Logic with a probability semantics :: including solutions to some philosophical problems /
The book extends the development of probability logic_a logic using probability, not verity (true, false) as the basic semantic notion. The basic connectives 'not,' 'and,' and 'or' are described in depth to include quantified formulas. Also discussed is the notion of th...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Bethlehem, Pa.] : Lanham, Md. :
Lehigh University Press ; Rowman & Littlefield,
©2011.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The book extends the development of probability logic_a logic using probability, not verity (true, false) as the basic semantic notion. The basic connectives 'not,' 'and,' and 'or' are described in depth to include quantified formulas. Also discussed is the notion of the suppositional, and resolution of the paradox of confirmation. |
Beschreibung: | 1 online resource (123 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781611460117 1611460115 1283233886 9781283233880 9786613233882 6613233889 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn750192980 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr mnu---unuuu | ||
008 | 110907s2011 paua ob 001 0 eng d | ||
010 | |a 2010026427 | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d OSU |d OCLCQ |d E7B |d OCLCQ |d OCLCF |d OCLCQ |d NLGGC |d OCLCQ |d AZK |d LOA |d AGLDB |d OCLCQ |d COCUF |d ICA |d OCLCQ |d MOR |d PIFAG |d OCLCQ |d U3W |d D6H |d STF |d WRM |d VTS |d NRAMU |d INT |d VT2 |d OCLCQ |d WYU |d TKN |d OCLCQ |d HS0 |d UKCRE |d OCLCO |d OCLCQ |d QGK |d AU@ |d UEJ |d OCLCO |d OCLCQ |d OCLCL | ||
019 | |a 961500971 |a 962612003 |a 966253549 |a 988456467 |a 991995067 |a 1037716561 |a 1038641970 |a 1045469096 |a 1055377798 |a 1062913011 |a 1081224852 |a 1152971806 |a 1153451282 |a 1228556992 |a 1259221203 |a 1261948152 |a 1355716833 | ||
020 | |a 9781611460117 |q (electronic bk.) | ||
020 | |a 1611460115 |q (electronic bk.) | ||
020 | |z 9780984416332 |q (alk. paper) | ||
020 | |z 0984416331 |q (alk. paper) | ||
020 | |z 9781611460100 |q (cl. ; |q alk. paper) | ||
020 | |z 1611460107 |q (cl. ; |q alk. paper) | ||
020 | |a 1283233886 | ||
020 | |a 9781283233880 | ||
020 | |a 9786613233882 | ||
020 | |a 6613233889 | ||
035 | |a (OCoLC)750192980 |z (OCoLC)961500971 |z (OCoLC)962612003 |z (OCoLC)966253549 |z (OCoLC)988456467 |z (OCoLC)991995067 |z (OCoLC)1037716561 |z (OCoLC)1038641970 |z (OCoLC)1045469096 |z (OCoLC)1055377798 |z (OCoLC)1062913011 |z (OCoLC)1081224852 |z (OCoLC)1152971806 |z (OCoLC)1153451282 |z (OCoLC)1228556992 |z (OCoLC)1259221203 |z (OCoLC)1261948152 |z (OCoLC)1355716833 | ||
050 | 4 | |a QA273.A35 |b H35 2011eb | |
072 | 7 | |a MAT |x 029000 |2 bisacsh | |
082 | 7 | |a 519.2 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Hailperin, Theodore. |0 http://id.loc.gov/authorities/names/n85296683 | |
245 | 1 | 0 | |a Logic with a probability semantics : |b including solutions to some philosophical problems / |c Theodore Hailperin. |
260 | |a [Bethlehem, Pa.] : |b Lehigh University Press ; |a Lanham, Md. : |b Rowman & Littlefield, |c ©2011. | ||
300 | |a 1 online resource (123 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 8 | |a Chapter 3. Probability Semantics for ON Logic3.1 Probability functions on ON languages; 3.2 Main Theorem of ON probability logic; 3.3 Borel's denumerable probability; 3.4 Infinite ""events"" and probability functions; 3.5 Kolmogorov probability spaces; 3.6 Logical consequence in probability logic; 3.7 Borel's denumerable probability defended; Chapter 4. Conditional-Probability and Quantifiers; 4.1 Conditional-probability in quantifier logic; 4.2 The paradox of confirmation; Bibliography; Index | |
520 | |a The book extends the development of probability logic_a logic using probability, not verity (true, false) as the basic semantic notion. The basic connectives 'not,' 'and,' and 'or' are described in depth to include quantified formulas. Also discussed is the notion of the suppositional, and resolution of the paradox of confirmation. | ||
546 | |a English. | ||
650 | 0 | |a Probabilities |x Philosophy. | |
650 | 6 | |a Probabilités |x Philosophie. | |
650 | 7 | |a MATHEMATICS |x Probability & Statistics |x General. |2 bisacsh | |
650 | 7 | |a Probabilities |x Philosophy |2 fast | |
758 | |i has work: |a Logic with a probability semantics (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGtG7yGG6YPtWqvjCFr7Dy |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Hailperin, Theodore. |t Logic with a probability semantics. |d [Bethlehem, Pa.] : Lehigh University Press ; Lanham, Md. : Rowman & Littlefield, ©2011 |z 9781611460100 |w (DLC) 2010026427 |w (OCoLC)649827204 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=383891 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10493735 | ||
938 | |a EBSCOhost |b EBSC |n 383891 | ||
938 | |a YBP Library Services |b YANK |n 7064983 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn750192980 |
---|---|
_version_ | 1816881769360654336 |
adam_text | |
any_adam_object | |
author | Hailperin, Theodore |
author_GND | http://id.loc.gov/authorities/names/n85296683 |
author_facet | Hailperin, Theodore |
author_role | |
author_sort | Hailperin, Theodore |
author_variant | t h th |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA273 |
callnumber-raw | QA273.A35 H35 2011eb |
callnumber-search | QA273.A35 H35 2011eb |
callnumber-sort | QA 3273 A35 H35 42011EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Chapter 3. Probability Semantics for ON Logic3.1 Probability functions on ON languages; 3.2 Main Theorem of ON probability logic; 3.3 Borel's denumerable probability; 3.4 Infinite ""events"" and probability functions; 3.5 Kolmogorov probability spaces; 3.6 Logical consequence in probability logic; 3.7 Borel's denumerable probability defended; Chapter 4. Conditional-Probability and Quantifiers; 4.1 Conditional-probability in quantifier logic; 4.2 The paradox of confirmation; Bibliography; Index |
ctrlnum | (OCoLC)750192980 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03976cam a2200589 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn750192980</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mnu---unuuu</controlfield><controlfield tag="008">110907s2011 paua ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2010026427</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OSU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">ICA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">D6H</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HS0</subfield><subfield code="d">UKCRE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QGK</subfield><subfield code="d">AU@</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">961500971</subfield><subfield code="a">962612003</subfield><subfield code="a">966253549</subfield><subfield code="a">988456467</subfield><subfield code="a">991995067</subfield><subfield code="a">1037716561</subfield><subfield code="a">1038641970</subfield><subfield code="a">1045469096</subfield><subfield code="a">1055377798</subfield><subfield code="a">1062913011</subfield><subfield code="a">1081224852</subfield><subfield code="a">1152971806</subfield><subfield code="a">1153451282</subfield><subfield code="a">1228556992</subfield><subfield code="a">1259221203</subfield><subfield code="a">1261948152</subfield><subfield code="a">1355716833</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781611460117</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1611460115</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780984416332</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0984416331</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781611460100</subfield><subfield code="q">(cl. ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1611460107</subfield><subfield code="q">(cl. ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283233886</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283233880</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786613233882</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6613233889</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)750192980</subfield><subfield code="z">(OCoLC)961500971</subfield><subfield code="z">(OCoLC)962612003</subfield><subfield code="z">(OCoLC)966253549</subfield><subfield code="z">(OCoLC)988456467</subfield><subfield code="z">(OCoLC)991995067</subfield><subfield code="z">(OCoLC)1037716561</subfield><subfield code="z">(OCoLC)1038641970</subfield><subfield code="z">(OCoLC)1045469096</subfield><subfield code="z">(OCoLC)1055377798</subfield><subfield code="z">(OCoLC)1062913011</subfield><subfield code="z">(OCoLC)1081224852</subfield><subfield code="z">(OCoLC)1152971806</subfield><subfield code="z">(OCoLC)1153451282</subfield><subfield code="z">(OCoLC)1228556992</subfield><subfield code="z">(OCoLC)1259221203</subfield><subfield code="z">(OCoLC)1261948152</subfield><subfield code="z">(OCoLC)1355716833</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA273.A35</subfield><subfield code="b">H35 2011eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">029000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hailperin, Theodore.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n85296683</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Logic with a probability semantics :</subfield><subfield code="b">including solutions to some philosophical problems /</subfield><subfield code="c">Theodore Hailperin.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">[Bethlehem, Pa.] :</subfield><subfield code="b">Lehigh University Press ;</subfield><subfield code="a">Lanham, Md. :</subfield><subfield code="b">Rowman & Littlefield,</subfield><subfield code="c">©2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (123 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 3. Probability Semantics for ON Logic3.1 Probability functions on ON languages; 3.2 Main Theorem of ON probability logic; 3.3 Borel's denumerable probability; 3.4 Infinite ""events"" and probability functions; 3.5 Kolmogorov probability spaces; 3.6 Logical consequence in probability logic; 3.7 Borel's denumerable probability defended; Chapter 4. Conditional-Probability and Quantifiers; 4.1 Conditional-probability in quantifier logic; 4.2 The paradox of confirmation; Bibliography; Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The book extends the development of probability logic_a logic using probability, not verity (true, false) as the basic semantic notion. The basic connectives 'not,' 'and,' and 'or' are described in depth to include quantified formulas. Also discussed is the notion of the suppositional, and resolution of the paradox of confirmation.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Probabilities</subfield><subfield code="x">Philosophy.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Probabilités</subfield><subfield code="x">Philosophie.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Probability & Statistics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Probabilities</subfield><subfield code="x">Philosophy</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Logic with a probability semantics (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGtG7yGG6YPtWqvjCFr7Dy</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Hailperin, Theodore.</subfield><subfield code="t">Logic with a probability semantics.</subfield><subfield code="d">[Bethlehem, Pa.] : Lehigh University Press ; Lanham, Md. : Rowman & Littlefield, ©2011</subfield><subfield code="z">9781611460100</subfield><subfield code="w">(DLC) 2010026427</subfield><subfield code="w">(OCoLC)649827204</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=383891</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10493735</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">383891</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7064983</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn750192980 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:59Z |
institution | BVB |
isbn | 9781611460117 1611460115 1283233886 9781283233880 9786613233882 6613233889 |
language | English |
lccn | 2010026427 |
oclc_num | 750192980 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (123 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Lehigh University Press ; Rowman & Littlefield, |
record_format | marc |
spelling | Hailperin, Theodore. http://id.loc.gov/authorities/names/n85296683 Logic with a probability semantics : including solutions to some philosophical problems / Theodore Hailperin. [Bethlehem, Pa.] : Lehigh University Press ; Lanham, Md. : Rowman & Littlefield, ©2011. 1 online resource (123 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Print version record. Chapter 3. Probability Semantics for ON Logic3.1 Probability functions on ON languages; 3.2 Main Theorem of ON probability logic; 3.3 Borel's denumerable probability; 3.4 Infinite ""events"" and probability functions; 3.5 Kolmogorov probability spaces; 3.6 Logical consequence in probability logic; 3.7 Borel's denumerable probability defended; Chapter 4. Conditional-Probability and Quantifiers; 4.1 Conditional-probability in quantifier logic; 4.2 The paradox of confirmation; Bibliography; Index The book extends the development of probability logic_a logic using probability, not verity (true, false) as the basic semantic notion. The basic connectives 'not,' 'and,' and 'or' are described in depth to include quantified formulas. Also discussed is the notion of the suppositional, and resolution of the paradox of confirmation. English. Probabilities Philosophy. Probabilités Philosophie. MATHEMATICS Probability & Statistics General. bisacsh Probabilities Philosophy fast has work: Logic with a probability semantics (Text) https://id.oclc.org/worldcat/entity/E39PCGtG7yGG6YPtWqvjCFr7Dy https://id.oclc.org/worldcat/ontology/hasWork Print version: Hailperin, Theodore. Logic with a probability semantics. [Bethlehem, Pa.] : Lehigh University Press ; Lanham, Md. : Rowman & Littlefield, ©2011 9781611460100 (DLC) 2010026427 (OCoLC)649827204 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=383891 Volltext |
spellingShingle | Hailperin, Theodore Logic with a probability semantics : including solutions to some philosophical problems / Chapter 3. Probability Semantics for ON Logic3.1 Probability functions on ON languages; 3.2 Main Theorem of ON probability logic; 3.3 Borel's denumerable probability; 3.4 Infinite ""events"" and probability functions; 3.5 Kolmogorov probability spaces; 3.6 Logical consequence in probability logic; 3.7 Borel's denumerable probability defended; Chapter 4. Conditional-Probability and Quantifiers; 4.1 Conditional-probability in quantifier logic; 4.2 The paradox of confirmation; Bibliography; Index Probabilities Philosophy. Probabilités Philosophie. MATHEMATICS Probability & Statistics General. bisacsh Probabilities Philosophy fast |
title | Logic with a probability semantics : including solutions to some philosophical problems / |
title_auth | Logic with a probability semantics : including solutions to some philosophical problems / |
title_exact_search | Logic with a probability semantics : including solutions to some philosophical problems / |
title_full | Logic with a probability semantics : including solutions to some philosophical problems / Theodore Hailperin. |
title_fullStr | Logic with a probability semantics : including solutions to some philosophical problems / Theodore Hailperin. |
title_full_unstemmed | Logic with a probability semantics : including solutions to some philosophical problems / Theodore Hailperin. |
title_short | Logic with a probability semantics : |
title_sort | logic with a probability semantics including solutions to some philosophical problems |
title_sub | including solutions to some philosophical problems / |
topic | Probabilities Philosophy. Probabilités Philosophie. MATHEMATICS Probability & Statistics General. bisacsh Probabilities Philosophy fast |
topic_facet | Probabilities Philosophy. Probabilités Philosophie. MATHEMATICS Probability & Statistics General. Probabilities Philosophy |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=383891 |
work_keys_str_mv | AT hailperintheodore logicwithaprobabilitysemanticsincludingsolutionstosomephilosophicalproblems |