Blow up in nonlinear Sobolev type equations /:
The monograph is devoted to the study of initial-boundary-value problems for multi-dimensional Sobolev-type equations over bounded domains. The authors consider both specific initial-boundary-value problems and abstract Cauchy problems for first-order (in the time variable) differential equations wi...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; New York :
De Gruyter,
©2011.
|
Schriftenreihe: | De Gruyter series in nonlinear analysis and applications ;
15. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The monograph is devoted to the study of initial-boundary-value problems for multi-dimensional Sobolev-type equations over bounded domains. The authors consider both specific initial-boundary-value problems and abstract Cauchy problems for first-order (in the time variable) differential equations with nonlinear operator coefficients with respect to spatial variables. The main aim of the monograph is to obtain sufficient conditions for global (in time) solvability, to obtain sufficient conditions for blow-up of solutions at finite time, and to derive upper and lower estimates for the blow-up time. The monograph contains a vast list of references (440 items) and gives an overall view of the contemporary state-of-the-art of the mathematical modeling of various important problems arising in physics. Since the list of references contains many papers which have been published previously only in Russian research journals, it may also serve as a guide to the Russian literature. |
Beschreibung: | 1 online resource (xii, 648 pages) |
Bibliographie: | Includes bibliographical references (pages 621-646) and index. |
ISBN: | 9783110255294 3110255294 1283166828 9781283166829 9786613166821 6613166820 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn749781836 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 110224s2011 gw ob 001 0 eng d | ||
010 | |z 2011003941 | ||
040 | |a CDX |b eng |e pn |c CDX |d OCLCQ |d IDEBK |d E7B |d N$T |d YDXCP |d EBLCP |d GPM |d OCLCQ |d DEBSZ |d OCLCQ |d NLGGC |d OCLCQ |d OCLCF |d DEBBG |d OCLCQ |d MHW |d OCLCQ |d AZK |d AGLDB |d MOR |d PIFAG |d VGM |d ZCU |d OTZ |d OCLCQ |d MERUC |d CUY |d OCLCQ |d DEGRU |d U3W |d STF |d WRM |d OCLCQ |d VTS |d ICG |d INT |d VT2 |d AU@ |d OCLCQ |d WYU |d OCLCQ |d LEAUB |d DKC |d OCLCQ |d UKAHL |d OCLCQ |d UKCRE |d VLY |d BRF |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d NUI | ||
019 | |a 744520433 |a 785725945 |a 816849060 |a 961544570 |a 962588275 |a 988528837 |a 992076053 |a 994896039 |a 1037756663 |a 1038668681 |a 1045447519 |a 1055372174 |a 1058052141 |a 1062884177 |a 1062933875 |a 1077239937 |a 1081279588 |a 1153545341 |a 1162420158 |a 1228608661 | ||
020 | |a 9783110255294 |q (electronic bk.) | ||
020 | |a 3110255294 |q (electronic bk.) | ||
020 | |a 1283166828 | ||
020 | |a 9781283166829 | ||
020 | |z 9783110255270 | ||
020 | |z 3110255278 | ||
020 | |a 9786613166821 | ||
020 | |a 6613166820 | ||
024 | 8 | |a 9786613166821 | |
035 | |a (OCoLC)749781836 |z (OCoLC)744520433 |z (OCoLC)785725945 |z (OCoLC)816849060 |z (OCoLC)961544570 |z (OCoLC)962588275 |z (OCoLC)988528837 |z (OCoLC)992076053 |z (OCoLC)994896039 |z (OCoLC)1037756663 |z (OCoLC)1038668681 |z (OCoLC)1045447519 |z (OCoLC)1055372174 |z (OCoLC)1058052141 |z (OCoLC)1062884177 |z (OCoLC)1062933875 |z (OCoLC)1077239937 |z (OCoLC)1081279588 |z (OCoLC)1153545341 |z (OCoLC)1162420158 |z (OCoLC)1228608661 | ||
037 | |a 316682 |b MIL | ||
050 | 4 | |a QA378 |b .A47 2011eb | |
072 | 7 | |a MAT |x 037000 |2 bisacsh | |
082 | 7 | |a 515/.782 |2 22 | |
084 | |a SK 540 |q SEPA |2 rvk |0 (DE-625)rvk/143245: | ||
049 | |a MAIN | ||
100 | 1 | |a Alʹshin, A. B. | |
245 | 1 | 0 | |a Blow up in nonlinear Sobolev type equations / |c Alexander .B. Alʹshin, Maxim O. Korpusov, Alexy G. Sveshnikov. |
260 | |a Berlin ; |a New York : |b De Gruyter, |c ©2011. | ||
300 | |a 1 online resource (xii, 648 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
490 | 1 | |a De Gruyter series in nonlinear analysis and applications ; |v 15 | |
504 | |a Includes bibliographical references (pages 621-646) and index. | ||
520 | |a The monograph is devoted to the study of initial-boundary-value problems for multi-dimensional Sobolev-type equations over bounded domains. The authors consider both specific initial-boundary-value problems and abstract Cauchy problems for first-order (in the time variable) differential equations with nonlinear operator coefficients with respect to spatial variables. The main aim of the monograph is to obtain sufficient conditions for global (in time) solvability, to obtain sufficient conditions for blow-up of solutions at finite time, and to derive upper and lower estimates for the blow-up time. The monograph contains a vast list of references (440 items) and gives an overall view of the contemporary state-of-the-art of the mathematical modeling of various important problems arising in physics. Since the list of references contains many papers which have been published previously only in Russian research journals, it may also serve as a guide to the Russian literature. | ||
588 | 0 | |a Print version record. | |
505 | 0 | 0 | |t Frontmatter -- |t Preface -- |t Contents -- |t Chapter 0 Introduction -- |t Chapter 1 Nonlinear model equations of Sobolev type -- |t Chapter 2 Blow-up of solutions of nonlinear equations of Sobolev type -- |t Chapter 3 Blow-up of solutions of strongly nonlinear Sobolev-type wave equations and equations with linear dissipation -- |t Chapter 4 Blow-up of solutions of strongly nonlinear, dissipative wave Sobolev-type equations with sources -- |t Chapter 5 Special problems for nonlinear equations of Sobolev type -- |t Chapter 6 Numerical methods of solution of initial-boundary-value problems for Sobolev-type equations -- |t Appendix A Some facts of functional analysis -- |t Appendix B To Chapter 6 -- |t Bibliography -- |t Index. |
546 | |a English. | ||
650 | 0 | |a Initial value problems |x Numerical solutions. |0 http://id.loc.gov/authorities/subjects/sh85066416 | |
650 | 0 | |a Nonlinear difference equations. |0 http://id.loc.gov/authorities/subjects/sh93001498 | |
650 | 0 | |a Mathematical physics. |0 http://id.loc.gov/authorities/subjects/sh85082129 | |
650 | 6 | |a Problèmes aux valeurs initiales |x Solutions numériques. | |
650 | 6 | |a Équations aux différences non linéaires. | |
650 | 6 | |a Physique mathématique. | |
650 | 7 | |a MATHEMATICS |x Functional Analysis. |2 bisacsh | |
650 | 7 | |a Initial value problems |x Numerical solutions |2 fast | |
650 | 7 | |a Mathematical physics |2 fast | |
650 | 7 | |a Nonlinear difference equations |2 fast | |
650 | 7 | |a Pseudoparabolische Differentialgleichung |2 gnd |0 http://d-nb.info/gnd/4176155-8 | |
650 | 7 | |a Cauchy-Anfangswertproblem |2 gnd |0 http://d-nb.info/gnd/4147404-1 | |
650 | 7 | |a Lösung |g Mathematik |2 gnd |0 http://d-nb.info/gnd/4120678-2 | |
650 | 7 | |a Anfangsrandwertproblem |2 gnd |0 http://d-nb.info/gnd/4001990-1 | |
650 | 7 | |a Blowing up |2 gnd |0 http://d-nb.info/gnd/4508027-6 | |
653 | |a Blow up. | ||
653 | |a Cauchy problem. | ||
653 | |a Nonlinear equations. | ||
653 | |a Sobolev. | ||
700 | 1 | |a Korpusov, M. O. | |
700 | 1 | |a Sveshnikov, A. G. |q (Alekseĭ Georgievich), |d 1924- |0 http://id.loc.gov/authorities/names/n82255444 | |
758 | |i has work: |a Blow-up in nonlinear Sobolev type equations (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGCB3PRBppRCJvWxvfPqQq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Alʹshin, A.B. |t Blow-up in nonlinear Sobolev type equations. |d Berlin ; New York : De Gruyter, ©2011 |z 9783110255270 |w (DLC) 2011003941 |w (OCoLC)704556885 |
830 | 0 | |a De Gruyter series in nonlinear analysis and applications ; |v 15. |0 http://id.loc.gov/authorities/names/n92047842 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=388294 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH25310952 | ||
938 | |a Coutts Information Services |b COUT |n 18203835 | ||
938 | |a De Gruyter |b DEGR |n 9783110255294 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL797998 | ||
938 | |a ebrary |b EBRY |n ebr10486432 | ||
938 | |a EBSCOhost |b EBSC |n 388294 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 316682 | ||
938 | |a YBP Library Services |b YANK |n 7060576 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn749781836 |
---|---|
_version_ | 1816881768974778368 |
adam_text | |
any_adam_object | |
author | Alʹshin, A. B. |
author2 | Korpusov, M. O. Sveshnikov, A. G. (Alekseĭ Georgievich), 1924- |
author2_role | |
author2_variant | m o k mo mok a g s ag ags |
author_GND | http://id.loc.gov/authorities/names/n82255444 |
author_facet | Alʹshin, A. B. Korpusov, M. O. Sveshnikov, A. G. (Alekseĭ Georgievich), 1924- |
author_role | |
author_sort | Alʹshin, A. B. |
author_variant | a b a ab aba |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA378 |
callnumber-raw | QA378 .A47 2011eb |
callnumber-search | QA378 .A47 2011eb |
callnumber-sort | QA 3378 A47 42011EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 540 |
collection | ZDB-4-EBA |
contents | Frontmatter -- Preface -- Contents -- Chapter 0 Introduction -- Chapter 1 Nonlinear model equations of Sobolev type -- Chapter 2 Blow-up of solutions of nonlinear equations of Sobolev type -- Chapter 3 Blow-up of solutions of strongly nonlinear Sobolev-type wave equations and equations with linear dissipation -- Chapter 4 Blow-up of solutions of strongly nonlinear, dissipative wave Sobolev-type equations with sources -- Chapter 5 Special problems for nonlinear equations of Sobolev type -- Chapter 6 Numerical methods of solution of initial-boundary-value problems for Sobolev-type equations -- Appendix A Some facts of functional analysis -- Appendix B To Chapter 6 -- Bibliography -- Index. |
ctrlnum | (OCoLC)749781836 |
dewey-full | 515/.782 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.782 |
dewey-search | 515/.782 |
dewey-sort | 3515 3782 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06547cam a2200901Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn749781836</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">110224s2011 gw ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2011003941</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CDX</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">CDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">GPM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">VGM</subfield><subfield code="d">ZCU</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">CUY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEGRU</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">VLY</subfield><subfield code="d">BRF</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">NUI</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">744520433</subfield><subfield code="a">785725945</subfield><subfield code="a">816849060</subfield><subfield code="a">961544570</subfield><subfield code="a">962588275</subfield><subfield code="a">988528837</subfield><subfield code="a">992076053</subfield><subfield code="a">994896039</subfield><subfield code="a">1037756663</subfield><subfield code="a">1038668681</subfield><subfield code="a">1045447519</subfield><subfield code="a">1055372174</subfield><subfield code="a">1058052141</subfield><subfield code="a">1062884177</subfield><subfield code="a">1062933875</subfield><subfield code="a">1077239937</subfield><subfield code="a">1081279588</subfield><subfield code="a">1153545341</subfield><subfield code="a">1162420158</subfield><subfield code="a">1228608661</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110255294</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110255294</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283166828</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283166829</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110255270</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110255278</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786613166821</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6613166820</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">9786613166821</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)749781836</subfield><subfield code="z">(OCoLC)744520433</subfield><subfield code="z">(OCoLC)785725945</subfield><subfield code="z">(OCoLC)816849060</subfield><subfield code="z">(OCoLC)961544570</subfield><subfield code="z">(OCoLC)962588275</subfield><subfield code="z">(OCoLC)988528837</subfield><subfield code="z">(OCoLC)992076053</subfield><subfield code="z">(OCoLC)994896039</subfield><subfield code="z">(OCoLC)1037756663</subfield><subfield code="z">(OCoLC)1038668681</subfield><subfield code="z">(OCoLC)1045447519</subfield><subfield code="z">(OCoLC)1055372174</subfield><subfield code="z">(OCoLC)1058052141</subfield><subfield code="z">(OCoLC)1062884177</subfield><subfield code="z">(OCoLC)1062933875</subfield><subfield code="z">(OCoLC)1077239937</subfield><subfield code="z">(OCoLC)1081279588</subfield><subfield code="z">(OCoLC)1153545341</subfield><subfield code="z">(OCoLC)1162420158</subfield><subfield code="z">(OCoLC)1228608661</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">316682</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA378</subfield><subfield code="b">.A47 2011eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">037000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.782</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="q">SEPA</subfield><subfield code="2">rvk</subfield><subfield code="0">(DE-625)rvk/143245:</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alʹshin, A. B.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Blow up in nonlinear Sobolev type equations /</subfield><subfield code="c">Alexander .B. Alʹshin, Maxim O. Korpusov, Alexy G. Sveshnikov.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin ;</subfield><subfield code="a">New York :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">©2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 648 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter series in nonlinear analysis and applications ;</subfield><subfield code="v">15</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 621-646) and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The monograph is devoted to the study of initial-boundary-value problems for multi-dimensional Sobolev-type equations over bounded domains. The authors consider both specific initial-boundary-value problems and abstract Cauchy problems for first-order (in the time variable) differential equations with nonlinear operator coefficients with respect to spatial variables. The main aim of the monograph is to obtain sufficient conditions for global (in time) solvability, to obtain sufficient conditions for blow-up of solutions at finite time, and to derive upper and lower estimates for the blow-up time. The monograph contains a vast list of references (440 items) and gives an overall view of the contemporary state-of-the-art of the mathematical modeling of various important problems arising in physics. Since the list of references contains many papers which have been published previously only in Russian research journals, it may also serve as a guide to the Russian literature.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Frontmatter --</subfield><subfield code="t">Preface --</subfield><subfield code="t">Contents --</subfield><subfield code="t">Chapter 0 Introduction --</subfield><subfield code="t">Chapter 1 Nonlinear model equations of Sobolev type --</subfield><subfield code="t">Chapter 2 Blow-up of solutions of nonlinear equations of Sobolev type --</subfield><subfield code="t">Chapter 3 Blow-up of solutions of strongly nonlinear Sobolev-type wave equations and equations with linear dissipation --</subfield><subfield code="t">Chapter 4 Blow-up of solutions of strongly nonlinear, dissipative wave Sobolev-type equations with sources --</subfield><subfield code="t">Chapter 5 Special problems for nonlinear equations of Sobolev type --</subfield><subfield code="t">Chapter 6 Numerical methods of solution of initial-boundary-value problems for Sobolev-type equations --</subfield><subfield code="t">Appendix A Some facts of functional analysis --</subfield><subfield code="t">Appendix B To Chapter 6 --</subfield><subfield code="t">Bibliography --</subfield><subfield code="t">Index.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Initial value problems</subfield><subfield code="x">Numerical solutions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85066416</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Nonlinear difference equations.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh93001498</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical physics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082129</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Problèmes aux valeurs initiales</subfield><subfield code="x">Solutions numériques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations aux différences non linéaires.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Physique mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Functional Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Initial value problems</subfield><subfield code="x">Numerical solutions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonlinear difference equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pseudoparabolische Differentialgleichung</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4176155-8</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cauchy-Anfangswertproblem</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4147404-1</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lösung</subfield><subfield code="g">Mathematik</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4120678-2</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Anfangsrandwertproblem</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4001990-1</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Blowing up</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4508027-6</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Blow up.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cauchy problem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Nonlinear equations.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Sobolev.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Korpusov, M. O.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sveshnikov, A. G.</subfield><subfield code="q">(Alekseĭ Georgievich),</subfield><subfield code="d">1924-</subfield><subfield code="0">http://id.loc.gov/authorities/names/n82255444</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Blow-up in nonlinear Sobolev type equations (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGCB3PRBppRCJvWxvfPqQq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Alʹshin, A.B.</subfield><subfield code="t">Blow-up in nonlinear Sobolev type equations.</subfield><subfield code="d">Berlin ; New York : De Gruyter, ©2011</subfield><subfield code="z">9783110255270</subfield><subfield code="w">(DLC) 2011003941</subfield><subfield code="w">(OCoLC)704556885</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter series in nonlinear analysis and applications ;</subfield><subfield code="v">15.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n92047842</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=388294</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25310952</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">18203835</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110255294</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL797998</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10486432</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">388294</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">316682</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7060576</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn749781836 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:17:58Z |
institution | BVB |
isbn | 9783110255294 3110255294 1283166828 9781283166829 9786613166821 6613166820 |
language | English |
oclc_num | 749781836 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 648 pages) |
psigel | ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | De Gruyter, |
record_format | marc |
series | De Gruyter series in nonlinear analysis and applications ; |
series2 | De Gruyter series in nonlinear analysis and applications ; |
spelling | Alʹshin, A. B. Blow up in nonlinear Sobolev type equations / Alexander .B. Alʹshin, Maxim O. Korpusov, Alexy G. Sveshnikov. Berlin ; New York : De Gruyter, ©2011. 1 online resource (xii, 648 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda De Gruyter series in nonlinear analysis and applications ; 15 Includes bibliographical references (pages 621-646) and index. The monograph is devoted to the study of initial-boundary-value problems for multi-dimensional Sobolev-type equations over bounded domains. The authors consider both specific initial-boundary-value problems and abstract Cauchy problems for first-order (in the time variable) differential equations with nonlinear operator coefficients with respect to spatial variables. The main aim of the monograph is to obtain sufficient conditions for global (in time) solvability, to obtain sufficient conditions for blow-up of solutions at finite time, and to derive upper and lower estimates for the blow-up time. The monograph contains a vast list of references (440 items) and gives an overall view of the contemporary state-of-the-art of the mathematical modeling of various important problems arising in physics. Since the list of references contains many papers which have been published previously only in Russian research journals, it may also serve as a guide to the Russian literature. Print version record. Frontmatter -- Preface -- Contents -- Chapter 0 Introduction -- Chapter 1 Nonlinear model equations of Sobolev type -- Chapter 2 Blow-up of solutions of nonlinear equations of Sobolev type -- Chapter 3 Blow-up of solutions of strongly nonlinear Sobolev-type wave equations and equations with linear dissipation -- Chapter 4 Blow-up of solutions of strongly nonlinear, dissipative wave Sobolev-type equations with sources -- Chapter 5 Special problems for nonlinear equations of Sobolev type -- Chapter 6 Numerical methods of solution of initial-boundary-value problems for Sobolev-type equations -- Appendix A Some facts of functional analysis -- Appendix B To Chapter 6 -- Bibliography -- Index. English. Initial value problems Numerical solutions. http://id.loc.gov/authorities/subjects/sh85066416 Nonlinear difference equations. http://id.loc.gov/authorities/subjects/sh93001498 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Problèmes aux valeurs initiales Solutions numériques. Équations aux différences non linéaires. Physique mathématique. MATHEMATICS Functional Analysis. bisacsh Initial value problems Numerical solutions fast Mathematical physics fast Nonlinear difference equations fast Pseudoparabolische Differentialgleichung gnd http://d-nb.info/gnd/4176155-8 Cauchy-Anfangswertproblem gnd http://d-nb.info/gnd/4147404-1 Lösung Mathematik gnd http://d-nb.info/gnd/4120678-2 Anfangsrandwertproblem gnd http://d-nb.info/gnd/4001990-1 Blowing up gnd http://d-nb.info/gnd/4508027-6 Blow up. Cauchy problem. Nonlinear equations. Sobolev. Korpusov, M. O. Sveshnikov, A. G. (Alekseĭ Georgievich), 1924- http://id.loc.gov/authorities/names/n82255444 has work: Blow-up in nonlinear Sobolev type equations (Text) https://id.oclc.org/worldcat/entity/E39PCGCB3PRBppRCJvWxvfPqQq https://id.oclc.org/worldcat/ontology/hasWork Print version: Alʹshin, A.B. Blow-up in nonlinear Sobolev type equations. Berlin ; New York : De Gruyter, ©2011 9783110255270 (DLC) 2011003941 (OCoLC)704556885 De Gruyter series in nonlinear analysis and applications ; 15. http://id.loc.gov/authorities/names/n92047842 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=388294 Volltext |
spellingShingle | Alʹshin, A. B. Blow up in nonlinear Sobolev type equations / De Gruyter series in nonlinear analysis and applications ; Frontmatter -- Preface -- Contents -- Chapter 0 Introduction -- Chapter 1 Nonlinear model equations of Sobolev type -- Chapter 2 Blow-up of solutions of nonlinear equations of Sobolev type -- Chapter 3 Blow-up of solutions of strongly nonlinear Sobolev-type wave equations and equations with linear dissipation -- Chapter 4 Blow-up of solutions of strongly nonlinear, dissipative wave Sobolev-type equations with sources -- Chapter 5 Special problems for nonlinear equations of Sobolev type -- Chapter 6 Numerical methods of solution of initial-boundary-value problems for Sobolev-type equations -- Appendix A Some facts of functional analysis -- Appendix B To Chapter 6 -- Bibliography -- Index. Initial value problems Numerical solutions. http://id.loc.gov/authorities/subjects/sh85066416 Nonlinear difference equations. http://id.loc.gov/authorities/subjects/sh93001498 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Problèmes aux valeurs initiales Solutions numériques. Équations aux différences non linéaires. Physique mathématique. MATHEMATICS Functional Analysis. bisacsh Initial value problems Numerical solutions fast Mathematical physics fast Nonlinear difference equations fast Pseudoparabolische Differentialgleichung gnd http://d-nb.info/gnd/4176155-8 Cauchy-Anfangswertproblem gnd http://d-nb.info/gnd/4147404-1 Lösung Mathematik gnd http://d-nb.info/gnd/4120678-2 Anfangsrandwertproblem gnd http://d-nb.info/gnd/4001990-1 Blowing up gnd http://d-nb.info/gnd/4508027-6 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85066416 http://id.loc.gov/authorities/subjects/sh93001498 http://id.loc.gov/authorities/subjects/sh85082129 http://d-nb.info/gnd/4176155-8 http://d-nb.info/gnd/4147404-1 http://d-nb.info/gnd/4120678-2 http://d-nb.info/gnd/4001990-1 http://d-nb.info/gnd/4508027-6 |
title | Blow up in nonlinear Sobolev type equations / |
title_alt | Frontmatter -- Preface -- Contents -- Chapter 0 Introduction -- Chapter 1 Nonlinear model equations of Sobolev type -- Chapter 2 Blow-up of solutions of nonlinear equations of Sobolev type -- Chapter 3 Blow-up of solutions of strongly nonlinear Sobolev-type wave equations and equations with linear dissipation -- Chapter 4 Blow-up of solutions of strongly nonlinear, dissipative wave Sobolev-type equations with sources -- Chapter 5 Special problems for nonlinear equations of Sobolev type -- Chapter 6 Numerical methods of solution of initial-boundary-value problems for Sobolev-type equations -- Appendix A Some facts of functional analysis -- Appendix B To Chapter 6 -- Bibliography -- Index. |
title_auth | Blow up in nonlinear Sobolev type equations / |
title_exact_search | Blow up in nonlinear Sobolev type equations / |
title_full | Blow up in nonlinear Sobolev type equations / Alexander .B. Alʹshin, Maxim O. Korpusov, Alexy G. Sveshnikov. |
title_fullStr | Blow up in nonlinear Sobolev type equations / Alexander .B. Alʹshin, Maxim O. Korpusov, Alexy G. Sveshnikov. |
title_full_unstemmed | Blow up in nonlinear Sobolev type equations / Alexander .B. Alʹshin, Maxim O. Korpusov, Alexy G. Sveshnikov. |
title_short | Blow up in nonlinear Sobolev type equations / |
title_sort | blow up in nonlinear sobolev type equations |
topic | Initial value problems Numerical solutions. http://id.loc.gov/authorities/subjects/sh85066416 Nonlinear difference equations. http://id.loc.gov/authorities/subjects/sh93001498 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Problèmes aux valeurs initiales Solutions numériques. Équations aux différences non linéaires. Physique mathématique. MATHEMATICS Functional Analysis. bisacsh Initial value problems Numerical solutions fast Mathematical physics fast Nonlinear difference equations fast Pseudoparabolische Differentialgleichung gnd http://d-nb.info/gnd/4176155-8 Cauchy-Anfangswertproblem gnd http://d-nb.info/gnd/4147404-1 Lösung Mathematik gnd http://d-nb.info/gnd/4120678-2 Anfangsrandwertproblem gnd http://d-nb.info/gnd/4001990-1 Blowing up gnd http://d-nb.info/gnd/4508027-6 |
topic_facet | Initial value problems Numerical solutions. Nonlinear difference equations. Mathematical physics. Problèmes aux valeurs initiales Solutions numériques. Équations aux différences non linéaires. Physique mathématique. MATHEMATICS Functional Analysis. Initial value problems Numerical solutions Mathematical physics Nonlinear difference equations Pseudoparabolische Differentialgleichung Cauchy-Anfangswertproblem Lösung Mathematik Anfangsrandwertproblem Blowing up |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=388294 |
work_keys_str_mv | AT alʹshinab blowupinnonlinearsobolevtypeequations AT korpusovmo blowupinnonlinearsobolevtypeequations AT sveshnikovag blowupinnonlinearsobolevtypeequations |