Weighted norm inequalities for integral transforms with product kernals /:
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Nova Science Publishers,
©2010.
|
Schriftenreihe: | Mathematics research developments series.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 online resource (xiii, 342 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781613246122 1613246129 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn742353849 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 110725s2010 nyua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d YDXCP |d E7B |d OCLCA |d OCLCF |d OCLCQ |d NLGGC |d EBLCP |d OCLCQ |d AZK |d MERUC |d AGLDB |d MOR |d PIFAG |d ZCU |d OCLCQ |d U3W |d STF |d WRM |d OCLCQ |d VTS |d NRAMU |d ICG |d INT |d VT2 |d AU@ |d OCLCQ |d WYU |d OCLCQ |d DKC |d OCLCQ |d UKCRE |d AJS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
015 | |a GBA970194 |2 bnb | ||
016 | 7 | |a 015327498 |2 Uk | |
019 | |a 961571763 |a 962652419 |a 975211333 |a 975242038 |a 988535634 |a 991959071 |a 1037939690 |a 1038568036 |a 1045500529 |a 1055333658 |a 1058762498 |a 1065911461 |a 1081292109 |a 1153465783 |a 1228567070 | ||
020 | |a 9781613246122 |q (electronic bk.) | ||
020 | |a 1613246129 |q (electronic bk.) | ||
020 | |z 9781607415916 | ||
020 | |z 1607415917 | ||
035 | |a (OCoLC)742353849 |z (OCoLC)961571763 |z (OCoLC)962652419 |z (OCoLC)975211333 |z (OCoLC)975242038 |z (OCoLC)988535634 |z (OCoLC)991959071 |z (OCoLC)1037939690 |z (OCoLC)1038568036 |z (OCoLC)1045500529 |z (OCoLC)1055333658 |z (OCoLC)1058762498 |z (OCoLC)1065911461 |z (OCoLC)1081292109 |z (OCoLC)1153465783 |z (OCoLC)1228567070 | ||
050 | 4 | |a QA295 |b .K755 2010eb | |
072 | 7 | |a MAT |x 037000 |2 bisacsh | |
082 | 7 | |a 515/.723 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Kokilashvili, V. M. |q (Vakhtang Mikhaĭlovich) |1 https://id.oclc.org/worldcat/entity/E39PCjyMHfHv67BY4pjH3yqVJC |0 http://id.loc.gov/authorities/names/n86125526 | |
245 | 1 | 0 | |a Weighted norm inequalities for integral transforms with product kernals / |c Vakhtang Kokilashvili, Alexander Meskhi and Lars-Erik Persson. |
260 | |a New York : |b Nova Science Publishers, |c ©2010. | ||
300 | |a 1 online resource (xiii, 342 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics research developments series | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a WEIGHTED NORM INEQUALITIES FOR INTEGRAL TRANSFORMS WITH PRODUCT KERNELS ; WEIGHTED NORM INEQUALITIES FOR INTEGRAL TRANSFORMS WITH PRODUCT KERNELS ; Contents; Preface; Acknowledgment; Basic Notation; Hardy and Pólya-Knopp Inequalities; 1.1 A Two-dimensional Hardy-type Inequality; 1.2 The Two-dimensional Pólya-Knopp Type Inequality; 1.3 The Multidimensional Case: 1<p q<1; 1.4 The Multidimensional Case: 1<q<p<1; 1.5 Multidimensional Pólya-Knopp Type Inequalities; 1.6 Double Riemann-Liouville Transform Without Sin-gularity; 1.7 Further Results; 1.8 Notes and Comments on Chapter 1. | |
505 | 8 | |a Weighted Boundedness Criteria for Integral Transforms With Product Kernels2.1 Integrals with General Product Kernels; 2.2 Truncated Potentials and Ball Fractional Integrals; 2.3 The Case of m-Multiple Kernels; 2.4 Multiple One-sided Potentials. Trace Inequality; 2.5 Multidimensional Hardy-Type Inequalities with General Kernels Via Convexity; 2.6 Weighted Integral Inequalities for Monotonic Func-tions, the Case p q; 2.7 Weighted Integral Inequalities for Monotonic Functions, the Case 0<q<p<1; 2.8 Further Results and Applications; 2.9 Notes and Comments on Chapter 2. | |
505 | 8 | |a One-sided Fractional Multiple Operators3.1 One-dimensional Operators; 3.2 One-sided Strong Fractional Maximal Functions; 3.3 Mixed-type Operators; 3.4 One-sided Potentials with Product Kernels; 3.5 One-weight Inequalities; 3.6 Weighted Strichartz Estimates for Semilinear Wave Equations; 3.7 Notes and Comments on Chapter 3; Strong Fractional Maximal Functions and Multiple Riesz Potentials; 4.1 Single Kernel Operators; 4.2 Two-weight Problem for Strong Fractional Maxi-mal Functions; 4.3 Mixed Multiple Operators; 4.4 Solution of the Trace Problem; 4.5 Riesz Potentials with Product Kernels. | |
505 | 8 | |a 4.6 Some Remarks4.7 Notes and Comments on Chapter 4; Strong Maximal Functions and Hilbert Transforms with Product Kernels; 5.1 Single Maximal Functions; 5.2 Strong Maximal Functions; 5.3 Two-weight Estimates for Hilbert Transforms with Single Kernel; 5.4 Hilbert Transforms with Product Kernels; The Case of Increasing Weights; The Case of Other Type of Weights; The n-dimensional Case; 5.5 Examples; 5.6 Applications to the Fourier Multipliers; 5.7 Notes and Comments on Chapter 5; Two-weight Estimates for Fourier Operators and Bernstein Inequalities. | |
505 | 8 | |a 6.1 Two-weight Inequalities for Cesàro and Abel-Poi-sson Means of Fourier Series6.2 On the Means of Fourier Integrals; 6.3 Bernstein Inequalities in the Two-weighted Setting; 6.4 Notes and Comments on Chapter 6; Appendix: Multidimensional Lorentz Spaces; Open Problems; Bibliography; INDEX. | |
650 | 0 | |a Inequalities (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85065985 | |
650 | 0 | |a Integral transforms. |0 http://id.loc.gov/authorities/subjects/sh85067098 | |
650 | 6 | |a Inégalités (Mathématiques) | |
650 | 6 | |a Transformations intégrales. | |
650 | 7 | |a MATHEMATICS |x Functional Analysis. |2 bisacsh | |
650 | 7 | |a Inequalities (Mathematics) |2 fast | |
650 | 7 | |a Integral transforms |2 fast | |
700 | 1 | |a Meskhi, Alexander. | |
700 | 1 | |a Persson, Lars-Erik, |d 1944- |1 https://id.oclc.org/worldcat/entity/E39PBJmDhPthpBrt3xcx9WkdQq |0 http://id.loc.gov/authorities/names/n94004880 | |
758 | |i has work: |a Weighted norm inequalities for integral transforms with product kernals (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGVkfqpdgxfKDbdgdCDBxC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Kokilashvili, V.M. (Vakhtang Mikhaĭlovich). |t Weighted norm inequalities for integral transforms with product kernals. |d New York : Nova Science Publishers, ©2010 |z 9781607415916 |w (DLC) 2009021063 |w (OCoLC)320190933 |
830 | 0 | |a Mathematics research developments series. |0 http://id.loc.gov/authorities/names/no2009139785 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=379965 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL3019632 | ||
938 | |a ebrary |b EBRY |n ebr10671197 | ||
938 | |a EBSCOhost |b EBSC |n 379965 | ||
938 | |a YBP Library Services |b YANK |n 7082567 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn742353849 |
---|---|
_version_ | 1816881765611995136 |
adam_text | |
any_adam_object | |
author | Kokilashvili, V. M. (Vakhtang Mikhaĭlovich) |
author2 | Meskhi, Alexander Persson, Lars-Erik, 1944- |
author2_role | |
author2_variant | a m am l e p lep |
author_GND | http://id.loc.gov/authorities/names/n86125526 http://id.loc.gov/authorities/names/n94004880 |
author_facet | Kokilashvili, V. M. (Vakhtang Mikhaĭlovich) Meskhi, Alexander Persson, Lars-Erik, 1944- |
author_role | |
author_sort | Kokilashvili, V. M. |
author_variant | v m k vm vmk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA295 |
callnumber-raw | QA295 .K755 2010eb |
callnumber-search | QA295 .K755 2010eb |
callnumber-sort | QA 3295 K755 42010EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | WEIGHTED NORM INEQUALITIES FOR INTEGRAL TRANSFORMS WITH PRODUCT KERNELS ; WEIGHTED NORM INEQUALITIES FOR INTEGRAL TRANSFORMS WITH PRODUCT KERNELS ; Contents; Preface; Acknowledgment; Basic Notation; Hardy and Pólya-Knopp Inequalities; 1.1 A Two-dimensional Hardy-type Inequality; 1.2 The Two-dimensional Pólya-Knopp Type Inequality; 1.3 The Multidimensional Case: 1<p q<1; 1.4 The Multidimensional Case: 1<q<p<1; 1.5 Multidimensional Pólya-Knopp Type Inequalities; 1.6 Double Riemann-Liouville Transform Without Sin-gularity; 1.7 Further Results; 1.8 Notes and Comments on Chapter 1. Weighted Boundedness Criteria for Integral Transforms With Product Kernels2.1 Integrals with General Product Kernels; 2.2 Truncated Potentials and Ball Fractional Integrals; 2.3 The Case of m-Multiple Kernels; 2.4 Multiple One-sided Potentials. Trace Inequality; 2.5 Multidimensional Hardy-Type Inequalities with General Kernels Via Convexity; 2.6 Weighted Integral Inequalities for Monotonic Func-tions, the Case p q; 2.7 Weighted Integral Inequalities for Monotonic Functions, the Case 0<q<p<1; 2.8 Further Results and Applications; 2.9 Notes and Comments on Chapter 2. One-sided Fractional Multiple Operators3.1 One-dimensional Operators; 3.2 One-sided Strong Fractional Maximal Functions; 3.3 Mixed-type Operators; 3.4 One-sided Potentials with Product Kernels; 3.5 One-weight Inequalities; 3.6 Weighted Strichartz Estimates for Semilinear Wave Equations; 3.7 Notes and Comments on Chapter 3; Strong Fractional Maximal Functions and Multiple Riesz Potentials; 4.1 Single Kernel Operators; 4.2 Two-weight Problem for Strong Fractional Maxi-mal Functions; 4.3 Mixed Multiple Operators; 4.4 Solution of the Trace Problem; 4.5 Riesz Potentials with Product Kernels. 4.6 Some Remarks4.7 Notes and Comments on Chapter 4; Strong Maximal Functions and Hilbert Transforms with Product Kernels; 5.1 Single Maximal Functions; 5.2 Strong Maximal Functions; 5.3 Two-weight Estimates for Hilbert Transforms with Single Kernel; 5.4 Hilbert Transforms with Product Kernels; The Case of Increasing Weights; The Case of Other Type of Weights; The n-dimensional Case; 5.5 Examples; 5.6 Applications to the Fourier Multipliers; 5.7 Notes and Comments on Chapter 5; Two-weight Estimates for Fourier Operators and Bernstein Inequalities. 6.1 Two-weight Inequalities for Cesàro and Abel-Poi-sson Means of Fourier Series6.2 On the Means of Fourier Integrals; 6.3 Bernstein Inequalities in the Two-weighted Setting; 6.4 Notes and Comments on Chapter 6; Appendix: Multidimensional Lorentz Spaces; Open Problems; Bibliography; INDEX. |
ctrlnum | (OCoLC)742353849 |
dewey-full | 515/.723 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.723 |
dewey-search | 515/.723 |
dewey-sort | 3515 3723 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06242cam a2200649 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn742353849</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">110725s2010 nyua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">MERUC</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA970194</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">015327498</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">961571763</subfield><subfield code="a">962652419</subfield><subfield code="a">975211333</subfield><subfield code="a">975242038</subfield><subfield code="a">988535634</subfield><subfield code="a">991959071</subfield><subfield code="a">1037939690</subfield><subfield code="a">1038568036</subfield><subfield code="a">1045500529</subfield><subfield code="a">1055333658</subfield><subfield code="a">1058762498</subfield><subfield code="a">1065911461</subfield><subfield code="a">1081292109</subfield><subfield code="a">1153465783</subfield><subfield code="a">1228567070</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781613246122</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1613246129</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781607415916</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1607415917</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)742353849</subfield><subfield code="z">(OCoLC)961571763</subfield><subfield code="z">(OCoLC)962652419</subfield><subfield code="z">(OCoLC)975211333</subfield><subfield code="z">(OCoLC)975242038</subfield><subfield code="z">(OCoLC)988535634</subfield><subfield code="z">(OCoLC)991959071</subfield><subfield code="z">(OCoLC)1037939690</subfield><subfield code="z">(OCoLC)1038568036</subfield><subfield code="z">(OCoLC)1045500529</subfield><subfield code="z">(OCoLC)1055333658</subfield><subfield code="z">(OCoLC)1058762498</subfield><subfield code="z">(OCoLC)1065911461</subfield><subfield code="z">(OCoLC)1081292109</subfield><subfield code="z">(OCoLC)1153465783</subfield><subfield code="z">(OCoLC)1228567070</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA295</subfield><subfield code="b">.K755 2010eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">037000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.723</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kokilashvili, V. M.</subfield><subfield code="q">(Vakhtang Mikhaĭlovich)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjyMHfHv67BY4pjH3yqVJC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n86125526</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Weighted norm inequalities for integral transforms with product kernals /</subfield><subfield code="c">Vakhtang Kokilashvili, Alexander Meskhi and Lars-Erik Persson.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New York :</subfield><subfield code="b">Nova Science Publishers,</subfield><subfield code="c">©2010.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 342 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics research developments series</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">WEIGHTED NORM INEQUALITIES FOR INTEGRAL TRANSFORMS WITH PRODUCT KERNELS ; WEIGHTED NORM INEQUALITIES FOR INTEGRAL TRANSFORMS WITH PRODUCT KERNELS ; Contents; Preface; Acknowledgment; Basic Notation; Hardy and Pólya-Knopp Inequalities; 1.1 A Two-dimensional Hardy-type Inequality; 1.2 The Two-dimensional Pólya-Knopp Type Inequality; 1.3 The Multidimensional Case: 1<p q<1; 1.4 The Multidimensional Case: 1<q<p<1; 1.5 Multidimensional Pólya-Knopp Type Inequalities; 1.6 Double Riemann-Liouville Transform Without Sin-gularity; 1.7 Further Results; 1.8 Notes and Comments on Chapter 1.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Weighted Boundedness Criteria for Integral Transforms With Product Kernels2.1 Integrals with General Product Kernels; 2.2 Truncated Potentials and Ball Fractional Integrals; 2.3 The Case of m-Multiple Kernels; 2.4 Multiple One-sided Potentials. Trace Inequality; 2.5 Multidimensional Hardy-Type Inequalities with General Kernels Via Convexity; 2.6 Weighted Integral Inequalities for Monotonic Func-tions, the Case p q; 2.7 Weighted Integral Inequalities for Monotonic Functions, the Case 0<q<p<1; 2.8 Further Results and Applications; 2.9 Notes and Comments on Chapter 2.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">One-sided Fractional Multiple Operators3.1 One-dimensional Operators; 3.2 One-sided Strong Fractional Maximal Functions; 3.3 Mixed-type Operators; 3.4 One-sided Potentials with Product Kernels; 3.5 One-weight Inequalities; 3.6 Weighted Strichartz Estimates for Semilinear Wave Equations; 3.7 Notes and Comments on Chapter 3; Strong Fractional Maximal Functions and Multiple Riesz Potentials; 4.1 Single Kernel Operators; 4.2 Two-weight Problem for Strong Fractional Maxi-mal Functions; 4.3 Mixed Multiple Operators; 4.4 Solution of the Trace Problem; 4.5 Riesz Potentials with Product Kernels.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.6 Some Remarks4.7 Notes and Comments on Chapter 4; Strong Maximal Functions and Hilbert Transforms with Product Kernels; 5.1 Single Maximal Functions; 5.2 Strong Maximal Functions; 5.3 Two-weight Estimates for Hilbert Transforms with Single Kernel; 5.4 Hilbert Transforms with Product Kernels; The Case of Increasing Weights; The Case of Other Type of Weights; The n-dimensional Case; 5.5 Examples; 5.6 Applications to the Fourier Multipliers; 5.7 Notes and Comments on Chapter 5; Two-weight Estimates for Fourier Operators and Bernstein Inequalities.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.1 Two-weight Inequalities for Cesàro and Abel-Poi-sson Means of Fourier Series6.2 On the Means of Fourier Integrals; 6.3 Bernstein Inequalities in the Two-weighted Setting; 6.4 Notes and Comments on Chapter 6; Appendix: Multidimensional Lorentz Spaces; Open Problems; Bibliography; INDEX.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Inequalities (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85065985</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Integral transforms.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85067098</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Inégalités (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Transformations intégrales.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Functional Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inequalities (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Integral transforms</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meskhi, Alexander.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Persson, Lars-Erik,</subfield><subfield code="d">1944-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJmDhPthpBrt3xcx9WkdQq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n94004880</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Weighted norm inequalities for integral transforms with product kernals (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGVkfqpdgxfKDbdgdCDBxC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Kokilashvili, V.M. (Vakhtang Mikhaĭlovich).</subfield><subfield code="t">Weighted norm inequalities for integral transforms with product kernals.</subfield><subfield code="d">New York : Nova Science Publishers, ©2010</subfield><subfield code="z">9781607415916</subfield><subfield code="w">(DLC) 2009021063</subfield><subfield code="w">(OCoLC)320190933</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics research developments series.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2009139785</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=379965</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3019632</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10671197</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">379965</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7082567</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn742353849 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:55Z |
institution | BVB |
isbn | 9781613246122 1613246129 |
language | English |
oclc_num | 742353849 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiii, 342 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Nova Science Publishers, |
record_format | marc |
series | Mathematics research developments series. |
series2 | Mathematics research developments series |
spelling | Kokilashvili, V. M. (Vakhtang Mikhaĭlovich) https://id.oclc.org/worldcat/entity/E39PCjyMHfHv67BY4pjH3yqVJC http://id.loc.gov/authorities/names/n86125526 Weighted norm inequalities for integral transforms with product kernals / Vakhtang Kokilashvili, Alexander Meskhi and Lars-Erik Persson. New York : Nova Science Publishers, ©2010. 1 online resource (xiii, 342 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Mathematics research developments series Includes bibliographical references and index. Print version record. WEIGHTED NORM INEQUALITIES FOR INTEGRAL TRANSFORMS WITH PRODUCT KERNELS ; WEIGHTED NORM INEQUALITIES FOR INTEGRAL TRANSFORMS WITH PRODUCT KERNELS ; Contents; Preface; Acknowledgment; Basic Notation; Hardy and Pólya-Knopp Inequalities; 1.1 A Two-dimensional Hardy-type Inequality; 1.2 The Two-dimensional Pólya-Knopp Type Inequality; 1.3 The Multidimensional Case: 1<p q<1; 1.4 The Multidimensional Case: 1<q<p<1; 1.5 Multidimensional Pólya-Knopp Type Inequalities; 1.6 Double Riemann-Liouville Transform Without Sin-gularity; 1.7 Further Results; 1.8 Notes and Comments on Chapter 1. Weighted Boundedness Criteria for Integral Transforms With Product Kernels2.1 Integrals with General Product Kernels; 2.2 Truncated Potentials and Ball Fractional Integrals; 2.3 The Case of m-Multiple Kernels; 2.4 Multiple One-sided Potentials. Trace Inequality; 2.5 Multidimensional Hardy-Type Inequalities with General Kernels Via Convexity; 2.6 Weighted Integral Inequalities for Monotonic Func-tions, the Case p q; 2.7 Weighted Integral Inequalities for Monotonic Functions, the Case 0<q<p<1; 2.8 Further Results and Applications; 2.9 Notes and Comments on Chapter 2. One-sided Fractional Multiple Operators3.1 One-dimensional Operators; 3.2 One-sided Strong Fractional Maximal Functions; 3.3 Mixed-type Operators; 3.4 One-sided Potentials with Product Kernels; 3.5 One-weight Inequalities; 3.6 Weighted Strichartz Estimates for Semilinear Wave Equations; 3.7 Notes and Comments on Chapter 3; Strong Fractional Maximal Functions and Multiple Riesz Potentials; 4.1 Single Kernel Operators; 4.2 Two-weight Problem for Strong Fractional Maxi-mal Functions; 4.3 Mixed Multiple Operators; 4.4 Solution of the Trace Problem; 4.5 Riesz Potentials with Product Kernels. 4.6 Some Remarks4.7 Notes and Comments on Chapter 4; Strong Maximal Functions and Hilbert Transforms with Product Kernels; 5.1 Single Maximal Functions; 5.2 Strong Maximal Functions; 5.3 Two-weight Estimates for Hilbert Transforms with Single Kernel; 5.4 Hilbert Transforms with Product Kernels; The Case of Increasing Weights; The Case of Other Type of Weights; The n-dimensional Case; 5.5 Examples; 5.6 Applications to the Fourier Multipliers; 5.7 Notes and Comments on Chapter 5; Two-weight Estimates for Fourier Operators and Bernstein Inequalities. 6.1 Two-weight Inequalities for Cesàro and Abel-Poi-sson Means of Fourier Series6.2 On the Means of Fourier Integrals; 6.3 Bernstein Inequalities in the Two-weighted Setting; 6.4 Notes and Comments on Chapter 6; Appendix: Multidimensional Lorentz Spaces; Open Problems; Bibliography; INDEX. Inequalities (Mathematics) http://id.loc.gov/authorities/subjects/sh85065985 Integral transforms. http://id.loc.gov/authorities/subjects/sh85067098 Inégalités (Mathématiques) Transformations intégrales. MATHEMATICS Functional Analysis. bisacsh Inequalities (Mathematics) fast Integral transforms fast Meskhi, Alexander. Persson, Lars-Erik, 1944- https://id.oclc.org/worldcat/entity/E39PBJmDhPthpBrt3xcx9WkdQq http://id.loc.gov/authorities/names/n94004880 has work: Weighted norm inequalities for integral transforms with product kernals (Text) https://id.oclc.org/worldcat/entity/E39PCGVkfqpdgxfKDbdgdCDBxC https://id.oclc.org/worldcat/ontology/hasWork Print version: Kokilashvili, V.M. (Vakhtang Mikhaĭlovich). Weighted norm inequalities for integral transforms with product kernals. New York : Nova Science Publishers, ©2010 9781607415916 (DLC) 2009021063 (OCoLC)320190933 Mathematics research developments series. http://id.loc.gov/authorities/names/no2009139785 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=379965 Volltext |
spellingShingle | Kokilashvili, V. M. (Vakhtang Mikhaĭlovich) Weighted norm inequalities for integral transforms with product kernals / Mathematics research developments series. WEIGHTED NORM INEQUALITIES FOR INTEGRAL TRANSFORMS WITH PRODUCT KERNELS ; WEIGHTED NORM INEQUALITIES FOR INTEGRAL TRANSFORMS WITH PRODUCT KERNELS ; Contents; Preface; Acknowledgment; Basic Notation; Hardy and Pólya-Knopp Inequalities; 1.1 A Two-dimensional Hardy-type Inequality; 1.2 The Two-dimensional Pólya-Knopp Type Inequality; 1.3 The Multidimensional Case: 1<p q<1; 1.4 The Multidimensional Case: 1<q<p<1; 1.5 Multidimensional Pólya-Knopp Type Inequalities; 1.6 Double Riemann-Liouville Transform Without Sin-gularity; 1.7 Further Results; 1.8 Notes and Comments on Chapter 1. Weighted Boundedness Criteria for Integral Transforms With Product Kernels2.1 Integrals with General Product Kernels; 2.2 Truncated Potentials and Ball Fractional Integrals; 2.3 The Case of m-Multiple Kernels; 2.4 Multiple One-sided Potentials. Trace Inequality; 2.5 Multidimensional Hardy-Type Inequalities with General Kernels Via Convexity; 2.6 Weighted Integral Inequalities for Monotonic Func-tions, the Case p q; 2.7 Weighted Integral Inequalities for Monotonic Functions, the Case 0<q<p<1; 2.8 Further Results and Applications; 2.9 Notes and Comments on Chapter 2. One-sided Fractional Multiple Operators3.1 One-dimensional Operators; 3.2 One-sided Strong Fractional Maximal Functions; 3.3 Mixed-type Operators; 3.4 One-sided Potentials with Product Kernels; 3.5 One-weight Inequalities; 3.6 Weighted Strichartz Estimates for Semilinear Wave Equations; 3.7 Notes and Comments on Chapter 3; Strong Fractional Maximal Functions and Multiple Riesz Potentials; 4.1 Single Kernel Operators; 4.2 Two-weight Problem for Strong Fractional Maxi-mal Functions; 4.3 Mixed Multiple Operators; 4.4 Solution of the Trace Problem; 4.5 Riesz Potentials with Product Kernels. 4.6 Some Remarks4.7 Notes and Comments on Chapter 4; Strong Maximal Functions and Hilbert Transforms with Product Kernels; 5.1 Single Maximal Functions; 5.2 Strong Maximal Functions; 5.3 Two-weight Estimates for Hilbert Transforms with Single Kernel; 5.4 Hilbert Transforms with Product Kernels; The Case of Increasing Weights; The Case of Other Type of Weights; The n-dimensional Case; 5.5 Examples; 5.6 Applications to the Fourier Multipliers; 5.7 Notes and Comments on Chapter 5; Two-weight Estimates for Fourier Operators and Bernstein Inequalities. 6.1 Two-weight Inequalities for Cesàro and Abel-Poi-sson Means of Fourier Series6.2 On the Means of Fourier Integrals; 6.3 Bernstein Inequalities in the Two-weighted Setting; 6.4 Notes and Comments on Chapter 6; Appendix: Multidimensional Lorentz Spaces; Open Problems; Bibliography; INDEX. Inequalities (Mathematics) http://id.loc.gov/authorities/subjects/sh85065985 Integral transforms. http://id.loc.gov/authorities/subjects/sh85067098 Inégalités (Mathématiques) Transformations intégrales. MATHEMATICS Functional Analysis. bisacsh Inequalities (Mathematics) fast Integral transforms fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85065985 http://id.loc.gov/authorities/subjects/sh85067098 |
title | Weighted norm inequalities for integral transforms with product kernals / |
title_auth | Weighted norm inequalities for integral transforms with product kernals / |
title_exact_search | Weighted norm inequalities for integral transforms with product kernals / |
title_full | Weighted norm inequalities for integral transforms with product kernals / Vakhtang Kokilashvili, Alexander Meskhi and Lars-Erik Persson. |
title_fullStr | Weighted norm inequalities for integral transforms with product kernals / Vakhtang Kokilashvili, Alexander Meskhi and Lars-Erik Persson. |
title_full_unstemmed | Weighted norm inequalities for integral transforms with product kernals / Vakhtang Kokilashvili, Alexander Meskhi and Lars-Erik Persson. |
title_short | Weighted norm inequalities for integral transforms with product kernals / |
title_sort | weighted norm inequalities for integral transforms with product kernals |
topic | Inequalities (Mathematics) http://id.loc.gov/authorities/subjects/sh85065985 Integral transforms. http://id.loc.gov/authorities/subjects/sh85067098 Inégalités (Mathématiques) Transformations intégrales. MATHEMATICS Functional Analysis. bisacsh Inequalities (Mathematics) fast Integral transforms fast |
topic_facet | Inequalities (Mathematics) Integral transforms. Inégalités (Mathématiques) Transformations intégrales. MATHEMATICS Functional Analysis. Integral transforms |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=379965 |
work_keys_str_mv | AT kokilashvilivm weightednorminequalitiesforintegraltransformswithproductkernals AT meskhialexander weightednorminequalitiesforintegraltransformswithproductkernals AT perssonlarserik weightednorminequalitiesforintegraltransformswithproductkernals |