Minimal submanifolds in pseudo-Riemannian geometry /:
Since the foundational work of Lagrange on the differential equation to be satisfied by a minimal surface of the Euclidean space, the theory of minimal submanifolds have undergone considerable developments, involving techniques from related areas, such as the analysis of partial differential equatio...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, NJ :
World Scientific,
2011.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Since the foundational work of Lagrange on the differential equation to be satisfied by a minimal surface of the Euclidean space, the theory of minimal submanifolds have undergone considerable developments, involving techniques from related areas, such as the analysis of partial differential equations and complex analysis. On the other hand, the relativity theory has led to the study of pseudo-Riemannian manifolds, which turns out to be the most general framework for the study of minimal submanifolds. However, most of the recent books on the subject still present the theory only in the Riemann. |
Beschreibung: | 1 online resource (xv, 167 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 161-164) and index. |
ISBN: | 9789814291255 9814291250 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn740435767 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 110711s2011 si a ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d EBLCP |d E7B |d OCLCQ |d DEBSZ |d YDXCP |d OCLCQ |d MHW |d OCLCQ |d OCLCF |d OCLCQ |d AGLDB |d ZCU |d MERUC |d OCLCQ |d U3W |d OCLCQ |d VTS |d ICG |d INT |d AU@ |d OCLCQ |d JBG |d OCLCQ |d STF |d DKC |d OCLCQ |d AJS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
019 | |a 1058487617 | ||
020 | |a 9789814291255 |q (electronic bk.) | ||
020 | |a 9814291250 |q (electronic bk.) | ||
020 | |z 9789814291248 | ||
020 | |z 9814291242 | ||
035 | |a (OCoLC)740435767 |z (OCoLC)1058487617 | ||
050 | 4 | |a QA649 |b .A66 2011eb | |
072 | 7 | |a MAT |x 012020 |2 bisacsh | |
082 | 7 | |a 516.373 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Anciaux, Henri. | |
245 | 1 | 0 | |a Minimal submanifolds in pseudo-Riemannian geometry / |c Henri Anciaux. |
260 | |a Singapore ; |a Hackensack, NJ : |b World Scientific, |c 2011. | ||
300 | |a 1 online resource (xv, 167 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 161-164) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a Since the foundational work of Lagrange on the differential equation to be satisfied by a minimal surface of the Euclidean space, the theory of minimal submanifolds have undergone considerable developments, involving techniques from related areas, such as the analysis of partial differential equations and complex analysis. On the other hand, the relativity theory has led to the study of pseudo-Riemannian manifolds, which turns out to be the most general framework for the study of minimal submanifolds. However, most of the recent books on the subject still present the theory only in the Riemann. | ||
505 | 0 | |a 1. Submanifolds in pseudo-Riemannian geometry. 1.1. Pseudo-Riemannian manifolds. 1.2. Submanifolds. 1.3. The variation formulae for the volume. 1.4. Exercises -- 2. Minimal surfaces in pseudo-Euclidean space. 2.1. Intrinsic geometry of surfaces. 2.2. Graphs in Minkowski space. 2.3. The classification of ruled, minimal surfaces. 2.4. Weierstrass representation for minimal surfaces. 2.5. Exercises -- 3. Equivariant minimal hypersurfaces in space forms. 3.1. The pseudo-Riemannian space forms. 3.2. Equivariant minimal hypersurfaces in pseudo-Euclidean space. 3.3. Equivariant minimal hypersurfaces in pseudo-space forms. 3.4. Exercises -- 4. Pseudo-Kahler manifolds. 4.1. The complex pseudo-Euclidean space. 4.2. The general definition. 4.3. Complex space forms. 4.4. The tangent bundle of a pseudo-Kahler manifold. 4.5. Exercises -- 5. Complex and Lagrangian submanifolds in pseudo-Kahler manifolds. 5.1. Complex submanifolds. 5.2. Lagrangian submanifolds. 5.3. Minimal Lagrangian surfaces in C[symbol] with neutral metric. 5.4. Minimal Lagrangian submanifolds in C[symbol]. 5.5. Minimal Lagrangian submanifols in complex space forms. 5.6. Minimal Lagrangian surfaces in the tangent bundle of a Riemannian surface. 5.7. Exercises -- 6. Minimizing properties of minimal submanifolds. 6.1. Minimizing submanifolds and calibrations. 6.2. Non-minimizing submanifolds. | |
650 | 0 | |a Riemannian manifolds. |0 http://id.loc.gov/authorities/subjects/sh85114045 | |
650 | 0 | |a Minimal submanifolds. |0 http://id.loc.gov/authorities/subjects/sh85129486 | |
650 | 6 | |a Variétés de Riemann. | |
650 | 6 | |a Sous-variétés minimales. | |
650 | 7 | |a MATHEMATICS |x Geometry |x Analytic. |2 bisacsh | |
650 | 7 | |a Minimal submanifolds |2 fast | |
650 | 7 | |a Riemannian manifolds |2 fast | |
758 | |i has work: |a Minimal submanifolds in pseudo-Riemannian geometry (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFG8m3wBDqfWWTgMXxQ4jd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Anciaux, Henri. |t Minimal submanifolds in pseudo-Riemannian geometry. |d Singapore ; Hackensack, NJ : World Scientific, 2011 |z 9789814291248 |w (OCoLC)700137424 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=374884 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL731228 | ||
938 | |a ebrary |b EBRY |n ebr10479995 | ||
938 | |a EBSCOhost |b EBSC |n 374884 | ||
938 | |a YBP Library Services |b YANK |n 6965069 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn740435767 |
---|---|
_version_ | 1816881764189077504 |
adam_text | |
any_adam_object | |
author | Anciaux, Henri |
author_facet | Anciaux, Henri |
author_role | |
author_sort | Anciaux, Henri |
author_variant | h a ha |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA649 |
callnumber-raw | QA649 .A66 2011eb |
callnumber-search | QA649 .A66 2011eb |
callnumber-sort | QA 3649 A66 42011EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Submanifolds in pseudo-Riemannian geometry. 1.1. Pseudo-Riemannian manifolds. 1.2. Submanifolds. 1.3. The variation formulae for the volume. 1.4. Exercises -- 2. Minimal surfaces in pseudo-Euclidean space. 2.1. Intrinsic geometry of surfaces. 2.2. Graphs in Minkowski space. 2.3. The classification of ruled, minimal surfaces. 2.4. Weierstrass representation for minimal surfaces. 2.5. Exercises -- 3. Equivariant minimal hypersurfaces in space forms. 3.1. The pseudo-Riemannian space forms. 3.2. Equivariant minimal hypersurfaces in pseudo-Euclidean space. 3.3. Equivariant minimal hypersurfaces in pseudo-space forms. 3.4. Exercises -- 4. Pseudo-Kahler manifolds. 4.1. The complex pseudo-Euclidean space. 4.2. The general definition. 4.3. Complex space forms. 4.4. The tangent bundle of a pseudo-Kahler manifold. 4.5. Exercises -- 5. Complex and Lagrangian submanifolds in pseudo-Kahler manifolds. 5.1. Complex submanifolds. 5.2. Lagrangian submanifolds. 5.3. Minimal Lagrangian surfaces in C[symbol] with neutral metric. 5.4. Minimal Lagrangian submanifolds in C[symbol]. 5.5. Minimal Lagrangian submanifols in complex space forms. 5.6. Minimal Lagrangian surfaces in the tangent bundle of a Riemannian surface. 5.7. Exercises -- 6. Minimizing properties of minimal submanifolds. 6.1. Minimizing submanifolds and calibrations. 6.2. Non-minimizing submanifolds. |
ctrlnum | (OCoLC)740435767 |
dewey-full | 516.373 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.373 |
dewey-search | 516.373 |
dewey-sort | 3516.373 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04405cam a2200541 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn740435767</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">110711s2011 si a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1058487617</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814291255</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814291250</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814291248</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814291242</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)740435767</subfield><subfield code="z">(OCoLC)1058487617</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA649</subfield><subfield code="b">.A66 2011eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516.373</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Anciaux, Henri.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Minimal submanifolds in pseudo-Riemannian geometry /</subfield><subfield code="c">Henri Anciaux.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 167 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 161-164) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Since the foundational work of Lagrange on the differential equation to be satisfied by a minimal surface of the Euclidean space, the theory of minimal submanifolds have undergone considerable developments, involving techniques from related areas, such as the analysis of partial differential equations and complex analysis. On the other hand, the relativity theory has led to the study of pseudo-Riemannian manifolds, which turns out to be the most general framework for the study of minimal submanifolds. However, most of the recent books on the subject still present the theory only in the Riemann.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Submanifolds in pseudo-Riemannian geometry. 1.1. Pseudo-Riemannian manifolds. 1.2. Submanifolds. 1.3. The variation formulae for the volume. 1.4. Exercises -- 2. Minimal surfaces in pseudo-Euclidean space. 2.1. Intrinsic geometry of surfaces. 2.2. Graphs in Minkowski space. 2.3. The classification of ruled, minimal surfaces. 2.4. Weierstrass representation for minimal surfaces. 2.5. Exercises -- 3. Equivariant minimal hypersurfaces in space forms. 3.1. The pseudo-Riemannian space forms. 3.2. Equivariant minimal hypersurfaces in pseudo-Euclidean space. 3.3. Equivariant minimal hypersurfaces in pseudo-space forms. 3.4. Exercises -- 4. Pseudo-Kahler manifolds. 4.1. The complex pseudo-Euclidean space. 4.2. The general definition. 4.3. Complex space forms. 4.4. The tangent bundle of a pseudo-Kahler manifold. 4.5. Exercises -- 5. Complex and Lagrangian submanifolds in pseudo-Kahler manifolds. 5.1. Complex submanifolds. 5.2. Lagrangian submanifolds. 5.3. Minimal Lagrangian surfaces in C[symbol] with neutral metric. 5.4. Minimal Lagrangian submanifolds in C[symbol]. 5.5. Minimal Lagrangian submanifols in complex space forms. 5.6. Minimal Lagrangian surfaces in the tangent bundle of a Riemannian surface. 5.7. Exercises -- 6. Minimizing properties of minimal submanifolds. 6.1. Minimizing submanifolds and calibrations. 6.2. Non-minimizing submanifolds.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Riemannian manifolds.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85114045</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Minimal submanifolds.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85129486</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variétés de Riemann.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Sous-variétés minimales.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">Analytic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Minimal submanifolds</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Riemannian manifolds</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Minimal submanifolds in pseudo-Riemannian geometry (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFG8m3wBDqfWWTgMXxQ4jd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Anciaux, Henri.</subfield><subfield code="t">Minimal submanifolds in pseudo-Riemannian geometry.</subfield><subfield code="d">Singapore ; Hackensack, NJ : World Scientific, 2011</subfield><subfield code="z">9789814291248</subfield><subfield code="w">(OCoLC)700137424</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=374884</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL731228</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10479995</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">374884</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">6965069</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn740435767 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:54Z |
institution | BVB |
isbn | 9789814291255 9814291250 |
language | English |
oclc_num | 740435767 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xv, 167 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | World Scientific, |
record_format | marc |
spelling | Anciaux, Henri. Minimal submanifolds in pseudo-Riemannian geometry / Henri Anciaux. Singapore ; Hackensack, NJ : World Scientific, 2011. 1 online resource (xv, 167 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 161-164) and index. Print version record. Since the foundational work of Lagrange on the differential equation to be satisfied by a minimal surface of the Euclidean space, the theory of minimal submanifolds have undergone considerable developments, involving techniques from related areas, such as the analysis of partial differential equations and complex analysis. On the other hand, the relativity theory has led to the study of pseudo-Riemannian manifolds, which turns out to be the most general framework for the study of minimal submanifolds. However, most of the recent books on the subject still present the theory only in the Riemann. 1. Submanifolds in pseudo-Riemannian geometry. 1.1. Pseudo-Riemannian manifolds. 1.2. Submanifolds. 1.3. The variation formulae for the volume. 1.4. Exercises -- 2. Minimal surfaces in pseudo-Euclidean space. 2.1. Intrinsic geometry of surfaces. 2.2. Graphs in Minkowski space. 2.3. The classification of ruled, minimal surfaces. 2.4. Weierstrass representation for minimal surfaces. 2.5. Exercises -- 3. Equivariant minimal hypersurfaces in space forms. 3.1. The pseudo-Riemannian space forms. 3.2. Equivariant minimal hypersurfaces in pseudo-Euclidean space. 3.3. Equivariant minimal hypersurfaces in pseudo-space forms. 3.4. Exercises -- 4. Pseudo-Kahler manifolds. 4.1. The complex pseudo-Euclidean space. 4.2. The general definition. 4.3. Complex space forms. 4.4. The tangent bundle of a pseudo-Kahler manifold. 4.5. Exercises -- 5. Complex and Lagrangian submanifolds in pseudo-Kahler manifolds. 5.1. Complex submanifolds. 5.2. Lagrangian submanifolds. 5.3. Minimal Lagrangian surfaces in C[symbol] with neutral metric. 5.4. Minimal Lagrangian submanifolds in C[symbol]. 5.5. Minimal Lagrangian submanifols in complex space forms. 5.6. Minimal Lagrangian surfaces in the tangent bundle of a Riemannian surface. 5.7. Exercises -- 6. Minimizing properties of minimal submanifolds. 6.1. Minimizing submanifolds and calibrations. 6.2. Non-minimizing submanifolds. Riemannian manifolds. http://id.loc.gov/authorities/subjects/sh85114045 Minimal submanifolds. http://id.loc.gov/authorities/subjects/sh85129486 Variétés de Riemann. Sous-variétés minimales. MATHEMATICS Geometry Analytic. bisacsh Minimal submanifolds fast Riemannian manifolds fast has work: Minimal submanifolds in pseudo-Riemannian geometry (Text) https://id.oclc.org/worldcat/entity/E39PCFG8m3wBDqfWWTgMXxQ4jd https://id.oclc.org/worldcat/ontology/hasWork Print version: Anciaux, Henri. Minimal submanifolds in pseudo-Riemannian geometry. Singapore ; Hackensack, NJ : World Scientific, 2011 9789814291248 (OCoLC)700137424 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=374884 Volltext |
spellingShingle | Anciaux, Henri Minimal submanifolds in pseudo-Riemannian geometry / 1. Submanifolds in pseudo-Riemannian geometry. 1.1. Pseudo-Riemannian manifolds. 1.2. Submanifolds. 1.3. The variation formulae for the volume. 1.4. Exercises -- 2. Minimal surfaces in pseudo-Euclidean space. 2.1. Intrinsic geometry of surfaces. 2.2. Graphs in Minkowski space. 2.3. The classification of ruled, minimal surfaces. 2.4. Weierstrass representation for minimal surfaces. 2.5. Exercises -- 3. Equivariant minimal hypersurfaces in space forms. 3.1. The pseudo-Riemannian space forms. 3.2. Equivariant minimal hypersurfaces in pseudo-Euclidean space. 3.3. Equivariant minimal hypersurfaces in pseudo-space forms. 3.4. Exercises -- 4. Pseudo-Kahler manifolds. 4.1. The complex pseudo-Euclidean space. 4.2. The general definition. 4.3. Complex space forms. 4.4. The tangent bundle of a pseudo-Kahler manifold. 4.5. Exercises -- 5. Complex and Lagrangian submanifolds in pseudo-Kahler manifolds. 5.1. Complex submanifolds. 5.2. Lagrangian submanifolds. 5.3. Minimal Lagrangian surfaces in C[symbol] with neutral metric. 5.4. Minimal Lagrangian submanifolds in C[symbol]. 5.5. Minimal Lagrangian submanifols in complex space forms. 5.6. Minimal Lagrangian surfaces in the tangent bundle of a Riemannian surface. 5.7. Exercises -- 6. Minimizing properties of minimal submanifolds. 6.1. Minimizing submanifolds and calibrations. 6.2. Non-minimizing submanifolds. Riemannian manifolds. http://id.loc.gov/authorities/subjects/sh85114045 Minimal submanifolds. http://id.loc.gov/authorities/subjects/sh85129486 Variétés de Riemann. Sous-variétés minimales. MATHEMATICS Geometry Analytic. bisacsh Minimal submanifolds fast Riemannian manifolds fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85114045 http://id.loc.gov/authorities/subjects/sh85129486 |
title | Minimal submanifolds in pseudo-Riemannian geometry / |
title_auth | Minimal submanifolds in pseudo-Riemannian geometry / |
title_exact_search | Minimal submanifolds in pseudo-Riemannian geometry / |
title_full | Minimal submanifolds in pseudo-Riemannian geometry / Henri Anciaux. |
title_fullStr | Minimal submanifolds in pseudo-Riemannian geometry / Henri Anciaux. |
title_full_unstemmed | Minimal submanifolds in pseudo-Riemannian geometry / Henri Anciaux. |
title_short | Minimal submanifolds in pseudo-Riemannian geometry / |
title_sort | minimal submanifolds in pseudo riemannian geometry |
topic | Riemannian manifolds. http://id.loc.gov/authorities/subjects/sh85114045 Minimal submanifolds. http://id.loc.gov/authorities/subjects/sh85129486 Variétés de Riemann. Sous-variétés minimales. MATHEMATICS Geometry Analytic. bisacsh Minimal submanifolds fast Riemannian manifolds fast |
topic_facet | Riemannian manifolds. Minimal submanifolds. Variétés de Riemann. Sous-variétés minimales. MATHEMATICS Geometry Analytic. Minimal submanifolds Riemannian manifolds |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=374884 |
work_keys_str_mv | AT anciauxhenri minimalsubmanifoldsinpseudoriemanniangeometry |