The noisy pendulum /:
This book contains the general description of the mathematical pendulum subject to constant torque, periodic and random forces. The latter appear in additive and multiplicative form with their possible correlation. For the underdamped pendulum driven by periodic forces, a new phenomenon - determinis...
Gespeichert in:
1. Verfasser: | |
---|---|
Körperschaft: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, N.J. :
World Scientific Pub. Co.,
©2008.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book contains the general description of the mathematical pendulum subject to constant torque, periodic and random forces. The latter appear in additive and multiplicative form with their possible correlation. For the underdamped pendulum driven by periodic forces, a new phenomenon - deterministic chaos - comes into play, and the common action of this chaos and the influence of noise are taken into account. The inverted position of the pendulum can be stabilized either by periodic or random oscillations of the suspension axis or by inserting a spring into a rigid rod, or by their combination. The pendulum is one of the simplest nonlinear models, which has many applications in physics, chemistry, biology, medicine, communications, economics and sociology. A wide group of researchers working in these fields, along with students and teachers, will benefit from this book. |
Beschreibung: | 1 online resource (xi, 120 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 113-118) and index. |
ISBN: | 9789812833006 9812833005 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn747539689 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr buu|||uu||| | ||
008 | 090522s2008 si a ob 001 0 eng d | ||
040 | |a World Scientific Publishing |b eng |e pn |c STF |d N$T |d DEBSZ |d YDXCP |d OCLCQ |d OCLCF |d OCLCQ |d AGLDB |d ZCU |d MERUC |d U3W |d OCLCQ |d VTS |d ICG |d INT |d OCLCQ |d JBG |d OCLCQ |d STF |d DKC |d AU@ |d OCLCQ |d M8D |d LEAUB |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
019 | |a 1086428650 | ||
020 | |a 9789812833006 |q (electronic bk.) | ||
020 | |a 9812833005 |q (electronic bk.) | ||
020 | |z 9789812832993 |q (hardcover ; |q alk. paper) | ||
020 | |z 9812832998 |q (hardcover ; |q alk. paper) | ||
035 | |a (OCoLC)747539689 |z (OCoLC)1086428650 | ||
050 | 4 | |a QA862.P4 | |
072 | 7 | |a SCI |x 041000 |2 bisacsh | |
072 | 7 | |a SCI |x 096000 |2 bisacsh | |
082 | 7 | |a 531/.324 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Gitterman, M. | |
245 | 1 | 4 | |a The noisy pendulum / |c Moshe Gitterman. |
260 | |a Singapore ; |a Hackensack, N.J. : |b World Scientific Pub. Co., |c ©2008. | ||
300 | |a 1 online resource (xi, 120 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 113-118) and index. | ||
505 | 0 | |a 1. Formulation of the problem. 1.1. Mathematical pendulum. 1.2. Isomorphic models. 1.3. Noise -- 2. Overdamped pendulum. 2.1. Deterministic motion. 2.2. Influence of noise. 2.3. Periodic driven force -- 3. Underdamped pendulum. 3.1. Pendulum with constant torque. 3.2. Pendulum with multiplicative noise. 3.3. Pendulum with additive noise. 3.4. Periodically driven pendulum. 3.5. Damped pendulum subject to constant torque, periodic force and noise. 3.6. Pendulum with oscillating suspension point. 3.7. Spring pendulum. 3.8. Resonance-type phenomena -- 4. Deterministic chaos. 4.1. General concepts. 4.2. Transition to chaos. 4.3. Pendulum subject to two periodic fields -- 5. Inverted pendulum. 5.1. Oscillations of the suspension axis. 5.2. The tilted parametric pendulum. 5.3. Random vibrations of the suspension axis. 5.4. Spring pendulum. 5.5. Spring pendulum driven by a periodic force -- 6. Conclusions. | |
520 | |a This book contains the general description of the mathematical pendulum subject to constant torque, periodic and random forces. The latter appear in additive and multiplicative form with their possible correlation. For the underdamped pendulum driven by periodic forces, a new phenomenon - deterministic chaos - comes into play, and the common action of this chaos and the influence of noise are taken into account. The inverted position of the pendulum can be stabilized either by periodic or random oscillations of the suspension axis or by inserting a spring into a rigid rod, or by their combination. The pendulum is one of the simplest nonlinear models, which has many applications in physics, chemistry, biology, medicine, communications, economics and sociology. A wide group of researchers working in these fields, along with students and teachers, will benefit from this book. | ||
650 | 0 | |a Pendulum. |0 http://id.loc.gov/authorities/subjects/sh85099384 | |
650 | 0 | |a Noise. |0 http://id.loc.gov/authorities/subjects/sh85092179 | |
650 | 0 | |a Mechanics. |0 http://id.loc.gov/authorities/subjects/sh85082767 | |
650 | 0 | |a Physics. |0 http://id.loc.gov/authorities/subjects/sh85101653 | |
650 | 6 | |a Pendule. | |
650 | 6 | |a Bruit. | |
650 | 6 | |a Mécanique. | |
650 | 6 | |a Physique. | |
650 | 7 | |a noise. |2 aat | |
650 | 7 | |a mechanics (physics) |2 aat | |
650 | 7 | |a physics. |2 aat | |
650 | 7 | |a SCIENCE |x Mechanics |x General. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Mechanics |x Solids. |2 bisacsh | |
650 | 7 | |a Mechanics |2 fast | |
650 | 7 | |a Noise |2 fast | |
650 | 7 | |a Pendulum |2 fast | |
650 | 7 | |a Physics |2 fast | |
710 | 2 | |a World Scientific (Firm) |0 http://id.loc.gov/authorities/names/no2001005546 | |
758 | |i has work: |a The noisy pendulum (Text) |1 https://id.oclc.org/worldcat/entity/E39PCYDdFMTm6FTcBCgr4rPHbq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Gitterman, M. |t Noisy pendulum. |d Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2008 |w (DLC) 2008032349 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=521230 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 521230 | ||
938 | |a YBP Library Services |b YANK |n 9975225 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn747539689 |
---|---|
_version_ | 1816881768613019648 |
adam_text | |
any_adam_object | |
author | Gitterman, M. |
author_corporate | World Scientific (Firm) |
author_corporate_role | |
author_facet | Gitterman, M. World Scientific (Firm) |
author_role | |
author_sort | Gitterman, M. |
author_variant | m g mg |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA862 |
callnumber-raw | QA862.P4 |
callnumber-search | QA862.P4 |
callnumber-sort | QA 3862 P4 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Formulation of the problem. 1.1. Mathematical pendulum. 1.2. Isomorphic models. 1.3. Noise -- 2. Overdamped pendulum. 2.1. Deterministic motion. 2.2. Influence of noise. 2.3. Periodic driven force -- 3. Underdamped pendulum. 3.1. Pendulum with constant torque. 3.2. Pendulum with multiplicative noise. 3.3. Pendulum with additive noise. 3.4. Periodically driven pendulum. 3.5. Damped pendulum subject to constant torque, periodic force and noise. 3.6. Pendulum with oscillating suspension point. 3.7. Spring pendulum. 3.8. Resonance-type phenomena -- 4. Deterministic chaos. 4.1. General concepts. 4.2. Transition to chaos. 4.3. Pendulum subject to two periodic fields -- 5. Inverted pendulum. 5.1. Oscillations of the suspension axis. 5.2. The tilted parametric pendulum. 5.3. Random vibrations of the suspension axis. 5.4. Spring pendulum. 5.5. Spring pendulum driven by a periodic force -- 6. Conclusions. |
ctrlnum | (OCoLC)747539689 |
dewey-full | 531/.324 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531/.324 |
dewey-search | 531/.324 |
dewey-sort | 3531 3324 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04501cam a2200649Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn747539689</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr buu|||uu|||</controlfield><controlfield tag="008">090522s2008 si a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">World Scientific Publishing</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">STF</subfield><subfield code="d">N$T</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">LEAUB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1086428650</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812833006</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812833005</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812832993</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812832998</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)747539689</subfield><subfield code="z">(OCoLC)1086428650</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA862.P4</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">041000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">096000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">531/.324</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gitterman, M.</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The noisy pendulum /</subfield><subfield code="c">Moshe Gitterman.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, N.J. :</subfield><subfield code="b">World Scientific Pub. Co.,</subfield><subfield code="c">©2008.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 120 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 113-118) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Formulation of the problem. 1.1. Mathematical pendulum. 1.2. Isomorphic models. 1.3. Noise -- 2. Overdamped pendulum. 2.1. Deterministic motion. 2.2. Influence of noise. 2.3. Periodic driven force -- 3. Underdamped pendulum. 3.1. Pendulum with constant torque. 3.2. Pendulum with multiplicative noise. 3.3. Pendulum with additive noise. 3.4. Periodically driven pendulum. 3.5. Damped pendulum subject to constant torque, periodic force and noise. 3.6. Pendulum with oscillating suspension point. 3.7. Spring pendulum. 3.8. Resonance-type phenomena -- 4. Deterministic chaos. 4.1. General concepts. 4.2. Transition to chaos. 4.3. Pendulum subject to two periodic fields -- 5. Inverted pendulum. 5.1. Oscillations of the suspension axis. 5.2. The tilted parametric pendulum. 5.3. Random vibrations of the suspension axis. 5.4. Spring pendulum. 5.5. Spring pendulum driven by a periodic force -- 6. Conclusions.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book contains the general description of the mathematical pendulum subject to constant torque, periodic and random forces. The latter appear in additive and multiplicative form with their possible correlation. For the underdamped pendulum driven by periodic forces, a new phenomenon - deterministic chaos - comes into play, and the common action of this chaos and the influence of noise are taken into account. The inverted position of the pendulum can be stabilized either by periodic or random oscillations of the suspension axis or by inserting a spring into a rigid rod, or by their combination. The pendulum is one of the simplest nonlinear models, which has many applications in physics, chemistry, biology, medicine, communications, economics and sociology. A wide group of researchers working in these fields, along with students and teachers, will benefit from this book.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Pendulum.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85099384</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Noise.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85092179</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mechanics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082767</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Physics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85101653</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Pendule.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Bruit.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mécanique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Physique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">noise.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">mechanics (physics)</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">physics.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Mechanics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Mechanics</subfield><subfield code="x">Solids.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mechanics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Noise</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pendulum</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2001005546</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">The noisy pendulum (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCYDdFMTm6FTcBCgr4rPHbq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Gitterman, M.</subfield><subfield code="t">Noisy pendulum.</subfield><subfield code="d">Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2008</subfield><subfield code="w">(DLC) 2008032349</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=521230</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">521230</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9975225</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn747539689 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:58Z |
institution | BVB |
institution_GND | http://id.loc.gov/authorities/names/no2001005546 |
isbn | 9789812833006 9812833005 |
language | English |
oclc_num | 747539689 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xi, 120 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | World Scientific Pub. Co., |
record_format | marc |
spelling | Gitterman, M. The noisy pendulum / Moshe Gitterman. Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2008. 1 online resource (xi, 120 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 113-118) and index. 1. Formulation of the problem. 1.1. Mathematical pendulum. 1.2. Isomorphic models. 1.3. Noise -- 2. Overdamped pendulum. 2.1. Deterministic motion. 2.2. Influence of noise. 2.3. Periodic driven force -- 3. Underdamped pendulum. 3.1. Pendulum with constant torque. 3.2. Pendulum with multiplicative noise. 3.3. Pendulum with additive noise. 3.4. Periodically driven pendulum. 3.5. Damped pendulum subject to constant torque, periodic force and noise. 3.6. Pendulum with oscillating suspension point. 3.7. Spring pendulum. 3.8. Resonance-type phenomena -- 4. Deterministic chaos. 4.1. General concepts. 4.2. Transition to chaos. 4.3. Pendulum subject to two periodic fields -- 5. Inverted pendulum. 5.1. Oscillations of the suspension axis. 5.2. The tilted parametric pendulum. 5.3. Random vibrations of the suspension axis. 5.4. Spring pendulum. 5.5. Spring pendulum driven by a periodic force -- 6. Conclusions. This book contains the general description of the mathematical pendulum subject to constant torque, periodic and random forces. The latter appear in additive and multiplicative form with their possible correlation. For the underdamped pendulum driven by periodic forces, a new phenomenon - deterministic chaos - comes into play, and the common action of this chaos and the influence of noise are taken into account. The inverted position of the pendulum can be stabilized either by periodic or random oscillations of the suspension axis or by inserting a spring into a rigid rod, or by their combination. The pendulum is one of the simplest nonlinear models, which has many applications in physics, chemistry, biology, medicine, communications, economics and sociology. A wide group of researchers working in these fields, along with students and teachers, will benefit from this book. Pendulum. http://id.loc.gov/authorities/subjects/sh85099384 Noise. http://id.loc.gov/authorities/subjects/sh85092179 Mechanics. http://id.loc.gov/authorities/subjects/sh85082767 Physics. http://id.loc.gov/authorities/subjects/sh85101653 Pendule. Bruit. Mécanique. Physique. noise. aat mechanics (physics) aat physics. aat SCIENCE Mechanics General. bisacsh SCIENCE Mechanics Solids. bisacsh Mechanics fast Noise fast Pendulum fast Physics fast World Scientific (Firm) http://id.loc.gov/authorities/names/no2001005546 has work: The noisy pendulum (Text) https://id.oclc.org/worldcat/entity/E39PCYDdFMTm6FTcBCgr4rPHbq https://id.oclc.org/worldcat/ontology/hasWork Print version: Gitterman, M. Noisy pendulum. Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2008 (DLC) 2008032349 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=521230 Volltext |
spellingShingle | Gitterman, M. The noisy pendulum / 1. Formulation of the problem. 1.1. Mathematical pendulum. 1.2. Isomorphic models. 1.3. Noise -- 2. Overdamped pendulum. 2.1. Deterministic motion. 2.2. Influence of noise. 2.3. Periodic driven force -- 3. Underdamped pendulum. 3.1. Pendulum with constant torque. 3.2. Pendulum with multiplicative noise. 3.3. Pendulum with additive noise. 3.4. Periodically driven pendulum. 3.5. Damped pendulum subject to constant torque, periodic force and noise. 3.6. Pendulum with oscillating suspension point. 3.7. Spring pendulum. 3.8. Resonance-type phenomena -- 4. Deterministic chaos. 4.1. General concepts. 4.2. Transition to chaos. 4.3. Pendulum subject to two periodic fields -- 5. Inverted pendulum. 5.1. Oscillations of the suspension axis. 5.2. The tilted parametric pendulum. 5.3. Random vibrations of the suspension axis. 5.4. Spring pendulum. 5.5. Spring pendulum driven by a periodic force -- 6. Conclusions. Pendulum. http://id.loc.gov/authorities/subjects/sh85099384 Noise. http://id.loc.gov/authorities/subjects/sh85092179 Mechanics. http://id.loc.gov/authorities/subjects/sh85082767 Physics. http://id.loc.gov/authorities/subjects/sh85101653 Pendule. Bruit. Mécanique. Physique. noise. aat mechanics (physics) aat physics. aat SCIENCE Mechanics General. bisacsh SCIENCE Mechanics Solids. bisacsh Mechanics fast Noise fast Pendulum fast Physics fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85099384 http://id.loc.gov/authorities/subjects/sh85092179 http://id.loc.gov/authorities/subjects/sh85082767 http://id.loc.gov/authorities/subjects/sh85101653 |
title | The noisy pendulum / |
title_auth | The noisy pendulum / |
title_exact_search | The noisy pendulum / |
title_full | The noisy pendulum / Moshe Gitterman. |
title_fullStr | The noisy pendulum / Moshe Gitterman. |
title_full_unstemmed | The noisy pendulum / Moshe Gitterman. |
title_short | The noisy pendulum / |
title_sort | noisy pendulum |
topic | Pendulum. http://id.loc.gov/authorities/subjects/sh85099384 Noise. http://id.loc.gov/authorities/subjects/sh85092179 Mechanics. http://id.loc.gov/authorities/subjects/sh85082767 Physics. http://id.loc.gov/authorities/subjects/sh85101653 Pendule. Bruit. Mécanique. Physique. noise. aat mechanics (physics) aat physics. aat SCIENCE Mechanics General. bisacsh SCIENCE Mechanics Solids. bisacsh Mechanics fast Noise fast Pendulum fast Physics fast |
topic_facet | Pendulum. Noise. Mechanics. Physics. Pendule. Bruit. Mécanique. Physique. noise. mechanics (physics) physics. SCIENCE Mechanics General. SCIENCE Mechanics Solids. Mechanics Noise Pendulum Physics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=521230 |
work_keys_str_mv | AT gittermanm thenoisypendulum AT worldscientificfirm thenoisypendulum AT gittermanm noisypendulum AT worldscientificfirm noisypendulum |