Homogenization methods for multiscale mechanics /:
In many physical problems several scales present either in space or in time, caused by either inhomogeneity of the medium or complexity of the mechanical process. A fundamental approach is to first construct micro-scale models, and then deduce the macro-scale laws and the constitutive relations by p...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, NJ :
World Scientific,
2010.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | In many physical problems several scales present either in space or in time, caused by either inhomogeneity of the medium or complexity of the mechanical process. A fundamental approach is to first construct micro-scale models, and then deduce the macro-scale laws and the constitutive relations by properly averaging over the micro-scale. The perturbation method of multiple scales can be used to derive averaged equations for a much larger scale from considerations of the small scales. In the mechanics of multiscale media, the analytical scheme of upscaling is known as the Theory of Homogenizati. |
Beschreibung: | 1 online resource (xvii, 330 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9789814282451 9814282456 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn740444832 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 110711s2010 si a ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d EBLCP |d E7B |d OCLCQ |d DEBSZ |d OCLCQ |d MHW |d OCLCQ |d OCLCF |d OCLCQ |d AGLDB |d ZCU |d MERUC |d OCLCQ |d U3W |d OCLCQ |d VTS |d ICG |d INT |d VT2 |d AU@ |d OCLCQ |d JBG |d WYU |d TKN |d OCLCQ |d STF |d DKC |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d LEAUB |d AJS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
019 | |a 1055381162 |a 1058127012 |a 1062999534 |a 1081278223 |a 1086432056 | ||
020 | |a 9789814282451 |q (electronic bk.) | ||
020 | |a 9814282456 |q (electronic bk.) | ||
020 | |z 9789814282444 | ||
020 | |z 9814282448 | ||
035 | |a (OCoLC)740444832 |z (OCoLC)1055381162 |z (OCoLC)1058127012 |z (OCoLC)1062999534 |z (OCoLC)1081278223 |z (OCoLC)1086432056 | ||
050 | 4 | |a QA377 |b .M45 2010eb | |
072 | 7 | |a MAT |x 007020 |2 bisacsh | |
082 | 7 | |a 515.3/53 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Mei, Chiang C. | |
245 | 1 | 0 | |a Homogenization methods for multiscale mechanics / |c Chiang C. Mei, Bogdan Vernescu. |
260 | |a Singapore ; |a Hackensack, NJ : |b World Scientific, |c 2010. | ||
300 | |a 1 online resource (xvii, 330 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Introductory examples of homogenization method. Long waves in a layered elastic medium ; Short waves in a weakly stratified elastic medium ; Dispersion of passive solute in pipe flow ; Typical procedure of homogenization analysis -- Diffusion in a composite. Basic equations for two components in perfect contact ; Effective equation on the macroscale ; Effective boundary condition ; Symmetry and positiveness of effective conductivity ; Laminated composites ; Bounds for effective conductivity ; Hashin-Shtrikman bounds ; Other approximate results for dilute inclusions ; Thermal resistance at the interface ; Laminated composites with thermal resistance ; Bounds for the effective conductivity ; Chemical transport in aggregated soil ; Appendix 2A : heat transfer in a two-slab system -- Seepage in rigid porous media. Equations for seepage flow and Darcy's law ; Uniqueness of the cell boundary-value problem ; Symmetry and positiveness of hydraulic conductivity ; Numerical computation of the permeability tensor ; Seepage of a compressible fluid ; Two-dimensional flow through a three-dimensional matrix ; Porous media with three scales ; Brinkman's modification of Darcy's law ; Effects of weak fluid intertia ; Appendix 3A : spatial averaging theorem -- Dispersion in periodic media or flows. Passive solute in a two-scale seepage flow ; Macrodispersion in a three-scale porous medium ; Dispersion and transport in a wave boundary layer above the seabed ; Appendix 4A : derivation of convection-dispersion equation ; Appendix 4B : an alternate form of macrodispersion tensor -- Heterogeneous elastic materials. effective equations on the macroscale ; The effective elastic coefficients ; Application to fiber-reinforced composite ; Elastic panels with periodic microstructure ; Variational principles and bounds for the elastic moduli ; Hashin-Shtrikman bounds ; Partially cohesive composites ; Appendix 5A : properties of a tensor of fourth rank -- Deformable porous media. Basic equations for fluid and solid phases ; Scale estimates ; Multiple-scale expansions ; Averaged total momentum of the composite ; Averaged mass conservation of fluid phase ; Averaged fluid momentum ; Time-Harmonic motion ; Properties of the effective coefficients ; Computed elastic coefficients ; Boundary-layer approximation for macroscale problems ; Appendix 6A : properties of the compliance tensor ; Appendix 6B : variational principle for the elastostatic problem in a cell -- Wave propagation in inhomogeneous media. Long wave through a compact cylinder array ; Bragg scattering of short waves by a cylinder array ; Sound propagation in a bubbly liquid ; One-dimensional sound through a weakly random medium ; Weakly nonlinear dispersive waves in a random medium ; Harmonic generation in random media. | |
588 | 0 | |a Print version record. | |
520 | |a In many physical problems several scales present either in space or in time, caused by either inhomogeneity of the medium or complexity of the mechanical process. A fundamental approach is to first construct micro-scale models, and then deduce the macro-scale laws and the constitutive relations by properly averaging over the micro-scale. The perturbation method of multiple scales can be used to derive averaged equations for a much larger scale from considerations of the small scales. In the mechanics of multiscale media, the analytical scheme of upscaling is known as the Theory of Homogenizati. | ||
650 | 0 | |a Homogenization (Differential equations) |0 http://id.loc.gov/authorities/subjects/sh92002059 | |
650 | 0 | |a Mathematical physics. |0 http://id.loc.gov/authorities/subjects/sh85082129 | |
650 | 6 | |a Homogénéisation (Équations différentielles) | |
650 | 6 | |a Physique mathématique. | |
650 | 7 | |a MATHEMATICS |x Differential Equations |x Partial. |2 bisacsh | |
650 | 7 | |a Homogenization (Differential equations) |2 fast | |
650 | 7 | |a Mathematical physics |2 fast | |
700 | 1 | |a Vernescu, Bogdan. | |
758 | |i has work: |a Homogenization methods for multiscale mechanics (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGp8KV8g8HQyqDjdfJ7g83 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Mei, Chiang C. |t Homogenization methods for multiscale mechanics. |d Singapore ; Hackensack, NJ : World Scientific, 2010 |z 9789814282444 |w (OCoLC)668364846 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=374875 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24686427 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL731217 | ||
938 | |a ebrary |b EBRY |n ebr10480003 | ||
938 | |a EBSCOhost |b EBSC |n 374875 | ||
938 | |a YBP Library Services |b YANK |n 3500028 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn740444832 |
---|---|
_version_ | 1816881764305469440 |
adam_text | |
any_adam_object | |
author | Mei, Chiang C. |
author2 | Vernescu, Bogdan |
author2_role | |
author2_variant | b v bv |
author_facet | Mei, Chiang C. Vernescu, Bogdan |
author_role | |
author_sort | Mei, Chiang C. |
author_variant | c c m cc ccm |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA377 |
callnumber-raw | QA377 .M45 2010eb |
callnumber-search | QA377 .M45 2010eb |
callnumber-sort | QA 3377 M45 42010EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Introductory examples of homogenization method. Long waves in a layered elastic medium ; Short waves in a weakly stratified elastic medium ; Dispersion of passive solute in pipe flow ; Typical procedure of homogenization analysis -- Diffusion in a composite. Basic equations for two components in perfect contact ; Effective equation on the macroscale ; Effective boundary condition ; Symmetry and positiveness of effective conductivity ; Laminated composites ; Bounds for effective conductivity ; Hashin-Shtrikman bounds ; Other approximate results for dilute inclusions ; Thermal resistance at the interface ; Laminated composites with thermal resistance ; Bounds for the effective conductivity ; Chemical transport in aggregated soil ; Appendix 2A : heat transfer in a two-slab system -- Seepage in rigid porous media. Equations for seepage flow and Darcy's law ; Uniqueness of the cell boundary-value problem ; Symmetry and positiveness of hydraulic conductivity ; Numerical computation of the permeability tensor ; Seepage of a compressible fluid ; Two-dimensional flow through a three-dimensional matrix ; Porous media with three scales ; Brinkman's modification of Darcy's law ; Effects of weak fluid intertia ; Appendix 3A : spatial averaging theorem -- Dispersion in periodic media or flows. Passive solute in a two-scale seepage flow ; Macrodispersion in a three-scale porous medium ; Dispersion and transport in a wave boundary layer above the seabed ; Appendix 4A : derivation of convection-dispersion equation ; Appendix 4B : an alternate form of macrodispersion tensor -- Heterogeneous elastic materials. effective equations on the macroscale ; The effective elastic coefficients ; Application to fiber-reinforced composite ; Elastic panels with periodic microstructure ; Variational principles and bounds for the elastic moduli ; Hashin-Shtrikman bounds ; Partially cohesive composites ; Appendix 5A : properties of a tensor of fourth rank -- Deformable porous media. Basic equations for fluid and solid phases ; Scale estimates ; Multiple-scale expansions ; Averaged total momentum of the composite ; Averaged mass conservation of fluid phase ; Averaged fluid momentum ; Time-Harmonic motion ; Properties of the effective coefficients ; Computed elastic coefficients ; Boundary-layer approximation for macroscale problems ; Appendix 6A : properties of the compliance tensor ; Appendix 6B : variational principle for the elastostatic problem in a cell -- Wave propagation in inhomogeneous media. Long wave through a compact cylinder array ; Bragg scattering of short waves by a cylinder array ; Sound propagation in a bubbly liquid ; One-dimensional sound through a weakly random medium ; Weakly nonlinear dispersive waves in a random medium ; Harmonic generation in random media. |
ctrlnum | (OCoLC)740444832 |
dewey-full | 515.3/53 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.3/53 |
dewey-search | 515.3/53 |
dewey-sort | 3515.3 253 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06167cam a2200565 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn740444832</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">110711s2010 si a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1055381162</subfield><subfield code="a">1058127012</subfield><subfield code="a">1062999534</subfield><subfield code="a">1081278223</subfield><subfield code="a">1086432056</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814282451</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814282456</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814282444</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814282448</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)740444832</subfield><subfield code="z">(OCoLC)1055381162</subfield><subfield code="z">(OCoLC)1058127012</subfield><subfield code="z">(OCoLC)1062999534</subfield><subfield code="z">(OCoLC)1081278223</subfield><subfield code="z">(OCoLC)1086432056</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA377</subfield><subfield code="b">.M45 2010eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">007020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.3/53</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mei, Chiang C.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Homogenization methods for multiscale mechanics /</subfield><subfield code="c">Chiang C. Mei, Bogdan Vernescu.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">2010.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvii, 330 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Introductory examples of homogenization method. Long waves in a layered elastic medium ; Short waves in a weakly stratified elastic medium ; Dispersion of passive solute in pipe flow ; Typical procedure of homogenization analysis -- Diffusion in a composite. Basic equations for two components in perfect contact ; Effective equation on the macroscale ; Effective boundary condition ; Symmetry and positiveness of effective conductivity ; Laminated composites ; Bounds for effective conductivity ; Hashin-Shtrikman bounds ; Other approximate results for dilute inclusions ; Thermal resistance at the interface ; Laminated composites with thermal resistance ; Bounds for the effective conductivity ; Chemical transport in aggregated soil ; Appendix 2A : heat transfer in a two-slab system -- Seepage in rigid porous media. Equations for seepage flow and Darcy's law ; Uniqueness of the cell boundary-value problem ; Symmetry and positiveness of hydraulic conductivity ; Numerical computation of the permeability tensor ; Seepage of a compressible fluid ; Two-dimensional flow through a three-dimensional matrix ; Porous media with three scales ; Brinkman's modification of Darcy's law ; Effects of weak fluid intertia ; Appendix 3A : spatial averaging theorem -- Dispersion in periodic media or flows. Passive solute in a two-scale seepage flow ; Macrodispersion in a three-scale porous medium ; Dispersion and transport in a wave boundary layer above the seabed ; Appendix 4A : derivation of convection-dispersion equation ; Appendix 4B : an alternate form of macrodispersion tensor -- Heterogeneous elastic materials. effective equations on the macroscale ; The effective elastic coefficients ; Application to fiber-reinforced composite ; Elastic panels with periodic microstructure ; Variational principles and bounds for the elastic moduli ; Hashin-Shtrikman bounds ; Partially cohesive composites ; Appendix 5A : properties of a tensor of fourth rank -- Deformable porous media. Basic equations for fluid and solid phases ; Scale estimates ; Multiple-scale expansions ; Averaged total momentum of the composite ; Averaged mass conservation of fluid phase ; Averaged fluid momentum ; Time-Harmonic motion ; Properties of the effective coefficients ; Computed elastic coefficients ; Boundary-layer approximation for macroscale problems ; Appendix 6A : properties of the compliance tensor ; Appendix 6B : variational principle for the elastostatic problem in a cell -- Wave propagation in inhomogeneous media. Long wave through a compact cylinder array ; Bragg scattering of short waves by a cylinder array ; Sound propagation in a bubbly liquid ; One-dimensional sound through a weakly random medium ; Weakly nonlinear dispersive waves in a random medium ; Harmonic generation in random media.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In many physical problems several scales present either in space or in time, caused by either inhomogeneity of the medium or complexity of the mechanical process. A fundamental approach is to first construct micro-scale models, and then deduce the macro-scale laws and the constitutive relations by properly averaging over the micro-scale. The perturbation method of multiple scales can be used to derive averaged equations for a much larger scale from considerations of the small scales. In the mechanics of multiscale media, the analytical scheme of upscaling is known as the Theory of Homogenizati.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Homogenization (Differential equations)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh92002059</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical physics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082129</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Homogénéisation (Équations différentielles)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Physique mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Differential Equations</subfield><subfield code="x">Partial.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homogenization (Differential equations)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vernescu, Bogdan.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Homogenization methods for multiscale mechanics (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGp8KV8g8HQyqDjdfJ7g83</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Mei, Chiang C.</subfield><subfield code="t">Homogenization methods for multiscale mechanics.</subfield><subfield code="d">Singapore ; Hackensack, NJ : World Scientific, 2010</subfield><subfield code="z">9789814282444</subfield><subfield code="w">(OCoLC)668364846</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=374875</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24686427</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL731217</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10480003</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">374875</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3500028</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn740444832 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:54Z |
institution | BVB |
isbn | 9789814282451 9814282456 |
language | English |
oclc_num | 740444832 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xvii, 330 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | World Scientific, |
record_format | marc |
spelling | Mei, Chiang C. Homogenization methods for multiscale mechanics / Chiang C. Mei, Bogdan Vernescu. Singapore ; Hackensack, NJ : World Scientific, 2010. 1 online resource (xvii, 330 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Introductory examples of homogenization method. Long waves in a layered elastic medium ; Short waves in a weakly stratified elastic medium ; Dispersion of passive solute in pipe flow ; Typical procedure of homogenization analysis -- Diffusion in a composite. Basic equations for two components in perfect contact ; Effective equation on the macroscale ; Effective boundary condition ; Symmetry and positiveness of effective conductivity ; Laminated composites ; Bounds for effective conductivity ; Hashin-Shtrikman bounds ; Other approximate results for dilute inclusions ; Thermal resistance at the interface ; Laminated composites with thermal resistance ; Bounds for the effective conductivity ; Chemical transport in aggregated soil ; Appendix 2A : heat transfer in a two-slab system -- Seepage in rigid porous media. Equations for seepage flow and Darcy's law ; Uniqueness of the cell boundary-value problem ; Symmetry and positiveness of hydraulic conductivity ; Numerical computation of the permeability tensor ; Seepage of a compressible fluid ; Two-dimensional flow through a three-dimensional matrix ; Porous media with three scales ; Brinkman's modification of Darcy's law ; Effects of weak fluid intertia ; Appendix 3A : spatial averaging theorem -- Dispersion in periodic media or flows. Passive solute in a two-scale seepage flow ; Macrodispersion in a three-scale porous medium ; Dispersion and transport in a wave boundary layer above the seabed ; Appendix 4A : derivation of convection-dispersion equation ; Appendix 4B : an alternate form of macrodispersion tensor -- Heterogeneous elastic materials. effective equations on the macroscale ; The effective elastic coefficients ; Application to fiber-reinforced composite ; Elastic panels with periodic microstructure ; Variational principles and bounds for the elastic moduli ; Hashin-Shtrikman bounds ; Partially cohesive composites ; Appendix 5A : properties of a tensor of fourth rank -- Deformable porous media. Basic equations for fluid and solid phases ; Scale estimates ; Multiple-scale expansions ; Averaged total momentum of the composite ; Averaged mass conservation of fluid phase ; Averaged fluid momentum ; Time-Harmonic motion ; Properties of the effective coefficients ; Computed elastic coefficients ; Boundary-layer approximation for macroscale problems ; Appendix 6A : properties of the compliance tensor ; Appendix 6B : variational principle for the elastostatic problem in a cell -- Wave propagation in inhomogeneous media. Long wave through a compact cylinder array ; Bragg scattering of short waves by a cylinder array ; Sound propagation in a bubbly liquid ; One-dimensional sound through a weakly random medium ; Weakly nonlinear dispersive waves in a random medium ; Harmonic generation in random media. Print version record. In many physical problems several scales present either in space or in time, caused by either inhomogeneity of the medium or complexity of the mechanical process. A fundamental approach is to first construct micro-scale models, and then deduce the macro-scale laws and the constitutive relations by properly averaging over the micro-scale. The perturbation method of multiple scales can be used to derive averaged equations for a much larger scale from considerations of the small scales. In the mechanics of multiscale media, the analytical scheme of upscaling is known as the Theory of Homogenizati. Homogenization (Differential equations) http://id.loc.gov/authorities/subjects/sh92002059 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Homogénéisation (Équations différentielles) Physique mathématique. MATHEMATICS Differential Equations Partial. bisacsh Homogenization (Differential equations) fast Mathematical physics fast Vernescu, Bogdan. has work: Homogenization methods for multiscale mechanics (Text) https://id.oclc.org/worldcat/entity/E39PCGp8KV8g8HQyqDjdfJ7g83 https://id.oclc.org/worldcat/ontology/hasWork Print version: Mei, Chiang C. Homogenization methods for multiscale mechanics. Singapore ; Hackensack, NJ : World Scientific, 2010 9789814282444 (OCoLC)668364846 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=374875 Volltext |
spellingShingle | Mei, Chiang C. Homogenization methods for multiscale mechanics / Introductory examples of homogenization method. Long waves in a layered elastic medium ; Short waves in a weakly stratified elastic medium ; Dispersion of passive solute in pipe flow ; Typical procedure of homogenization analysis -- Diffusion in a composite. Basic equations for two components in perfect contact ; Effective equation on the macroscale ; Effective boundary condition ; Symmetry and positiveness of effective conductivity ; Laminated composites ; Bounds for effective conductivity ; Hashin-Shtrikman bounds ; Other approximate results for dilute inclusions ; Thermal resistance at the interface ; Laminated composites with thermal resistance ; Bounds for the effective conductivity ; Chemical transport in aggregated soil ; Appendix 2A : heat transfer in a two-slab system -- Seepage in rigid porous media. Equations for seepage flow and Darcy's law ; Uniqueness of the cell boundary-value problem ; Symmetry and positiveness of hydraulic conductivity ; Numerical computation of the permeability tensor ; Seepage of a compressible fluid ; Two-dimensional flow through a three-dimensional matrix ; Porous media with three scales ; Brinkman's modification of Darcy's law ; Effects of weak fluid intertia ; Appendix 3A : spatial averaging theorem -- Dispersion in periodic media or flows. Passive solute in a two-scale seepage flow ; Macrodispersion in a three-scale porous medium ; Dispersion and transport in a wave boundary layer above the seabed ; Appendix 4A : derivation of convection-dispersion equation ; Appendix 4B : an alternate form of macrodispersion tensor -- Heterogeneous elastic materials. effective equations on the macroscale ; The effective elastic coefficients ; Application to fiber-reinforced composite ; Elastic panels with periodic microstructure ; Variational principles and bounds for the elastic moduli ; Hashin-Shtrikman bounds ; Partially cohesive composites ; Appendix 5A : properties of a tensor of fourth rank -- Deformable porous media. Basic equations for fluid and solid phases ; Scale estimates ; Multiple-scale expansions ; Averaged total momentum of the composite ; Averaged mass conservation of fluid phase ; Averaged fluid momentum ; Time-Harmonic motion ; Properties of the effective coefficients ; Computed elastic coefficients ; Boundary-layer approximation for macroscale problems ; Appendix 6A : properties of the compliance tensor ; Appendix 6B : variational principle for the elastostatic problem in a cell -- Wave propagation in inhomogeneous media. Long wave through a compact cylinder array ; Bragg scattering of short waves by a cylinder array ; Sound propagation in a bubbly liquid ; One-dimensional sound through a weakly random medium ; Weakly nonlinear dispersive waves in a random medium ; Harmonic generation in random media. Homogenization (Differential equations) http://id.loc.gov/authorities/subjects/sh92002059 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Homogénéisation (Équations différentielles) Physique mathématique. MATHEMATICS Differential Equations Partial. bisacsh Homogenization (Differential equations) fast Mathematical physics fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh92002059 http://id.loc.gov/authorities/subjects/sh85082129 |
title | Homogenization methods for multiscale mechanics / |
title_auth | Homogenization methods for multiscale mechanics / |
title_exact_search | Homogenization methods for multiscale mechanics / |
title_full | Homogenization methods for multiscale mechanics / Chiang C. Mei, Bogdan Vernescu. |
title_fullStr | Homogenization methods for multiscale mechanics / Chiang C. Mei, Bogdan Vernescu. |
title_full_unstemmed | Homogenization methods for multiscale mechanics / Chiang C. Mei, Bogdan Vernescu. |
title_short | Homogenization methods for multiscale mechanics / |
title_sort | homogenization methods for multiscale mechanics |
topic | Homogenization (Differential equations) http://id.loc.gov/authorities/subjects/sh92002059 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Homogénéisation (Équations différentielles) Physique mathématique. MATHEMATICS Differential Equations Partial. bisacsh Homogenization (Differential equations) fast Mathematical physics fast |
topic_facet | Homogenization (Differential equations) Mathematical physics. Homogénéisation (Équations différentielles) Physique mathématique. MATHEMATICS Differential Equations Partial. Mathematical physics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=374875 |
work_keys_str_mv | AT meichiangc homogenizationmethodsformultiscalemechanics AT vernescubogdan homogenizationmethodsformultiscalemechanics |