]-measurable sets. 3.5. [symbol]-measurable functions. 3.6. Vitali covering theorem. 3.7. Further properties of Lebesgue integrable functions. 3.8. The L[symbol] spaces. 3.9. Lebesgue's criterion for Riemann integrability. 3.10. Some characterizations of Lebesgue integrable functions. 3.11. Some results concerning one-dimensional Lebesgue integral. 3.12. Notes and remarks -- 4. Further properties of Henstock-Kurzweil integrable functions. 4.1. A necessary condition for Henstock-Kurzweil integrability. 4.2. A result of Kurzweil and Jarnik. 4.3. Some necessary and sufficient conditions for Henstock-Kurzweil integrability. 4.4. Harnack extension for one-dimensional Henstock-Kurzweil integrals. 4.5. Other results concerning one-dimensional Henstock-Kurzweil integral. 4.6. Notes and remarks -- 5. The Henstock variational measure. 5.1. Lebesgue outer measure. 5.2. Basic properties of the Henstock variational measure. 5.3. Another characterization of Lebesgue integrable functions. 5.4. A result of Kurzweil and Jarnik revisited. 5.5. A measure-theoretic characterization of the Henstock-Kurzweil integral. 5.6. Product variational measures. 5.7. Notes and remarks. 6. Multipliers for the Henstock-Kurzweil integral. 6.1. One-dimensional integration by parts. 6.2. On functions of bounded variation in the sense of Vitali. 6.3. The m-dimensional Riemann-Stieltjes integral. 6.4. A multiple integration by parts for the Henstock-Kurzweil integral. 6.5. Kurzweil's multiple integration by parts formula for the Henstock-Kurzweil integral. 6.6. Riesz representation theorems. 6.7. Characterization of multipliers for the Henstock-Kurzweil integral. 6.8. A Banach-Steinhaus theorem for the space of Henstock-Kurzweil integrable functions. 6.9. Notes and remarks -- 7. Some selected topics in trigonometric series. 7.1. A generalized Dirichlet test. 7.2. Fourier series. 7.3. Some examples of Fourier series. 7.4. Some Lebesgue integrability theorems for trigonometric series. 7.5. Boas' results. 7.6. On a result of Hardy and Littlewood concerning Fourier series. 7.7. Notes and remarks -- 8. Some applications of the Henstock-Kurzweil integral to double trigonometric series. 8.1. Regularly convergent double series. 8.2. Double Fourier series. 8.3. Some examples of double Fourier series. 8.4. A Lebesgue integrability theorem for double cosine series. 8.5. A Lebesgue integrability theorem for double sine series. 8.6. A convergence theorem for Henstock-Kurzweil integrals. 8.7. Applications to double Fourier series. 8.8. Another convergence theorem for Henstock-Kurzweil integrals. 8.9. A two-dimensional analogue of Boas' theorem. 8.10. A convergence theorem for double sine series. 8.11. Some open problems. 8.12. Notes and remarks. |
ctrlnum | (OCoLC)754793038 |
dewey-full | 515.4/3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.4/3 |
dewey-search | 515.4/3 |
dewey-sort | 3515.4 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06906cam a2200625 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn754793038</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mnu---unuuu</controlfield><controlfield tag="008">110927s2011 nju ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OSU</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">COCUF</subfield><subfield code="d">NRAMU</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ICG</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814324595</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814324590</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814324588</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814324582</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)754793038</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA312</subfield><subfield code="b">.L43 2011eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.4/3</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, Tuo Yeong,</subfield><subfield code="d">1967-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjy8CGYVrCVVcVkxWw4hh3</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2011083170</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Henstock-Kurzweil integration on Euclidean spaces /</subfield><subfield code="c">Lee Tuo Yeong.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New Jersey :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 314 pages).</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series in real analysis ;</subfield><subfield code="v">v. 12</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 295-303) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. The one-dimensional Henstock-Kurzweil integral. 1.1. Introduction and Cousin's lemma. 1.2. Definition of the Henstock-Kurzweil integral. 1.3. Simple properties. 1.4. Saks-Henstock lemma. 1.5. Notes and remarks -- 2. The multiple Henstock-Kurzweil integral. 2.1. Preliminaries. 2.2. The Henstock-Kurzweil integral. 2.3. Simple properties. 2.4. Saks-Henstock lemma. 2.5. Fubini's theorem. 2.6. Notes and remarks -- 3. Lebesgue integrable functions. 3.1. Introduction. 3.2. Some convergence theorems for Lebesgue integrals. 3.3. [symbol]-measurable sets. 3.4. A characterization of [symbol]-measurable sets. 3.5. [symbol]-measurable functions. 3.6. Vitali covering theorem. 3.7. Further properties of Lebesgue integrable functions. 3.8. The L[symbol] spaces. 3.9. Lebesgue's criterion for Riemann integrability. 3.10. Some characterizations of Lebesgue integrable functions. 3.11. Some results concerning one-dimensional Lebesgue integral. 3.12. Notes and remarks -- 4. Further properties of Henstock-Kurzweil integrable functions. 4.1. A necessary condition for Henstock-Kurzweil integrability. 4.2. A result of Kurzweil and Jarnik. 4.3. Some necessary and sufficient conditions for Henstock-Kurzweil integrability. 4.4. Harnack extension for one-dimensional Henstock-Kurzweil integrals. 4.5. Other results concerning one-dimensional Henstock-Kurzweil integral. 4.6. Notes and remarks -- 5. The Henstock variational measure. 5.1. Lebesgue outer measure. 5.2. Basic properties of the Henstock variational measure. 5.3. Another characterization of Lebesgue integrable functions. 5.4. A result of Kurzweil and Jarnik revisited. 5.5. A measure-theoretic characterization of the Henstock-Kurzweil integral. 5.6. Product variational measures. 5.7. Notes and remarks.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6. Multipliers for the Henstock-Kurzweil integral. 6.1. One-dimensional integration by parts. 6.2. On functions of bounded variation in the sense of Vitali. 6.3. The m-dimensional Riemann-Stieltjes integral. 6.4. A multiple integration by parts for the Henstock-Kurzweil integral. 6.5. Kurzweil's multiple integration by parts formula for the Henstock-Kurzweil integral. 6.6. Riesz representation theorems. 6.7. Characterization of multipliers for the Henstock-Kurzweil integral. 6.8. A Banach-Steinhaus theorem for the space of Henstock-Kurzweil integrable functions. 6.9. Notes and remarks -- 7. Some selected topics in trigonometric series. 7.1. A generalized Dirichlet test. 7.2. Fourier series. 7.3. Some examples of Fourier series. 7.4. Some Lebesgue integrability theorems for trigonometric series. 7.5. Boas' results. 7.6. On a result of Hardy and Littlewood concerning Fourier series. 7.7. Notes and remarks -- 8. Some applications of the Henstock-Kurzweil integral to double trigonometric series. 8.1. Regularly convergent double series. 8.2. Double Fourier series. 8.3. Some examples of double Fourier series. 8.4. A Lebesgue integrability theorem for double cosine series. 8.5. A Lebesgue integrability theorem for double sine series. 8.6. A convergence theorem for Henstock-Kurzweil integrals. 8.7. Applications to double Fourier series. 8.8. Another convergence theorem for Henstock-Kurzweil integrals. 8.9. A two-dimensional analogue of Boas' theorem. 8.10. A convergence theorem for double sine series. 8.11. Some open problems. 8.12. Notes and remarks.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Henstock-Kurzweil integral, which is also known as the generalized Riemann integral, arose from a slight modification of the classical Riemann integral more than 50 years ago. This relatively new integral is known to be equivalent to the classical Perron integral; in particular, it includes the powerful Lebesgue integral. This book presents an introduction of the multiple Henstock-Kurzweil integral. Along with the classical results, this book contains some recent developments connected with measures, multiple integration by parts, and multiple Fourier series. The book can be understood with a prerequisite of advanced calculus.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Henstock-Kurzweil integral.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh86004388</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lebesgue integral.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh94008345</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Calculus, Integral.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85018804</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Intégrale de Kurzweil-Henstock.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Intégrale de Lebesgue.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Calcul intégral.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Calculus, Integral</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Henstock-Kurzweil integral</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lebesgue integral</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Henstock-Kurzweil integration on Euclidean spaces (Work)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFC3KV6677B4fWg9M6vyh3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Lee, Tuo Yeong, 1967-</subfield><subfield code="t">Henstock-Kurzweil integration on Euclidean spaces.</subfield><subfield code="d">Singapore ; Hackensack, N.J. : World Scientific, ©2011</subfield><subfield code="z">9789814324588</subfield><subfield code="w">(OCoLC)724966681</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Series in real analysis ;</subfield><subfield code="v">v. 12.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n88505405</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=389631</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25565256</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10493518</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">389631</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7135062</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn754793038 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:18:01Z |
institution | BVB |
isbn | 9789814324595 9814324590 |
language | English |
oclc_num | 754793038 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (ix, 314 pages). |
psigel | ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | World Scientific, |
record_format | marc |
series | Series in real analysis ; |
series2 | Series in real analysis ; |
spelling | Lee, Tuo Yeong, 1967- https://id.oclc.org/worldcat/entity/E39PCjy8CGYVrCVVcVkxWw4hh3 http://id.loc.gov/authorities/names/no2011083170 Henstock-Kurzweil integration on Euclidean spaces / Lee Tuo Yeong. New Jersey : World Scientific, ©2011. 1 online resource (ix, 314 pages). text txt rdacontent computer c rdamedia online resource cr rdacarrier Series in real analysis ; v. 12 Includes bibliographical references (pages 295-303) and index. Print version record. 1. The one-dimensional Henstock-Kurzweil integral. 1.1. Introduction and Cousin's lemma. 1.2. Definition of the Henstock-Kurzweil integral. 1.3. Simple properties. 1.4. Saks-Henstock lemma. 1.5. Notes and remarks -- 2. The multiple Henstock-Kurzweil integral. 2.1. Preliminaries. 2.2. The Henstock-Kurzweil integral. 2.3. Simple properties. 2.4. Saks-Henstock lemma. 2.5. Fubini's theorem. 2.6. Notes and remarks -- 3. Lebesgue integrable functions. 3.1. Introduction. 3.2. Some convergence theorems for Lebesgue integrals. 3.3. [symbol]-measurable sets. 3.4. A characterization of [symbol]-measurable sets. 3.5. [symbol]-measurable functions. 3.6. Vitali covering theorem. 3.7. Further properties of Lebesgue integrable functions. 3.8. The L[symbol] spaces. 3.9. Lebesgue's criterion for Riemann integrability. 3.10. Some characterizations of Lebesgue integrable functions. 3.11. Some results concerning one-dimensional Lebesgue integral. 3.12. Notes and remarks -- 4. Further properties of Henstock-Kurzweil integrable functions. 4.1. A necessary condition for Henstock-Kurzweil integrability. 4.2. A result of Kurzweil and Jarnik. 4.3. Some necessary and sufficient conditions for Henstock-Kurzweil integrability. 4.4. Harnack extension for one-dimensional Henstock-Kurzweil integrals. 4.5. Other results concerning one-dimensional Henstock-Kurzweil integral. 4.6. Notes and remarks -- 5. The Henstock variational measure. 5.1. Lebesgue outer measure. 5.2. Basic properties of the Henstock variational measure. 5.3. Another characterization of Lebesgue integrable functions. 5.4. A result of Kurzweil and Jarnik revisited. 5.5. A measure-theoretic characterization of the Henstock-Kurzweil integral. 5.6. Product variational measures. 5.7. Notes and remarks. 6. Multipliers for the Henstock-Kurzweil integral. 6.1. One-dimensional integration by parts. 6.2. On functions of bounded variation in the sense of Vitali. 6.3. The m-dimensional Riemann-Stieltjes integral. 6.4. A multiple integration by parts for the Henstock-Kurzweil integral. 6.5. Kurzweil's multiple integration by parts formula for the Henstock-Kurzweil integral. 6.6. Riesz representation theorems. 6.7. Characterization of multipliers for the Henstock-Kurzweil integral. 6.8. A Banach-Steinhaus theorem for the space of Henstock-Kurzweil integrable functions. 6.9. Notes and remarks -- 7. Some selected topics in trigonometric series. 7.1. A generalized Dirichlet test. 7.2. Fourier series. 7.3. Some examples of Fourier series. 7.4. Some Lebesgue integrability theorems for trigonometric series. 7.5. Boas' results. 7.6. On a result of Hardy and Littlewood concerning Fourier series. 7.7. Notes and remarks -- 8. Some applications of the Henstock-Kurzweil integral to double trigonometric series. 8.1. Regularly convergent double series. 8.2. Double Fourier series. 8.3. Some examples of double Fourier series. 8.4. A Lebesgue integrability theorem for double cosine series. 8.5. A Lebesgue integrability theorem for double sine series. 8.6. A convergence theorem for Henstock-Kurzweil integrals. 8.7. Applications to double Fourier series. 8.8. Another convergence theorem for Henstock-Kurzweil integrals. 8.9. A two-dimensional analogue of Boas' theorem. 8.10. A convergence theorem for double sine series. 8.11. Some open problems. 8.12. Notes and remarks. The Henstock-Kurzweil integral, which is also known as the generalized Riemann integral, arose from a slight modification of the classical Riemann integral more than 50 years ago. This relatively new integral is known to be equivalent to the classical Perron integral; in particular, it includes the powerful Lebesgue integral. This book presents an introduction of the multiple Henstock-Kurzweil integral. Along with the classical results, this book contains some recent developments connected with measures, multiple integration by parts, and multiple Fourier series. The book can be understood with a prerequisite of advanced calculus. Henstock-Kurzweil integral. http://id.loc.gov/authorities/subjects/sh86004388 Lebesgue integral. http://id.loc.gov/authorities/subjects/sh94008345 Calculus, Integral. http://id.loc.gov/authorities/subjects/sh85018804 Intégrale de Kurzweil-Henstock. Intégrale de Lebesgue. Calcul intégral. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Calculus, Integral fast Henstock-Kurzweil integral fast Lebesgue integral fast has work: Henstock-Kurzweil integration on Euclidean spaces (Work) https://id.oclc.org/worldcat/entity/E39PCFC3KV6677B4fWg9M6vyh3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Lee, Tuo Yeong, 1967- Henstock-Kurzweil integration on Euclidean spaces. Singapore ; Hackensack, N.J. : World Scientific, ©2011 9789814324588 (OCoLC)724966681 Series in real analysis ; v. 12. http://id.loc.gov/authorities/names/n88505405 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=389631 Volltext |
spellingShingle | Lee, Tuo Yeong, 1967- Henstock-Kurzweil integration on Euclidean spaces / Series in real analysis ; 1. The one-dimensional Henstock-Kurzweil integral. 1.1. Introduction and Cousin's lemma. 1.2. Definition of the Henstock-Kurzweil integral. 1.3. Simple properties. 1.4. Saks-Henstock lemma. 1.5. Notes and remarks -- 2. The multiple Henstock-Kurzweil integral. 2.1. Preliminaries. 2.2. The Henstock-Kurzweil integral. 2.3. Simple properties. 2.4. Saks-Henstock lemma. 2.5. Fubini's theorem. 2.6. Notes and remarks -- 3. Lebesgue integrable functions. 3.1. Introduction. 3.2. Some convergence theorems for Lebesgue integrals. 3.3. [symbol]-measurable sets. 3.4. A characterization of [symbol]-measurable sets. 3.5. [symbol]-measurable functions. 3.6. Vitali covering theorem. 3.7. Further properties of Lebesgue integrable functions. 3.8. The L[symbol] spaces. 3.9. Lebesgue's criterion for Riemann integrability. 3.10. Some characterizations of Lebesgue integrable functions. 3.11. Some results concerning one-dimensional Lebesgue integral. 3.12. Notes and remarks -- 4. Further properties of Henstock-Kurzweil integrable functions. 4.1. A necessary condition for Henstock-Kurzweil integrability. 4.2. A result of Kurzweil and Jarnik. 4.3. Some necessary and sufficient conditions for Henstock-Kurzweil integrability. 4.4. Harnack extension for one-dimensional Henstock-Kurzweil integrals. 4.5. Other results concerning one-dimensional Henstock-Kurzweil integral. 4.6. Notes and remarks -- 5. The Henstock variational measure. 5.1. Lebesgue outer measure. 5.2. Basic properties of the Henstock variational measure. 5.3. Another characterization of Lebesgue integrable functions. 5.4. A result of Kurzweil and Jarnik revisited. 5.5. A measure-theoretic characterization of the Henstock-Kurzweil integral. 5.6. Product variational measures. 5.7. Notes and remarks. 6. Multipliers for the Henstock-Kurzweil integral. 6.1. One-dimensional integration by parts. 6.2. On functions of bounded variation in the sense of Vitali. 6.3. The m-dimensional Riemann-Stieltjes integral. 6.4. A multiple integration by parts for the Henstock-Kurzweil integral. 6.5. Kurzweil's multiple integration by parts formula for the Henstock-Kurzweil integral. 6.6. Riesz representation theorems. 6.7. Characterization of multipliers for the Henstock-Kurzweil integral. 6.8. A Banach-Steinhaus theorem for the space of Henstock-Kurzweil integrable functions. 6.9. Notes and remarks -- 7. Some selected topics in trigonometric series. 7.1. A generalized Dirichlet test. 7.2. Fourier series. 7.3. Some examples of Fourier series. 7.4. Some Lebesgue integrability theorems for trigonometric series. 7.5. Boas' results. 7.6. On a result of Hardy and Littlewood concerning Fourier series. 7.7. Notes and remarks -- 8. Some applications of the Henstock-Kurzweil integral to double trigonometric series. 8.1. Regularly convergent double series. 8.2. Double Fourier series. 8.3. Some examples of double Fourier series. 8.4. A Lebesgue integrability theorem for double cosine series. 8.5. A Lebesgue integrability theorem for double sine series. 8.6. A convergence theorem for Henstock-Kurzweil integrals. 8.7. Applications to double Fourier series. 8.8. Another convergence theorem for Henstock-Kurzweil integrals. 8.9. A two-dimensional analogue of Boas' theorem. 8.10. A convergence theorem for double sine series. 8.11. Some open problems. 8.12. Notes and remarks. Henstock-Kurzweil integral. http://id.loc.gov/authorities/subjects/sh86004388 Lebesgue integral. http://id.loc.gov/authorities/subjects/sh94008345 Calculus, Integral. http://id.loc.gov/authorities/subjects/sh85018804 Intégrale de Kurzweil-Henstock. Intégrale de Lebesgue. Calcul intégral. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Calculus, Integral fast Henstock-Kurzweil integral fast Lebesgue integral fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh86004388 http://id.loc.gov/authorities/subjects/sh94008345 http://id.loc.gov/authorities/subjects/sh85018804 |
title | Henstock-Kurzweil integration on Euclidean spaces / |
title_auth | Henstock-Kurzweil integration on Euclidean spaces / |
title_exact_search | Henstock-Kurzweil integration on Euclidean spaces / |
title_full | Henstock-Kurzweil integration on Euclidean spaces / Lee Tuo Yeong. |
title_fullStr | Henstock-Kurzweil integration on Euclidean spaces / Lee Tuo Yeong. |
title_full_unstemmed | Henstock-Kurzweil integration on Euclidean spaces / Lee Tuo Yeong. |
title_short | Henstock-Kurzweil integration on Euclidean spaces / |
title_sort | henstock kurzweil integration on euclidean spaces |
topic | Henstock-Kurzweil integral. http://id.loc.gov/authorities/subjects/sh86004388 Lebesgue integral. http://id.loc.gov/authorities/subjects/sh94008345 Calculus, Integral. http://id.loc.gov/authorities/subjects/sh85018804 Intégrale de Kurzweil-Henstock. Intégrale de Lebesgue. Calcul intégral. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Calculus, Integral fast Henstock-Kurzweil integral fast Lebesgue integral fast |
topic_facet | Henstock-Kurzweil integral. Lebesgue integral. Calculus, Integral. Intégrale de Kurzweil-Henstock. Intégrale de Lebesgue. Calcul intégral. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Calculus, Integral Henstock-Kurzweil integral Lebesgue integral |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=389631 |
work_keys_str_mv | AT leetuoyeong henstockkurzweilintegrationoneuclideanspaces |