Stochastic simulation optimization :: an optimal computing budget allocation /
With the advance of new computing technology, simulation is becoming very popular for designing large, complex and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that a...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, NJ :
World Scientific,
©2011.
|
Schriftenreihe: | System engineering and operations research ;
vol. 1. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | With the advance of new computing technology, simulation is becoming very popular for designing large, complex and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that are computationally intractable. Moreover, to obtain a sound statistical estimate at a specified level of confidence, a large number of simulation runs (or replications) is usually required for each design alternative. If the number of design alternatives is large, the total simulation cost can be very expensive. Stochastic Simulation Optimization addresses the pertinent efficiency issue via smart allocation of computing resource in the simulation experiments for optimization, and aims to provide academic researchers and industrial practitioners with a comprehensive coverage of OCBA approach for stochastic simulation optimization. Starting with an intuitive explanation of computing budget allocation and a discussion of its impact on optimization performance, a series of OCBA approaches developed for various problems are then presented, from the selection of the best design to optimization with multiple objectives. Finally, this book discusses the potential extension of OCBA notion to different applications such as data envelopment analysis, experiments of design and rare-event simulation. |
Beschreibung: | 1 online resource (xviii, 227 pages :) |
Bibliographie: | Includes bibliographical references (pages 219-224) and index. |
ISBN: | 9789814282659 9814282650 9781628702309 1628702303 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn742584181 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 110726s2011 si a ob 001 0 eng d | ||
010 | |z 2010537570 | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCQ |d CUY |d YDXCP |d UIU |d OCLCQ |d DEBSZ |d OCLCQ |d VLB |d KNOVL |d ZCU |d NLGGC |d KNOVL |d OCLCQ |d AZK |d LOA |d OCLCO |d JBG |d OCLCO |d AGLDB |d COCUF |d TOA |d OCLCO |d MOR |d VT2 |d PIFAG |d OCLCQ |d U3W |d REB |d OCLCF |d STF |d WRM |d VTS |d NRAMU |d INT |d CEF |d AU@ |d OCLCO |d OCLCQ |d WYU |d OCLCQ |d M8D |d LEAUB |d UKCRE |d EYM |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d SXB | ||
019 | |a 742516192 |a 961621654 |a 961848051 |a 962712481 |a 966238059 |a 988408179 |a 992043581 |a 999517445 |a 1026446719 |a 1037763000 |a 1038573460 |a 1045557954 |a 1055398289 |a 1058107414 |a 1066010406 |a 1081291231 |a 1086556049 |a 1153466239 |a 1228550096 |a 1240524942 |a 1249224298 | ||
020 | |a 9789814282659 |q (electronic bk.) | ||
020 | |a 9814282650 |q (electronic bk.) | ||
020 | |a 9781628702309 |q (electronic bk.) | ||
020 | |a 1628702303 |q (electronic bk.) | ||
020 | |z 9789814282642 | ||
020 | |z 9814282642 | ||
035 | |a (OCoLC)742584181 |z (OCoLC)742516192 |z (OCoLC)961621654 |z (OCoLC)961848051 |z (OCoLC)962712481 |z (OCoLC)966238059 |z (OCoLC)988408179 |z (OCoLC)992043581 |z (OCoLC)999517445 |z (OCoLC)1026446719 |z (OCoLC)1037763000 |z (OCoLC)1038573460 |z (OCoLC)1045557954 |z (OCoLC)1055398289 |z (OCoLC)1058107414 |z (OCoLC)1066010406 |z (OCoLC)1081291231 |z (OCoLC)1086556049 |z (OCoLC)1153466239 |z (OCoLC)1228550096 |z (OCoLC)1240524942 |z (OCoLC)1249224298 | ||
050 | 4 | |a TA168 |b .C473 2011eb | |
072 | 7 | |a TEC |x 009000 |2 bisacsh | |
072 | 7 | |a TEC |x 035000 |2 bisacsh | |
082 | 7 | |a 620.001/171 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Chen, Chun-hung. |0 http://id.loc.gov/authorities/names/no2007051730 | |
245 | 1 | 0 | |a Stochastic simulation optimization : |b an optimal computing budget allocation / |c Chun-Hung Chen, Loo Hay Lee. |
260 | |a Singapore ; |a Hackensack, NJ : |b World Scientific, |c ©2011. | ||
300 | |a 1 online resource (xviii, 227 pages :) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Series on system engineering and operations research ; |v vol. 1 | |
504 | |a Includes bibliographical references (pages 219-224) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a 1. Introduction to stochastic simulation optimization. 1.1. Introduction. 1.2. Problem definition. 1.3. Classification. 1.4. Summary -- 2. Computing budget allocation. 2.1. Simulation precision versus computing budget. 2.2. Computing budget allocation for comparison of multiple designs. 2.3. Intuitive explanations of optimal computing budget allocation. 2.4. Computing budget allocation for large simulation optimization. 2.5. Roadmap -- 3. Selecting the best from a set of alternative designs. 3.1. A Bayesian framework for simulation output modeling. 3.2. Probability of correct selection. 3.3. Maximizing the probability of correct selection. 3.4. Minimizing the total simulation cost. 3.5. Non-equal simulation costs. 3.6. Minimizing opportunity cost. 3.7. OCBA derivation based on classical model -- 4. Numerical implementation and experiments. 4.1. Numerical testing. 4.2. Parameter setting and implementation of the OCBA procedure -- 5. Selecting an optimal subset. 5.1. Introduction and problem statement. 5.2. Approximate asymptotically optimal allocation scheme. 5.3. Numerical experiments -- 6. Multi-objective optimal computing budget allocation. 6.1. Pareto optimality. 6.2. Multi-objective optimal computing budget allocation problem. 6.3. Asymptotic allocation rule. 6.4. A sequential allocation procedure. 6.5. Numerical results -- 7. Large-scale simulation and optimization. 7.1. A general framework of integration of OCBA with metaheuristics. 7.2. Problems with single objective. 7.3. Numerical experiments. 7.4. Multiple objectives. 7.5. Concluding remarks -- 8. Generalized OCBA framework and other related methods. 8.1. Optimal computing budget allocation for selecting the best by utilizing regression analysis (OCBA-OSD). 8.2. Optimal computing budget allocation for extended cross-entropy method (OCBA-CE). 8.3. Optimal computing budget allocation for variance reduction in rare-event simulation. 8.4. Optimal data collection budget allocation (ODCBA) for Monte Carlo DEA. 8.5. Other related works. | |
520 | |a With the advance of new computing technology, simulation is becoming very popular for designing large, complex and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that are computationally intractable. Moreover, to obtain a sound statistical estimate at a specified level of confidence, a large number of simulation runs (or replications) is usually required for each design alternative. If the number of design alternatives is large, the total simulation cost can be very expensive. Stochastic Simulation Optimization addresses the pertinent efficiency issue via smart allocation of computing resource in the simulation experiments for optimization, and aims to provide academic researchers and industrial practitioners with a comprehensive coverage of OCBA approach for stochastic simulation optimization. Starting with an intuitive explanation of computing budget allocation and a discussion of its impact on optimization performance, a series of OCBA approaches developed for various problems are then presented, from the selection of the best design to optimization with multiple objectives. Finally, this book discusses the potential extension of OCBA notion to different applications such as data envelopment analysis, experiments of design and rare-event simulation. | ||
650 | 0 | |a Systems engineering |x Simulation methods. | |
650 | 0 | |a Stochastic processes. |0 http://id.loc.gov/authorities/subjects/sh85128181 | |
650 | 0 | |a Mathematical optimization. |0 http://id.loc.gov/authorities/subjects/sh85082127 | |
650 | 6 | |a Ingénierie des systèmes |x Méthodes de simulation. | |
650 | 6 | |a Processus stochastiques. | |
650 | 6 | |a Optimisation mathématique. | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Engineering (General) |2 bisacsh | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Reference. |2 bisacsh | |
650 | 7 | |a Mathematical optimization |2 fast | |
650 | 7 | |a Stochastic processes |2 fast | |
650 | 7 | |a Stochastische Optimierung |2 gnd |0 http://d-nb.info/gnd/4057625-5 | |
650 | 7 | |a Stochastische optimale Kontrolle |2 gnd |0 http://d-nb.info/gnd/4207850-7 | |
655 | 4 | |a Electronic book. | |
700 | 1 | |a Lee, Loo Hay. |0 http://id.loc.gov/authorities/names/no2010154231 | |
776 | 0 | 8 | |i Print version: |a Chen, Chun-hung. |t Stochastic simulation optimization. |d Singapore ; Hackensack, NJ : World Scientific ; c2011 |z 9789814282642 |w (DLC) 2010537570 |w (OCoLC)456170891 |
830 | 0 | |a System engineering and operations research ; |v vol. 1. |0 http://id.loc.gov/authorities/names/no2010155520 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=374808 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=374808 |3 Volltext | |
938 | |a ebrary |b EBRY |n ebr10479772 | ||
938 | |a EBSCOhost |b EBSC |n 374808 | ||
938 | |a YBP Library Services |b YANK |n 6965050 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn742584181 |
---|---|
_version_ | 1813903408129638400 |
adam_text | |
any_adam_object | |
author | Chen, Chun-hung |
author2 | Lee, Loo Hay |
author2_role | |
author2_variant | l h l lh lhl |
author_GND | http://id.loc.gov/authorities/names/no2007051730 http://id.loc.gov/authorities/names/no2010154231 |
author_facet | Chen, Chun-hung Lee, Loo Hay |
author_role | |
author_sort | Chen, Chun-hung |
author_variant | c h c chc |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TA168 |
callnumber-raw | TA168 .C473 2011eb |
callnumber-search | TA168 .C473 2011eb |
callnumber-sort | TA 3168 C473 42011EB |
callnumber-subject | TA - General and Civil Engineering |
collection | ZDB-4-EBA |
contents | 1. Introduction to stochastic simulation optimization. 1.1. Introduction. 1.2. Problem definition. 1.3. Classification. 1.4. Summary -- 2. Computing budget allocation. 2.1. Simulation precision versus computing budget. 2.2. Computing budget allocation for comparison of multiple designs. 2.3. Intuitive explanations of optimal computing budget allocation. 2.4. Computing budget allocation for large simulation optimization. 2.5. Roadmap -- 3. Selecting the best from a set of alternative designs. 3.1. A Bayesian framework for simulation output modeling. 3.2. Probability of correct selection. 3.3. Maximizing the probability of correct selection. 3.4. Minimizing the total simulation cost. 3.5. Non-equal simulation costs. 3.6. Minimizing opportunity cost. 3.7. OCBA derivation based on classical model -- 4. Numerical implementation and experiments. 4.1. Numerical testing. 4.2. Parameter setting and implementation of the OCBA procedure -- 5. Selecting an optimal subset. 5.1. Introduction and problem statement. 5.2. Approximate asymptotically optimal allocation scheme. 5.3. Numerical experiments -- 6. Multi-objective optimal computing budget allocation. 6.1. Pareto optimality. 6.2. Multi-objective optimal computing budget allocation problem. 6.3. Asymptotic allocation rule. 6.4. A sequential allocation procedure. 6.5. Numerical results -- 7. Large-scale simulation and optimization. 7.1. A general framework of integration of OCBA with metaheuristics. 7.2. Problems with single objective. 7.3. Numerical experiments. 7.4. Multiple objectives. 7.5. Concluding remarks -- 8. Generalized OCBA framework and other related methods. 8.1. Optimal computing budget allocation for selecting the best by utilizing regression analysis (OCBA-OSD). 8.2. Optimal computing budget allocation for extended cross-entropy method (OCBA-CE). 8.3. Optimal computing budget allocation for variance reduction in rare-event simulation. 8.4. Optimal data collection budget allocation (ODCBA) for Monte Carlo DEA. 8.5. Other related works. |
ctrlnum | (OCoLC)742584181 |
dewey-full | 620.001/171 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.001/171 |
dewey-search | 620.001/171 |
dewey-sort | 3620.001 3171 |
dewey-tens | 620 - Engineering and allied operations |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07256cam a2200673 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn742584181</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">110726s2011 si a ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2010537570</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CUY</subfield><subfield code="d">YDXCP</subfield><subfield code="d">UIU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VLB</subfield><subfield code="d">KNOVL</subfield><subfield code="d">ZCU</subfield><subfield code="d">NLGGC</subfield><subfield code="d">KNOVL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AGLDB</subfield><subfield code="d">COCUF</subfield><subfield code="d">TOA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">MOR</subfield><subfield code="d">VT2</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">REB</subfield><subfield code="d">OCLCF</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">INT</subfield><subfield code="d">CEF</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">LEAUB</subfield><subfield code="d">UKCRE</subfield><subfield code="d">EYM</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SXB</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">742516192</subfield><subfield code="a">961621654</subfield><subfield code="a">961848051</subfield><subfield code="a">962712481</subfield><subfield code="a">966238059</subfield><subfield code="a">988408179</subfield><subfield code="a">992043581</subfield><subfield code="a">999517445</subfield><subfield code="a">1026446719</subfield><subfield code="a">1037763000</subfield><subfield code="a">1038573460</subfield><subfield code="a">1045557954</subfield><subfield code="a">1055398289</subfield><subfield code="a">1058107414</subfield><subfield code="a">1066010406</subfield><subfield code="a">1081291231</subfield><subfield code="a">1086556049</subfield><subfield code="a">1153466239</subfield><subfield code="a">1228550096</subfield><subfield code="a">1240524942</subfield><subfield code="a">1249224298</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814282659</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814282650</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781628702309</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1628702303</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814282642</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814282642</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)742584181</subfield><subfield code="z">(OCoLC)742516192</subfield><subfield code="z">(OCoLC)961621654</subfield><subfield code="z">(OCoLC)961848051</subfield><subfield code="z">(OCoLC)962712481</subfield><subfield code="z">(OCoLC)966238059</subfield><subfield code="z">(OCoLC)988408179</subfield><subfield code="z">(OCoLC)992043581</subfield><subfield code="z">(OCoLC)999517445</subfield><subfield code="z">(OCoLC)1026446719</subfield><subfield code="z">(OCoLC)1037763000</subfield><subfield code="z">(OCoLC)1038573460</subfield><subfield code="z">(OCoLC)1045557954</subfield><subfield code="z">(OCoLC)1055398289</subfield><subfield code="z">(OCoLC)1058107414</subfield><subfield code="z">(OCoLC)1066010406</subfield><subfield code="z">(OCoLC)1081291231</subfield><subfield code="z">(OCoLC)1086556049</subfield><subfield code="z">(OCoLC)1153466239</subfield><subfield code="z">(OCoLC)1228550096</subfield><subfield code="z">(OCoLC)1240524942</subfield><subfield code="z">(OCoLC)1249224298</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TA168</subfield><subfield code="b">.C473 2011eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">009000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">035000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">620.001/171</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Chun-hung.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2007051730</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic simulation optimization :</subfield><subfield code="b">an optimal computing budget allocation /</subfield><subfield code="c">Chun-Hung Chen, Loo Hay Lee.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xviii, 227 pages :)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series on system engineering and operations research ;</subfield><subfield code="v">vol. 1</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 219-224) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Introduction to stochastic simulation optimization. 1.1. Introduction. 1.2. Problem definition. 1.3. Classification. 1.4. Summary -- 2. Computing budget allocation. 2.1. Simulation precision versus computing budget. 2.2. Computing budget allocation for comparison of multiple designs. 2.3. Intuitive explanations of optimal computing budget allocation. 2.4. Computing budget allocation for large simulation optimization. 2.5. Roadmap -- 3. Selecting the best from a set of alternative designs. 3.1. A Bayesian framework for simulation output modeling. 3.2. Probability of correct selection. 3.3. Maximizing the probability of correct selection. 3.4. Minimizing the total simulation cost. 3.5. Non-equal simulation costs. 3.6. Minimizing opportunity cost. 3.7. OCBA derivation based on classical model -- 4. Numerical implementation and experiments. 4.1. Numerical testing. 4.2. Parameter setting and implementation of the OCBA procedure -- 5. Selecting an optimal subset. 5.1. Introduction and problem statement. 5.2. Approximate asymptotically optimal allocation scheme. 5.3. Numerical experiments -- 6. Multi-objective optimal computing budget allocation. 6.1. Pareto optimality. 6.2. Multi-objective optimal computing budget allocation problem. 6.3. Asymptotic allocation rule. 6.4. A sequential allocation procedure. 6.5. Numerical results -- 7. Large-scale simulation and optimization. 7.1. A general framework of integration of OCBA with metaheuristics. 7.2. Problems with single objective. 7.3. Numerical experiments. 7.4. Multiple objectives. 7.5. Concluding remarks -- 8. Generalized OCBA framework and other related methods. 8.1. Optimal computing budget allocation for selecting the best by utilizing regression analysis (OCBA-OSD). 8.2. Optimal computing budget allocation for extended cross-entropy method (OCBA-CE). 8.3. Optimal computing budget allocation for variance reduction in rare-event simulation. 8.4. Optimal data collection budget allocation (ODCBA) for Monte Carlo DEA. 8.5. Other related works.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the advance of new computing technology, simulation is becoming very popular for designing large, complex and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that are computationally intractable. Moreover, to obtain a sound statistical estimate at a specified level of confidence, a large number of simulation runs (or replications) is usually required for each design alternative. If the number of design alternatives is large, the total simulation cost can be very expensive. Stochastic Simulation Optimization addresses the pertinent efficiency issue via smart allocation of computing resource in the simulation experiments for optimization, and aims to provide academic researchers and industrial practitioners with a comprehensive coverage of OCBA approach for stochastic simulation optimization. Starting with an intuitive explanation of computing budget allocation and a discussion of its impact on optimization performance, a series of OCBA approaches developed for various problems are then presented, from the selection of the best design to optimization with multiple objectives. Finally, this book discusses the potential extension of OCBA notion to different applications such as data envelopment analysis, experiments of design and rare-event simulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Systems engineering</subfield><subfield code="x">Simulation methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Stochastic processes.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85128181</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical optimization.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082127</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Ingénierie des systèmes</subfield><subfield code="x">Méthodes de simulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Processus stochastiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Optimisation mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Engineering (General)</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Reference.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical optimization</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastic processes</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastische Optimierung</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4057625-5</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastische optimale Kontrolle</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4207850-7</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic book.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Loo Hay.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2010154231</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Chen, Chun-hung.</subfield><subfield code="t">Stochastic simulation optimization.</subfield><subfield code="d">Singapore ; Hackensack, NJ : World Scientific ; c2011</subfield><subfield code="z">9789814282642</subfield><subfield code="w">(DLC) 2010537570</subfield><subfield code="w">(OCoLC)456170891</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">System engineering and operations research ;</subfield><subfield code="v">vol. 1.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2010155520</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=374808</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=374808</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10479772</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">374808</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">6965050</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
genre | Electronic book. |
genre_facet | Electronic book. |
id | ZDB-4-EBA-ocn742584181 |
illustrated | Illustrated |
indexdate | 2024-10-25T16:18:12Z |
institution | BVB |
isbn | 9789814282659 9814282650 9781628702309 1628702303 |
language | English |
oclc_num | 742584181 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (xviii, 227 pages :) |
psigel | ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | World Scientific, |
record_format | marc |
series | System engineering and operations research ; |
series2 | Series on system engineering and operations research ; |
spelling | Chen, Chun-hung. http://id.loc.gov/authorities/names/no2007051730 Stochastic simulation optimization : an optimal computing budget allocation / Chun-Hung Chen, Loo Hay Lee. Singapore ; Hackensack, NJ : World Scientific, ©2011. 1 online resource (xviii, 227 pages :) text txt rdacontent computer c rdamedia online resource cr rdacarrier Series on system engineering and operations research ; vol. 1 Includes bibliographical references (pages 219-224) and index. Print version record. 1. Introduction to stochastic simulation optimization. 1.1. Introduction. 1.2. Problem definition. 1.3. Classification. 1.4. Summary -- 2. Computing budget allocation. 2.1. Simulation precision versus computing budget. 2.2. Computing budget allocation for comparison of multiple designs. 2.3. Intuitive explanations of optimal computing budget allocation. 2.4. Computing budget allocation for large simulation optimization. 2.5. Roadmap -- 3. Selecting the best from a set of alternative designs. 3.1. A Bayesian framework for simulation output modeling. 3.2. Probability of correct selection. 3.3. Maximizing the probability of correct selection. 3.4. Minimizing the total simulation cost. 3.5. Non-equal simulation costs. 3.6. Minimizing opportunity cost. 3.7. OCBA derivation based on classical model -- 4. Numerical implementation and experiments. 4.1. Numerical testing. 4.2. Parameter setting and implementation of the OCBA procedure -- 5. Selecting an optimal subset. 5.1. Introduction and problem statement. 5.2. Approximate asymptotically optimal allocation scheme. 5.3. Numerical experiments -- 6. Multi-objective optimal computing budget allocation. 6.1. Pareto optimality. 6.2. Multi-objective optimal computing budget allocation problem. 6.3. Asymptotic allocation rule. 6.4. A sequential allocation procedure. 6.5. Numerical results -- 7. Large-scale simulation and optimization. 7.1. A general framework of integration of OCBA with metaheuristics. 7.2. Problems with single objective. 7.3. Numerical experiments. 7.4. Multiple objectives. 7.5. Concluding remarks -- 8. Generalized OCBA framework and other related methods. 8.1. Optimal computing budget allocation for selecting the best by utilizing regression analysis (OCBA-OSD). 8.2. Optimal computing budget allocation for extended cross-entropy method (OCBA-CE). 8.3. Optimal computing budget allocation for variance reduction in rare-event simulation. 8.4. Optimal data collection budget allocation (ODCBA) for Monte Carlo DEA. 8.5. Other related works. With the advance of new computing technology, simulation is becoming very popular for designing large, complex and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that are computationally intractable. Moreover, to obtain a sound statistical estimate at a specified level of confidence, a large number of simulation runs (or replications) is usually required for each design alternative. If the number of design alternatives is large, the total simulation cost can be very expensive. Stochastic Simulation Optimization addresses the pertinent efficiency issue via smart allocation of computing resource in the simulation experiments for optimization, and aims to provide academic researchers and industrial practitioners with a comprehensive coverage of OCBA approach for stochastic simulation optimization. Starting with an intuitive explanation of computing budget allocation and a discussion of its impact on optimization performance, a series of OCBA approaches developed for various problems are then presented, from the selection of the best design to optimization with multiple objectives. Finally, this book discusses the potential extension of OCBA notion to different applications such as data envelopment analysis, experiments of design and rare-event simulation. Systems engineering Simulation methods. Stochastic processes. http://id.loc.gov/authorities/subjects/sh85128181 Mathematical optimization. http://id.loc.gov/authorities/subjects/sh85082127 Ingénierie des systèmes Méthodes de simulation. Processus stochastiques. Optimisation mathématique. TECHNOLOGY & ENGINEERING Engineering (General) bisacsh TECHNOLOGY & ENGINEERING Reference. bisacsh Mathematical optimization fast Stochastic processes fast Stochastische Optimierung gnd http://d-nb.info/gnd/4057625-5 Stochastische optimale Kontrolle gnd http://d-nb.info/gnd/4207850-7 Electronic book. Lee, Loo Hay. http://id.loc.gov/authorities/names/no2010154231 Print version: Chen, Chun-hung. Stochastic simulation optimization. Singapore ; Hackensack, NJ : World Scientific ; c2011 9789814282642 (DLC) 2010537570 (OCoLC)456170891 System engineering and operations research ; vol. 1. http://id.loc.gov/authorities/names/no2010155520 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=374808 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=374808 Volltext |
spellingShingle | Chen, Chun-hung Stochastic simulation optimization : an optimal computing budget allocation / System engineering and operations research ; 1. Introduction to stochastic simulation optimization. 1.1. Introduction. 1.2. Problem definition. 1.3. Classification. 1.4. Summary -- 2. Computing budget allocation. 2.1. Simulation precision versus computing budget. 2.2. Computing budget allocation for comparison of multiple designs. 2.3. Intuitive explanations of optimal computing budget allocation. 2.4. Computing budget allocation for large simulation optimization. 2.5. Roadmap -- 3. Selecting the best from a set of alternative designs. 3.1. A Bayesian framework for simulation output modeling. 3.2. Probability of correct selection. 3.3. Maximizing the probability of correct selection. 3.4. Minimizing the total simulation cost. 3.5. Non-equal simulation costs. 3.6. Minimizing opportunity cost. 3.7. OCBA derivation based on classical model -- 4. Numerical implementation and experiments. 4.1. Numerical testing. 4.2. Parameter setting and implementation of the OCBA procedure -- 5. Selecting an optimal subset. 5.1. Introduction and problem statement. 5.2. Approximate asymptotically optimal allocation scheme. 5.3. Numerical experiments -- 6. Multi-objective optimal computing budget allocation. 6.1. Pareto optimality. 6.2. Multi-objective optimal computing budget allocation problem. 6.3. Asymptotic allocation rule. 6.4. A sequential allocation procedure. 6.5. Numerical results -- 7. Large-scale simulation and optimization. 7.1. A general framework of integration of OCBA with metaheuristics. 7.2. Problems with single objective. 7.3. Numerical experiments. 7.4. Multiple objectives. 7.5. Concluding remarks -- 8. Generalized OCBA framework and other related methods. 8.1. Optimal computing budget allocation for selecting the best by utilizing regression analysis (OCBA-OSD). 8.2. Optimal computing budget allocation for extended cross-entropy method (OCBA-CE). 8.3. Optimal computing budget allocation for variance reduction in rare-event simulation. 8.4. Optimal data collection budget allocation (ODCBA) for Monte Carlo DEA. 8.5. Other related works. Systems engineering Simulation methods. Stochastic processes. http://id.loc.gov/authorities/subjects/sh85128181 Mathematical optimization. http://id.loc.gov/authorities/subjects/sh85082127 Ingénierie des systèmes Méthodes de simulation. Processus stochastiques. Optimisation mathématique. TECHNOLOGY & ENGINEERING Engineering (General) bisacsh TECHNOLOGY & ENGINEERING Reference. bisacsh Mathematical optimization fast Stochastic processes fast Stochastische Optimierung gnd http://d-nb.info/gnd/4057625-5 Stochastische optimale Kontrolle gnd http://d-nb.info/gnd/4207850-7 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85128181 http://id.loc.gov/authorities/subjects/sh85082127 http://d-nb.info/gnd/4057625-5 http://d-nb.info/gnd/4207850-7 |
title | Stochastic simulation optimization : an optimal computing budget allocation / |
title_auth | Stochastic simulation optimization : an optimal computing budget allocation / |
title_exact_search | Stochastic simulation optimization : an optimal computing budget allocation / |
title_full | Stochastic simulation optimization : an optimal computing budget allocation / Chun-Hung Chen, Loo Hay Lee. |
title_fullStr | Stochastic simulation optimization : an optimal computing budget allocation / Chun-Hung Chen, Loo Hay Lee. |
title_full_unstemmed | Stochastic simulation optimization : an optimal computing budget allocation / Chun-Hung Chen, Loo Hay Lee. |
title_short | Stochastic simulation optimization : |
title_sort | stochastic simulation optimization an optimal computing budget allocation |
title_sub | an optimal computing budget allocation / |
topic | Systems engineering Simulation methods. Stochastic processes. http://id.loc.gov/authorities/subjects/sh85128181 Mathematical optimization. http://id.loc.gov/authorities/subjects/sh85082127 Ingénierie des systèmes Méthodes de simulation. Processus stochastiques. Optimisation mathématique. TECHNOLOGY & ENGINEERING Engineering (General) bisacsh TECHNOLOGY & ENGINEERING Reference. bisacsh Mathematical optimization fast Stochastic processes fast Stochastische Optimierung gnd http://d-nb.info/gnd/4057625-5 Stochastische optimale Kontrolle gnd http://d-nb.info/gnd/4207850-7 |
topic_facet | Systems engineering Simulation methods. Stochastic processes. Mathematical optimization. Ingénierie des systèmes Méthodes de simulation. Processus stochastiques. Optimisation mathématique. TECHNOLOGY & ENGINEERING Engineering (General) TECHNOLOGY & ENGINEERING Reference. Mathematical optimization Stochastic processes Stochastische Optimierung Stochastische optimale Kontrolle Electronic book. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=374808 |
work_keys_str_mv | AT chenchunhung stochasticsimulationoptimizationanoptimalcomputingbudgetallocation AT leeloohay stochasticsimulationoptimizationanoptimalcomputingbudgetallocation |