Automorphic representations and L-functions for the general linear group.: Volume I /
This modern, graduate-level textbook does not assume prior knowledge of representation theory. Includes numerous concrete examples and over 250 exercises.
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
2011.
|
Schriftenreihe: | Cambridge studies in advanced mathematics ;
129. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This modern, graduate-level textbook does not assume prior knowledge of representation theory. Includes numerous concrete examples and over 250 exercises. |
Beschreibung: | 1 online resource (xix, 550 pages). |
Bibliographie: | Includes bibliographical references (pages 531-536) and indexes. |
ISBN: | 9781139081863 1139081861 9781139077309 1139077309 9781139079587 1139079581 9780511973628 0511973624 1107224055 9781107224056 1139635913 9781139635912 1283118807 9781283118804 9786613118806 661311880X 1139075047 9781139075046 1139069276 9781139069274 1107471273 9781107471276 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn739903542 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 110708s2011 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCQ |d GZM |d REDDC |d OCLCQ |d YDXCP |d OCLCQ |d DEBSZ |d OCLCQ |d UMI |d COO |d OCLCQ |d OCLCF |d OCLCQ |d UAB |d UUM |d OCLCQ |d CEF |d INT |d OCLCQ |d K6U |d YDXIT |d AU@ |d VLY |d LUN |d DST |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 742513746 |a 858807068 |a 1097120316 |a 1162197214 |a 1170529666 |a 1170658061 |a 1241806544 |a 1274003896 |a 1292397640 |a 1300478286 |a 1303350579 |a 1303467718 | ||
020 | |a 9781139081863 |q electronic book | ||
020 | |a 1139081861 |q electronic book | ||
020 | |a 9781139077309 |q electronic book | ||
020 | |a 1139077309 |q electronic book | ||
020 | |a 9781139079587 |q electronic book | ||
020 | |a 1139079581 |q electronic book | ||
020 | |a 9780511973628 |q electronic book | ||
020 | |a 0511973624 |q electronic book | ||
020 | |z 9780521474238 |q volume 1 | ||
020 | |z 052147423X |q volume 1 | ||
020 | |z 9781107471276 (paperback) | ||
020 | |a 1107224055 | ||
020 | |a 9781107224056 | ||
020 | |a 1139635913 | ||
020 | |a 9781139635912 | ||
020 | |a 1283118807 | ||
020 | |a 9781283118804 | ||
020 | |a 9786613118806 | ||
020 | |a 661311880X | ||
020 | |a 1139075047 | ||
020 | |a 9781139075046 | ||
020 | |a 1139069276 | ||
020 | |a 9781139069274 | ||
020 | |a 1107471273 | ||
020 | |a 9781107471276 | ||
035 | |a (OCoLC)739903542 |z (OCoLC)742513746 |z (OCoLC)858807068 |z (OCoLC)1097120316 |z (OCoLC)1162197214 |z (OCoLC)1170529666 |z (OCoLC)1170658061 |z (OCoLC)1241806544 |z (OCoLC)1274003896 |z (OCoLC)1292397640 |z (OCoLC)1300478286 |z (OCoLC)1303350579 |z (OCoLC)1303467718 | ||
037 | |a CL0500000300 |b Safari Books Online | ||
050 | 4 | |a QA246 |b .G648 2011 | |
072 | 7 | |a MAT |x 040000 |2 bisacsh | |
082 | 7 | |a 515.9 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Goldfeld, D. |0 http://id.loc.gov/authorities/names/n82115120 | |
245 | 1 | 0 | |a Automorphic representations and L-functions for the general linear group. |n Volume I / |c Dorian Goldfeld, Joseph Hundley ; with exercises by Xander Faber. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 2011. | ||
300 | |a 1 online resource (xix, 550 pages). | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge studies in advanced mathematics ; |v 129 | |
504 | |a Includes bibliographical references (pages 531-536) and indexes. | ||
505 | 0 | |a Cover -- Half-title -- Series-title -- Title -- Copyright -- Dedication -- Contents for Volume I -- Contents for Volume II -- Introduction -- Preface to the Exercises -- 1 Adeles over Q -- 1.1 Absolute values -- 1.2 The field Qp of p-adic numbers -- 1.3 Adeles and ideles over Q -- 1.4 Action of Q on the adeles and ideles -- 1.5 p-adic integration -- 1.6 p-adic Fourier transform -- 1.7 Adelic Fourier transform -- 1.8 Fourier expansion of periodic adelic functions -- 1.9 Adelic Poisson summation formula -- Exercises for Chapter 1 -- 2 Automorphic representations and L-functions for GL(1, AQ) -- 2.1 Automorphic forms for GL (1, AQ) -- 2.2 The L-function of an automorphic form -- 2.3 The local L-functions and their functional equations -- 2.4 Classical L-functions and root numbers -- 2.5 Automorphic representations for GL(1, AQ) -- 2.6 Hecke operators for GL(1, AQ) -- 2.7 The Rankin-Selberg method -- 2.8 The p-adic Mellin transform -- Exercises for Chapter 2 -- 3 The classical theory of automorphic forms for GL(2) -- 3.1 Automorphic forms in general -- 3.2 Congruence subgroups of the modular group -- 3.3 Automorphic functions of integral weight k -- 3.4 Fourier expansion at ... of holomorphic modular forms -- 3.5 Maass forms -- 3.6 Whittaker functions -- 3.7 Fourier-Whittaker expansions of Maass forms -- 3.8 Eisenstein series -- 3.9 Maass raising and lowering operators -- 3.10 The bottom of the spectrum -- 3.11 Hecke operators, oldforms, and newforms -- 3.12 Finite dimensionality of the eigenspaces -- Exercises for Chapter 3 -- 4 Automorphic forms for GL(2, AQ) -- 4.1 Iwasawa and Cartan decompositions for GL(2, R) -- 4.2 Iwasawa and Cartan decompositions for GL(2, Qp) -- 4.3 The adele group GL(2, AQ) -- 4.4 The action of GL (2, Q) on GL(2, AQ) -- 4.5 The universal enveloping algebra of gl(2,C). | |
505 | 8 | |a 4.6 The center of the universal enveloping algebra of gl(2, C) -- 4.7 Automorphic forms for GL(2, AQ) -- 4.8 Adelic lifts of weight zero, level one, Maass forms -- 4.9 The Fourier expansion of adelic automorphic forms -- 4.10 Global Whittaker functions for GL(2, AQ) -- 4.11 Strong approximation for congruence subgroups -- 4.12 Adelic lifts with arbitrary weight, level, and character -- 4.13 Global Whittaker functions for adelic lifts with arbitrary weight, level, and character -- Exercises for Chapter 4 -- 5 Automorphic representations for GL(2, AQ) -- 5.1 Adelic automorphic representations for GL(2, AQ) -- 5.2 Explicit realization of actions defining a (g, K ...)-module -- 5.3 Explicit realization of the action of GL(2, Afinite) -- 5.4 Examples of cuspidal automorphic representations -- 5.5 Admissible (g, K ...) × GL(2, Afinite)-modules -- Exercises for Chapter 5 -- 6 Theory of admissible representations of GL(2, Qp) -- 6.0 Short roadmap to chapter 6 -- 6.1 Admissible representations of GL(2, Qp) -- 6.2 Ramified versus unramified -- 6.3 Local representation coming from a level 1 Maass form -- 6.4 Jacquet's local Whittaker function -- 6.5 Principal series representations -- 6.6 Jacquet's map: Principal series larrow Whittaker functions -- 6.7 The Kirillov model -- 6.8 The Kirillov model of the principal series representation -- 6.9 Haar measure on GL(2, Qp) -- 6.10 The special representations -- 6.11 Jacquet modules -- 6.12 Induced representations and parabolic induction -- 6.13 The supercuspidal representations of GL(2, Qp) -- 6.14 The uniqueness of the Kirillov model -- 6.15 The Kirillov model of a supercuspidal representation -- 6.16 The classification of the irreducible and admissible representations of GL(2, Qp) -- Exercises for Chapter 6 -- 7 Theory of admissible (g, K8) modules for GL(2, R) -- 7.1 Admissible (g, K8)-modules. | |
505 | 8 | |a 7.2 Ramified versus unramified -- 7.3 Jacquet's local Whittaker function -- 7.4 Principal series representations -- 7.5 Classification of irreducible admissible (g, K8)-modules -- Exercises for Chapter 7 -- 8 The contragredient representation for GL(2) -- 8.1 The contragredient representation for GL(2, Qp) -- 8.2 The contragredient representation of a principal series representation of GL(2, Qp) -- 8.3 Contragredient of a special representation of GL(2, Qp) -- 8.4 Contragredient of a supercuspidal representation -- 8.5 The contragredient representation for GL(2, R) -- 8.6 The contragredient representation of a principal series representation of GL(2, R) -- 8.7 Global contragredients for GL(2, AQ) -- 8.8 Integration on GL(2, AQ) -- 8.9 The contragredient representation of a cuspidal automorphic representation of GL(2, AQ) -- 8.10 Growth of matrix coefficients -- 8.11 Asymptotics of matrix coefficients of (g, K8)-modules -- 8.12 Matrix coefficients of GL(2, Qp) via the Jacquet module -- Exercises for Chapter 8 -- 9 Unitary representations of GL (2) -- 9.1 Unitary representations of GL(2, Qp) -- 9.2 Unitary principal series representations of GL(2, Qp) -- 9.3 Unitary and irreducible special or supercuspidal representations of GL(2, Qp) -- 9.4 Unitary (g, K8)-modules -- 9.5 Unitary (g, K8) × GL(2,Afinite)-modules -- Exercises for Chapter 9 -- 10 Tensor products of local representations -- 10.1 Euler products -- 10.2 Tensor product of (g, K8)-modules and representations -- 10.3 Infinite tensor products of local representations -- 10.4 The factorization of unramified irreducible admissible cuspidal automorphic representations -- 10.5 Decomposition of representations of locally compact groups into finite tensor products -- 10.6 The spherical Hecke algebra for GL(2, Qp) -- 10.7 Initial decomposition of admissible (g, K8) × GL(2,Afinite)-modules. | |
505 | 8 | |a 10.8 The tensor product theorem -- 10.9 The Ramanujan and Selberg conjectures for GL(2, AQ) -- Exercises for Chapter 10 -- 11 The Godement-Jacquet L-function for GL(2, AQ) -- 11.1 Historical remarks -- 11.2 The Poisson summation formula for GL(2, AQ) -- 11.3 Haar measure -- 11.4 The global zeta integral for GL(2, AQ) -- 11.5 Factorization of the global zeta integral -- 11.6 The local functional equation -- 11.7 The local L-function for GL(2, Qp) (unramified case) -- 11.8 The local L-function for irreducible supercuspidal representations of GL(2, Qp) -- 11.9 The local L-function for irreducible principal series representations of GL(2, Qp) -- 11.10 Local L-function for unitary special representations of GL(2, Qp) -- 11.11 Proof of the local functional equation for principal series representations of GL(2, Qp) -- 11.12 The local functional equation for the unitary special representations of GL(2, Qp) -- 11.13 Proof of the local functional equation for the supercuspidal representations of GL(2, Qp) -- 11.14 The local L-function for irreducible principal series representations of GL(2, R) -- 11.15 Proof of the local functional equation for principal series representations of GL(2, R) -- 11.16 The local L-function for irreducible discrete series representations of GL(2, R) -- Exercises for Chapter 11 -- Solutions to Selected Exercises -- References -- Symbols Index -- Index. | |
520 | |a This modern, graduate-level textbook does not assume prior knowledge of representation theory. Includes numerous concrete examples and over 250 exercises. | ||
588 | |a Description based on online resource; title from digital title page (viewed on January 24, 2020). | ||
546 | |a English. | ||
650 | 0 | |a Automorphic forms. |0 http://id.loc.gov/authorities/subjects/sh85010451 | |
650 | 0 | |a L-functions. |0 http://id.loc.gov/authorities/subjects/sh85073592 | |
650 | 0 | |a Representations of groups. |0 http://id.loc.gov/authorities/subjects/sh85112944 | |
650 | 6 | |a Formes automorphes. | |
650 | 6 | |a Fonctions L. | |
650 | 6 | |a Représentations de groupes. | |
650 | 7 | |a MATHEMATICS |x Complex Analysis. |2 bisacsh | |
650 | 7 | |a Automorphic forms |2 fast | |
650 | 7 | |a L-functions |2 fast | |
650 | 7 | |a Representations of groups |2 fast | |
700 | 1 | |a Hundley, Joseph. |0 http://id.loc.gov/authorities/names/nb2011014158 | |
758 | |i has work: |a Automorphic representations and L-functions for the general linear group Volume I (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFxR7YrBpcdgVjh9xmw7VC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Goldfeld, D. |t Automorphic representations and L-functions for the general linear group. Vol. 1. |d Cambridge : Cambridge University Press, 2011 |z 9780521474238 |w (OCoLC)665137577 |
830 | 0 | |a Cambridge studies in advanced mathematics ; |v 129. |0 http://id.loc.gov/authorities/names/n84708314 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=366233 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10476545 | ||
938 | |a EBSCOhost |b EBSC |n 366233 | ||
938 | |a YBP Library Services |b YANK |n 6892861 | ||
938 | |a YBP Library Services |b YANK |n 6943928 | ||
938 | |a YBP Library Services |b YANK |n 6972925 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn739903542 |
---|---|
_version_ | 1816881764206903296 |
adam_text | |
any_adam_object | |
author | Goldfeld, D. |
author2 | Hundley, Joseph |
author2_role | |
author2_variant | j h jh |
author_GND | http://id.loc.gov/authorities/names/n82115120 http://id.loc.gov/authorities/names/nb2011014158 |
author_facet | Goldfeld, D. Hundley, Joseph |
author_role | |
author_sort | Goldfeld, D. |
author_variant | d g dg |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA246 |
callnumber-raw | QA246 .G648 2011 |
callnumber-search | QA246 .G648 2011 |
callnumber-sort | QA 3246 G648 42011 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover -- Half-title -- Series-title -- Title -- Copyright -- Dedication -- Contents for Volume I -- Contents for Volume II -- Introduction -- Preface to the Exercises -- 1 Adeles over Q -- 1.1 Absolute values -- 1.2 The field Qp of p-adic numbers -- 1.3 Adeles and ideles over Q -- 1.4 Action of Q on the adeles and ideles -- 1.5 p-adic integration -- 1.6 p-adic Fourier transform -- 1.7 Adelic Fourier transform -- 1.8 Fourier expansion of periodic adelic functions -- 1.9 Adelic Poisson summation formula -- Exercises for Chapter 1 -- 2 Automorphic representations and L-functions for GL(1, AQ) -- 2.1 Automorphic forms for GL (1, AQ) -- 2.2 The L-function of an automorphic form -- 2.3 The local L-functions and their functional equations -- 2.4 Classical L-functions and root numbers -- 2.5 Automorphic representations for GL(1, AQ) -- 2.6 Hecke operators for GL(1, AQ) -- 2.7 The Rankin-Selberg method -- 2.8 The p-adic Mellin transform -- Exercises for Chapter 2 -- 3 The classical theory of automorphic forms for GL(2) -- 3.1 Automorphic forms in general -- 3.2 Congruence subgroups of the modular group -- 3.3 Automorphic functions of integral weight k -- 3.4 Fourier expansion at ... of holomorphic modular forms -- 3.5 Maass forms -- 3.6 Whittaker functions -- 3.7 Fourier-Whittaker expansions of Maass forms -- 3.8 Eisenstein series -- 3.9 Maass raising and lowering operators -- 3.10 The bottom of the spectrum -- 3.11 Hecke operators, oldforms, and newforms -- 3.12 Finite dimensionality of the eigenspaces -- Exercises for Chapter 3 -- 4 Automorphic forms for GL(2, AQ) -- 4.1 Iwasawa and Cartan decompositions for GL(2, R) -- 4.2 Iwasawa and Cartan decompositions for GL(2, Qp) -- 4.3 The adele group GL(2, AQ) -- 4.4 The action of GL (2, Q) on GL(2, AQ) -- 4.5 The universal enveloping algebra of gl(2,C). 4.6 The center of the universal enveloping algebra of gl(2, C) -- 4.7 Automorphic forms for GL(2, AQ) -- 4.8 Adelic lifts of weight zero, level one, Maass forms -- 4.9 The Fourier expansion of adelic automorphic forms -- 4.10 Global Whittaker functions for GL(2, AQ) -- 4.11 Strong approximation for congruence subgroups -- 4.12 Adelic lifts with arbitrary weight, level, and character -- 4.13 Global Whittaker functions for adelic lifts with arbitrary weight, level, and character -- Exercises for Chapter 4 -- 5 Automorphic representations for GL(2, AQ) -- 5.1 Adelic automorphic representations for GL(2, AQ) -- 5.2 Explicit realization of actions defining a (g, K ...)-module -- 5.3 Explicit realization of the action of GL(2, Afinite) -- 5.4 Examples of cuspidal automorphic representations -- 5.5 Admissible (g, K ...) × GL(2, Afinite)-modules -- Exercises for Chapter 5 -- 6 Theory of admissible representations of GL(2, Qp) -- 6.0 Short roadmap to chapter 6 -- 6.1 Admissible representations of GL(2, Qp) -- 6.2 Ramified versus unramified -- 6.3 Local representation coming from a level 1 Maass form -- 6.4 Jacquet's local Whittaker function -- 6.5 Principal series representations -- 6.6 Jacquet's map: Principal series larrow Whittaker functions -- 6.7 The Kirillov model -- 6.8 The Kirillov model of the principal series representation -- 6.9 Haar measure on GL(2, Qp) -- 6.10 The special representations -- 6.11 Jacquet modules -- 6.12 Induced representations and parabolic induction -- 6.13 The supercuspidal representations of GL(2, Qp) -- 6.14 The uniqueness of the Kirillov model -- 6.15 The Kirillov model of a supercuspidal representation -- 6.16 The classification of the irreducible and admissible representations of GL(2, Qp) -- Exercises for Chapter 6 -- 7 Theory of admissible (g, K8) modules for GL(2, R) -- 7.1 Admissible (g, K8)-modules. 7.2 Ramified versus unramified -- 7.3 Jacquet's local Whittaker function -- 7.4 Principal series representations -- 7.5 Classification of irreducible admissible (g, K8)-modules -- Exercises for Chapter 7 -- 8 The contragredient representation for GL(2) -- 8.1 The contragredient representation for GL(2, Qp) -- 8.2 The contragredient representation of a principal series representation of GL(2, Qp) -- 8.3 Contragredient of a special representation of GL(2, Qp) -- 8.4 Contragredient of a supercuspidal representation -- 8.5 The contragredient representation for GL(2, R) -- 8.6 The contragredient representation of a principal series representation of GL(2, R) -- 8.7 Global contragredients for GL(2, AQ) -- 8.8 Integration on GL(2, AQ) -- 8.9 The contragredient representation of a cuspidal automorphic representation of GL(2, AQ) -- 8.10 Growth of matrix coefficients -- 8.11 Asymptotics of matrix coefficients of (g, K8)-modules -- 8.12 Matrix coefficients of GL(2, Qp) via the Jacquet module -- Exercises for Chapter 8 -- 9 Unitary representations of GL (2) -- 9.1 Unitary representations of GL(2, Qp) -- 9.2 Unitary principal series representations of GL(2, Qp) -- 9.3 Unitary and irreducible special or supercuspidal representations of GL(2, Qp) -- 9.4 Unitary (g, K8)-modules -- 9.5 Unitary (g, K8) × GL(2,Afinite)-modules -- Exercises for Chapter 9 -- 10 Tensor products of local representations -- 10.1 Euler products -- 10.2 Tensor product of (g, K8)-modules and representations -- 10.3 Infinite tensor products of local representations -- 10.4 The factorization of unramified irreducible admissible cuspidal automorphic representations -- 10.5 Decomposition of representations of locally compact groups into finite tensor products -- 10.6 The spherical Hecke algebra for GL(2, Qp) -- 10.7 Initial decomposition of admissible (g, K8) × GL(2,Afinite)-modules. 10.8 The tensor product theorem -- 10.9 The Ramanujan and Selberg conjectures for GL(2, AQ) -- Exercises for Chapter 10 -- 11 The Godement-Jacquet L-function for GL(2, AQ) -- 11.1 Historical remarks -- 11.2 The Poisson summation formula for GL(2, AQ) -- 11.3 Haar measure -- 11.4 The global zeta integral for GL(2, AQ) -- 11.5 Factorization of the global zeta integral -- 11.6 The local functional equation -- 11.7 The local L-function for GL(2, Qp) (unramified case) -- 11.8 The local L-function for irreducible supercuspidal representations of GL(2, Qp) -- 11.9 The local L-function for irreducible principal series representations of GL(2, Qp) -- 11.10 Local L-function for unitary special representations of GL(2, Qp) -- 11.11 Proof of the local functional equation for principal series representations of GL(2, Qp) -- 11.12 The local functional equation for the unitary special representations of GL(2, Qp) -- 11.13 Proof of the local functional equation for the supercuspidal representations of GL(2, Qp) -- 11.14 The local L-function for irreducible principal series representations of GL(2, R) -- 11.15 Proof of the local functional equation for principal series representations of GL(2, R) -- 11.16 The local L-function for irreducible discrete series representations of GL(2, R) -- Exercises for Chapter 11 -- Solutions to Selected Exercises -- References -- Symbols Index -- Index. |
ctrlnum | (OCoLC)739903542 |
dewey-full | 515.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.9 |
dewey-search | 515.9 |
dewey-sort | 3515.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11422cam a2200937 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn739903542</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">110708s2011 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">GZM</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UMI</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">UUM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CEF</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">YDXIT</subfield><subfield code="d">AU@</subfield><subfield code="d">VLY</subfield><subfield code="d">LUN</subfield><subfield code="d">DST</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">742513746</subfield><subfield code="a">858807068</subfield><subfield code="a">1097120316</subfield><subfield code="a">1162197214</subfield><subfield code="a">1170529666</subfield><subfield code="a">1170658061</subfield><subfield code="a">1241806544</subfield><subfield code="a">1274003896</subfield><subfield code="a">1292397640</subfield><subfield code="a">1300478286</subfield><subfield code="a">1303350579</subfield><subfield code="a">1303467718</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139081863</subfield><subfield code="q">electronic book</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139081861</subfield><subfield code="q">electronic book</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139077309</subfield><subfield code="q">electronic book</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139077309</subfield><subfield code="q">electronic book</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139079587</subfield><subfield code="q">electronic book</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139079581</subfield><subfield code="q">electronic book</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511973628</subfield><subfield code="q">electronic book</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511973624</subfield><subfield code="q">electronic book</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521474238</subfield><subfield code="q">volume 1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">052147423X</subfield><subfield code="q">volume 1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107471276 (paperback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107224055</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107224056</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139635913</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139635912</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283118807</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283118804</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786613118806</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">661311880X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139075047</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139075046</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139069276</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139069274</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107471273</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107471276</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)739903542</subfield><subfield code="z">(OCoLC)742513746</subfield><subfield code="z">(OCoLC)858807068</subfield><subfield code="z">(OCoLC)1097120316</subfield><subfield code="z">(OCoLC)1162197214</subfield><subfield code="z">(OCoLC)1170529666</subfield><subfield code="z">(OCoLC)1170658061</subfield><subfield code="z">(OCoLC)1241806544</subfield><subfield code="z">(OCoLC)1274003896</subfield><subfield code="z">(OCoLC)1292397640</subfield><subfield code="z">(OCoLC)1300478286</subfield><subfield code="z">(OCoLC)1303350579</subfield><subfield code="z">(OCoLC)1303467718</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000300</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA246</subfield><subfield code="b">.G648 2011</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">040000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.9</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Goldfeld, D.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n82115120</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Automorphic representations and L-functions for the general linear group.</subfield><subfield code="n">Volume I /</subfield><subfield code="c">Dorian Goldfeld, Joseph Hundley ; with exercises by Xander Faber.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xix, 550 pages).</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics ;</subfield><subfield code="v">129</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 531-536) and indexes.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Half-title -- Series-title -- Title -- Copyright -- Dedication -- Contents for Volume I -- Contents for Volume II -- Introduction -- Preface to the Exercises -- 1 Adeles over Q -- 1.1 Absolute values -- 1.2 The field Qp of p-adic numbers -- 1.3 Adeles and ideles over Q -- 1.4 Action of Q on the adeles and ideles -- 1.5 p-adic integration -- 1.6 p-adic Fourier transform -- 1.7 Adelic Fourier transform -- 1.8 Fourier expansion of periodic adelic functions -- 1.9 Adelic Poisson summation formula -- Exercises for Chapter 1 -- 2 Automorphic representations and L-functions for GL(1, AQ) -- 2.1 Automorphic forms for GL (1, AQ) -- 2.2 The L-function of an automorphic form -- 2.3 The local L-functions and their functional equations -- 2.4 Classical L-functions and root numbers -- 2.5 Automorphic representations for GL(1, AQ) -- 2.6 Hecke operators for GL(1, AQ) -- 2.7 The Rankin-Selberg method -- 2.8 The p-adic Mellin transform -- Exercises for Chapter 2 -- 3 The classical theory of automorphic forms for GL(2) -- 3.1 Automorphic forms in general -- 3.2 Congruence subgroups of the modular group -- 3.3 Automorphic functions of integral weight k -- 3.4 Fourier expansion at ... of holomorphic modular forms -- 3.5 Maass forms -- 3.6 Whittaker functions -- 3.7 Fourier-Whittaker expansions of Maass forms -- 3.8 Eisenstein series -- 3.9 Maass raising and lowering operators -- 3.10 The bottom of the spectrum -- 3.11 Hecke operators, oldforms, and newforms -- 3.12 Finite dimensionality of the eigenspaces -- Exercises for Chapter 3 -- 4 Automorphic forms for GL(2, AQ) -- 4.1 Iwasawa and Cartan decompositions for GL(2, R) -- 4.2 Iwasawa and Cartan decompositions for GL(2, Qp) -- 4.3 The adele group GL(2, AQ) -- 4.4 The action of GL (2, Q) on GL(2, AQ) -- 4.5 The universal enveloping algebra of gl(2,C).</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.6 The center of the universal enveloping algebra of gl(2, C) -- 4.7 Automorphic forms for GL(2, AQ) -- 4.8 Adelic lifts of weight zero, level one, Maass forms -- 4.9 The Fourier expansion of adelic automorphic forms -- 4.10 Global Whittaker functions for GL(2, AQ) -- 4.11 Strong approximation for congruence subgroups -- 4.12 Adelic lifts with arbitrary weight, level, and character -- 4.13 Global Whittaker functions for adelic lifts with arbitrary weight, level, and character -- Exercises for Chapter 4 -- 5 Automorphic representations for GL(2, AQ) -- 5.1 Adelic automorphic representations for GL(2, AQ) -- 5.2 Explicit realization of actions defining a (g, K ...)-module -- 5.3 Explicit realization of the action of GL(2, Afinite) -- 5.4 Examples of cuspidal automorphic representations -- 5.5 Admissible (g, K ...) × GL(2, Afinite)-modules -- Exercises for Chapter 5 -- 6 Theory of admissible representations of GL(2, Qp) -- 6.0 Short roadmap to chapter 6 -- 6.1 Admissible representations of GL(2, Qp) -- 6.2 Ramified versus unramified -- 6.3 Local representation coming from a level 1 Maass form -- 6.4 Jacquet's local Whittaker function -- 6.5 Principal series representations -- 6.6 Jacquet's map: Principal series larrow Whittaker functions -- 6.7 The Kirillov model -- 6.8 The Kirillov model of the principal series representation -- 6.9 Haar measure on GL(2, Qp) -- 6.10 The special representations -- 6.11 Jacquet modules -- 6.12 Induced representations and parabolic induction -- 6.13 The supercuspidal representations of GL(2, Qp) -- 6.14 The uniqueness of the Kirillov model -- 6.15 The Kirillov model of a supercuspidal representation -- 6.16 The classification of the irreducible and admissible representations of GL(2, Qp) -- Exercises for Chapter 6 -- 7 Theory of admissible (g, K8) modules for GL(2, R) -- 7.1 Admissible (g, K8)-modules.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.2 Ramified versus unramified -- 7.3 Jacquet's local Whittaker function -- 7.4 Principal series representations -- 7.5 Classification of irreducible admissible (g, K8)-modules -- Exercises for Chapter 7 -- 8 The contragredient representation for GL(2) -- 8.1 The contragredient representation for GL(2, Qp) -- 8.2 The contragredient representation of a principal series representation of GL(2, Qp) -- 8.3 Contragredient of a special representation of GL(2, Qp) -- 8.4 Contragredient of a supercuspidal representation -- 8.5 The contragredient representation for GL(2, R) -- 8.6 The contragredient representation of a principal series representation of GL(2, R) -- 8.7 Global contragredients for GL(2, AQ) -- 8.8 Integration on GL(2, AQ) -- 8.9 The contragredient representation of a cuspidal automorphic representation of GL(2, AQ) -- 8.10 Growth of matrix coefficients -- 8.11 Asymptotics of matrix coefficients of (g, K8)-modules -- 8.12 Matrix coefficients of GL(2, Qp) via the Jacquet module -- Exercises for Chapter 8 -- 9 Unitary representations of GL (2) -- 9.1 Unitary representations of GL(2, Qp) -- 9.2 Unitary principal series representations of GL(2, Qp) -- 9.3 Unitary and irreducible special or supercuspidal representations of GL(2, Qp) -- 9.4 Unitary (g, K8)-modules -- 9.5 Unitary (g, K8) × GL(2,Afinite)-modules -- Exercises for Chapter 9 -- 10 Tensor products of local representations -- 10.1 Euler products -- 10.2 Tensor product of (g, K8)-modules and representations -- 10.3 Infinite tensor products of local representations -- 10.4 The factorization of unramified irreducible admissible cuspidal automorphic representations -- 10.5 Decomposition of representations of locally compact groups into finite tensor products -- 10.6 The spherical Hecke algebra for GL(2, Qp) -- 10.7 Initial decomposition of admissible (g, K8) × GL(2,Afinite)-modules.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.8 The tensor product theorem -- 10.9 The Ramanujan and Selberg conjectures for GL(2, AQ) -- Exercises for Chapter 10 -- 11 The Godement-Jacquet L-function for GL(2, AQ) -- 11.1 Historical remarks -- 11.2 The Poisson summation formula for GL(2, AQ) -- 11.3 Haar measure -- 11.4 The global zeta integral for GL(2, AQ) -- 11.5 Factorization of the global zeta integral -- 11.6 The local functional equation -- 11.7 The local L-function for GL(2, Qp) (unramified case) -- 11.8 The local L-function for irreducible supercuspidal representations of GL(2, Qp) -- 11.9 The local L-function for irreducible principal series representations of GL(2, Qp) -- 11.10 Local L-function for unitary special representations of GL(2, Qp) -- 11.11 Proof of the local functional equation for principal series representations of GL(2, Qp) -- 11.12 The local functional equation for the unitary special representations of GL(2, Qp) -- 11.13 Proof of the local functional equation for the supercuspidal representations of GL(2, Qp) -- 11.14 The local L-function for irreducible principal series representations of GL(2, R) -- 11.15 Proof of the local functional equation for principal series representations of GL(2, R) -- 11.16 The local L-function for irreducible discrete series representations of GL(2, R) -- Exercises for Chapter 11 -- Solutions to Selected Exercises -- References -- Symbols Index -- Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This modern, graduate-level textbook does not assume prior knowledge of representation theory. Includes numerous concrete examples and over 250 exercises.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from digital title page (viewed on January 24, 2020).</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Automorphic forms.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85010451</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">L-functions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85073592</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Representations of groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85112944</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Formes automorphes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Fonctions L.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Représentations de groupes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Complex Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Automorphic forms</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">L-functions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Representations of groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hundley, Joseph.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2011014158</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Automorphic representations and L-functions for the general linear group Volume I (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFxR7YrBpcdgVjh9xmw7VC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Goldfeld, D.</subfield><subfield code="t">Automorphic representations and L-functions for the general linear group. Vol. 1.</subfield><subfield code="d">Cambridge : Cambridge University Press, 2011</subfield><subfield code="z">9780521474238</subfield><subfield code="w">(OCoLC)665137577</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics ;</subfield><subfield code="v">129.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84708314</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=366233</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10476545</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">366233</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">6892861</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">6943928</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">6972925</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn739903542 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:17:54Z |
institution | BVB |
isbn | 9781139081863 1139081861 9781139077309 1139077309 9781139079587 1139079581 9780511973628 0511973624 1107224055 9781107224056 1139635913 9781139635912 1283118807 9781283118804 9786613118806 661311880X 1139075047 9781139075046 1139069276 9781139069274 1107471273 9781107471276 |
language | English |
oclc_num | 739903542 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xix, 550 pages). |
psigel | ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Cambridge University Press, |
record_format | marc |
series | Cambridge studies in advanced mathematics ; |
series2 | Cambridge studies in advanced mathematics ; |
spelling | Goldfeld, D. http://id.loc.gov/authorities/names/n82115120 Automorphic representations and L-functions for the general linear group. Volume I / Dorian Goldfeld, Joseph Hundley ; with exercises by Xander Faber. Cambridge ; New York : Cambridge University Press, 2011. 1 online resource (xix, 550 pages). text txt rdacontent computer c rdamedia online resource cr rdacarrier Cambridge studies in advanced mathematics ; 129 Includes bibliographical references (pages 531-536) and indexes. Cover -- Half-title -- Series-title -- Title -- Copyright -- Dedication -- Contents for Volume I -- Contents for Volume II -- Introduction -- Preface to the Exercises -- 1 Adeles over Q -- 1.1 Absolute values -- 1.2 The field Qp of p-adic numbers -- 1.3 Adeles and ideles over Q -- 1.4 Action of Q on the adeles and ideles -- 1.5 p-adic integration -- 1.6 p-adic Fourier transform -- 1.7 Adelic Fourier transform -- 1.8 Fourier expansion of periodic adelic functions -- 1.9 Adelic Poisson summation formula -- Exercises for Chapter 1 -- 2 Automorphic representations and L-functions for GL(1, AQ) -- 2.1 Automorphic forms for GL (1, AQ) -- 2.2 The L-function of an automorphic form -- 2.3 The local L-functions and their functional equations -- 2.4 Classical L-functions and root numbers -- 2.5 Automorphic representations for GL(1, AQ) -- 2.6 Hecke operators for GL(1, AQ) -- 2.7 The Rankin-Selberg method -- 2.8 The p-adic Mellin transform -- Exercises for Chapter 2 -- 3 The classical theory of automorphic forms for GL(2) -- 3.1 Automorphic forms in general -- 3.2 Congruence subgroups of the modular group -- 3.3 Automorphic functions of integral weight k -- 3.4 Fourier expansion at ... of holomorphic modular forms -- 3.5 Maass forms -- 3.6 Whittaker functions -- 3.7 Fourier-Whittaker expansions of Maass forms -- 3.8 Eisenstein series -- 3.9 Maass raising and lowering operators -- 3.10 The bottom of the spectrum -- 3.11 Hecke operators, oldforms, and newforms -- 3.12 Finite dimensionality of the eigenspaces -- Exercises for Chapter 3 -- 4 Automorphic forms for GL(2, AQ) -- 4.1 Iwasawa and Cartan decompositions for GL(2, R) -- 4.2 Iwasawa and Cartan decompositions for GL(2, Qp) -- 4.3 The adele group GL(2, AQ) -- 4.4 The action of GL (2, Q) on GL(2, AQ) -- 4.5 The universal enveloping algebra of gl(2,C). 4.6 The center of the universal enveloping algebra of gl(2, C) -- 4.7 Automorphic forms for GL(2, AQ) -- 4.8 Adelic lifts of weight zero, level one, Maass forms -- 4.9 The Fourier expansion of adelic automorphic forms -- 4.10 Global Whittaker functions for GL(2, AQ) -- 4.11 Strong approximation for congruence subgroups -- 4.12 Adelic lifts with arbitrary weight, level, and character -- 4.13 Global Whittaker functions for adelic lifts with arbitrary weight, level, and character -- Exercises for Chapter 4 -- 5 Automorphic representations for GL(2, AQ) -- 5.1 Adelic automorphic representations for GL(2, AQ) -- 5.2 Explicit realization of actions defining a (g, K ...)-module -- 5.3 Explicit realization of the action of GL(2, Afinite) -- 5.4 Examples of cuspidal automorphic representations -- 5.5 Admissible (g, K ...) × GL(2, Afinite)-modules -- Exercises for Chapter 5 -- 6 Theory of admissible representations of GL(2, Qp) -- 6.0 Short roadmap to chapter 6 -- 6.1 Admissible representations of GL(2, Qp) -- 6.2 Ramified versus unramified -- 6.3 Local representation coming from a level 1 Maass form -- 6.4 Jacquet's local Whittaker function -- 6.5 Principal series representations -- 6.6 Jacquet's map: Principal series larrow Whittaker functions -- 6.7 The Kirillov model -- 6.8 The Kirillov model of the principal series representation -- 6.9 Haar measure on GL(2, Qp) -- 6.10 The special representations -- 6.11 Jacquet modules -- 6.12 Induced representations and parabolic induction -- 6.13 The supercuspidal representations of GL(2, Qp) -- 6.14 The uniqueness of the Kirillov model -- 6.15 The Kirillov model of a supercuspidal representation -- 6.16 The classification of the irreducible and admissible representations of GL(2, Qp) -- Exercises for Chapter 6 -- 7 Theory of admissible (g, K8) modules for GL(2, R) -- 7.1 Admissible (g, K8)-modules. 7.2 Ramified versus unramified -- 7.3 Jacquet's local Whittaker function -- 7.4 Principal series representations -- 7.5 Classification of irreducible admissible (g, K8)-modules -- Exercises for Chapter 7 -- 8 The contragredient representation for GL(2) -- 8.1 The contragredient representation for GL(2, Qp) -- 8.2 The contragredient representation of a principal series representation of GL(2, Qp) -- 8.3 Contragredient of a special representation of GL(2, Qp) -- 8.4 Contragredient of a supercuspidal representation -- 8.5 The contragredient representation for GL(2, R) -- 8.6 The contragredient representation of a principal series representation of GL(2, R) -- 8.7 Global contragredients for GL(2, AQ) -- 8.8 Integration on GL(2, AQ) -- 8.9 The contragredient representation of a cuspidal automorphic representation of GL(2, AQ) -- 8.10 Growth of matrix coefficients -- 8.11 Asymptotics of matrix coefficients of (g, K8)-modules -- 8.12 Matrix coefficients of GL(2, Qp) via the Jacquet module -- Exercises for Chapter 8 -- 9 Unitary representations of GL (2) -- 9.1 Unitary representations of GL(2, Qp) -- 9.2 Unitary principal series representations of GL(2, Qp) -- 9.3 Unitary and irreducible special or supercuspidal representations of GL(2, Qp) -- 9.4 Unitary (g, K8)-modules -- 9.5 Unitary (g, K8) × GL(2,Afinite)-modules -- Exercises for Chapter 9 -- 10 Tensor products of local representations -- 10.1 Euler products -- 10.2 Tensor product of (g, K8)-modules and representations -- 10.3 Infinite tensor products of local representations -- 10.4 The factorization of unramified irreducible admissible cuspidal automorphic representations -- 10.5 Decomposition of representations of locally compact groups into finite tensor products -- 10.6 The spherical Hecke algebra for GL(2, Qp) -- 10.7 Initial decomposition of admissible (g, K8) × GL(2,Afinite)-modules. 10.8 The tensor product theorem -- 10.9 The Ramanujan and Selberg conjectures for GL(2, AQ) -- Exercises for Chapter 10 -- 11 The Godement-Jacquet L-function for GL(2, AQ) -- 11.1 Historical remarks -- 11.2 The Poisson summation formula for GL(2, AQ) -- 11.3 Haar measure -- 11.4 The global zeta integral for GL(2, AQ) -- 11.5 Factorization of the global zeta integral -- 11.6 The local functional equation -- 11.7 The local L-function for GL(2, Qp) (unramified case) -- 11.8 The local L-function for irreducible supercuspidal representations of GL(2, Qp) -- 11.9 The local L-function for irreducible principal series representations of GL(2, Qp) -- 11.10 Local L-function for unitary special representations of GL(2, Qp) -- 11.11 Proof of the local functional equation for principal series representations of GL(2, Qp) -- 11.12 The local functional equation for the unitary special representations of GL(2, Qp) -- 11.13 Proof of the local functional equation for the supercuspidal representations of GL(2, Qp) -- 11.14 The local L-function for irreducible principal series representations of GL(2, R) -- 11.15 Proof of the local functional equation for principal series representations of GL(2, R) -- 11.16 The local L-function for irreducible discrete series representations of GL(2, R) -- Exercises for Chapter 11 -- Solutions to Selected Exercises -- References -- Symbols Index -- Index. This modern, graduate-level textbook does not assume prior knowledge of representation theory. Includes numerous concrete examples and over 250 exercises. Description based on online resource; title from digital title page (viewed on January 24, 2020). English. Automorphic forms. http://id.loc.gov/authorities/subjects/sh85010451 L-functions. http://id.loc.gov/authorities/subjects/sh85073592 Representations of groups. http://id.loc.gov/authorities/subjects/sh85112944 Formes automorphes. Fonctions L. Représentations de groupes. MATHEMATICS Complex Analysis. bisacsh Automorphic forms fast L-functions fast Representations of groups fast Hundley, Joseph. http://id.loc.gov/authorities/names/nb2011014158 has work: Automorphic representations and L-functions for the general linear group Volume I (Text) https://id.oclc.org/worldcat/entity/E39PCFxR7YrBpcdgVjh9xmw7VC https://id.oclc.org/worldcat/ontology/hasWork Print version: Goldfeld, D. Automorphic representations and L-functions for the general linear group. Vol. 1. Cambridge : Cambridge University Press, 2011 9780521474238 (OCoLC)665137577 Cambridge studies in advanced mathematics ; 129. http://id.loc.gov/authorities/names/n84708314 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=366233 Volltext |
spellingShingle | Goldfeld, D. Automorphic representations and L-functions for the general linear group. Cambridge studies in advanced mathematics ; Cover -- Half-title -- Series-title -- Title -- Copyright -- Dedication -- Contents for Volume I -- Contents for Volume II -- Introduction -- Preface to the Exercises -- 1 Adeles over Q -- 1.1 Absolute values -- 1.2 The field Qp of p-adic numbers -- 1.3 Adeles and ideles over Q -- 1.4 Action of Q on the adeles and ideles -- 1.5 p-adic integration -- 1.6 p-adic Fourier transform -- 1.7 Adelic Fourier transform -- 1.8 Fourier expansion of periodic adelic functions -- 1.9 Adelic Poisson summation formula -- Exercises for Chapter 1 -- 2 Automorphic representations and L-functions for GL(1, AQ) -- 2.1 Automorphic forms for GL (1, AQ) -- 2.2 The L-function of an automorphic form -- 2.3 The local L-functions and their functional equations -- 2.4 Classical L-functions and root numbers -- 2.5 Automorphic representations for GL(1, AQ) -- 2.6 Hecke operators for GL(1, AQ) -- 2.7 The Rankin-Selberg method -- 2.8 The p-adic Mellin transform -- Exercises for Chapter 2 -- 3 The classical theory of automorphic forms for GL(2) -- 3.1 Automorphic forms in general -- 3.2 Congruence subgroups of the modular group -- 3.3 Automorphic functions of integral weight k -- 3.4 Fourier expansion at ... of holomorphic modular forms -- 3.5 Maass forms -- 3.6 Whittaker functions -- 3.7 Fourier-Whittaker expansions of Maass forms -- 3.8 Eisenstein series -- 3.9 Maass raising and lowering operators -- 3.10 The bottom of the spectrum -- 3.11 Hecke operators, oldforms, and newforms -- 3.12 Finite dimensionality of the eigenspaces -- Exercises for Chapter 3 -- 4 Automorphic forms for GL(2, AQ) -- 4.1 Iwasawa and Cartan decompositions for GL(2, R) -- 4.2 Iwasawa and Cartan decompositions for GL(2, Qp) -- 4.3 The adele group GL(2, AQ) -- 4.4 The action of GL (2, Q) on GL(2, AQ) -- 4.5 The universal enveloping algebra of gl(2,C). 4.6 The center of the universal enveloping algebra of gl(2, C) -- 4.7 Automorphic forms for GL(2, AQ) -- 4.8 Adelic lifts of weight zero, level one, Maass forms -- 4.9 The Fourier expansion of adelic automorphic forms -- 4.10 Global Whittaker functions for GL(2, AQ) -- 4.11 Strong approximation for congruence subgroups -- 4.12 Adelic lifts with arbitrary weight, level, and character -- 4.13 Global Whittaker functions for adelic lifts with arbitrary weight, level, and character -- Exercises for Chapter 4 -- 5 Automorphic representations for GL(2, AQ) -- 5.1 Adelic automorphic representations for GL(2, AQ) -- 5.2 Explicit realization of actions defining a (g, K ...)-module -- 5.3 Explicit realization of the action of GL(2, Afinite) -- 5.4 Examples of cuspidal automorphic representations -- 5.5 Admissible (g, K ...) × GL(2, Afinite)-modules -- Exercises for Chapter 5 -- 6 Theory of admissible representations of GL(2, Qp) -- 6.0 Short roadmap to chapter 6 -- 6.1 Admissible representations of GL(2, Qp) -- 6.2 Ramified versus unramified -- 6.3 Local representation coming from a level 1 Maass form -- 6.4 Jacquet's local Whittaker function -- 6.5 Principal series representations -- 6.6 Jacquet's map: Principal series larrow Whittaker functions -- 6.7 The Kirillov model -- 6.8 The Kirillov model of the principal series representation -- 6.9 Haar measure on GL(2, Qp) -- 6.10 The special representations -- 6.11 Jacquet modules -- 6.12 Induced representations and parabolic induction -- 6.13 The supercuspidal representations of GL(2, Qp) -- 6.14 The uniqueness of the Kirillov model -- 6.15 The Kirillov model of a supercuspidal representation -- 6.16 The classification of the irreducible and admissible representations of GL(2, Qp) -- Exercises for Chapter 6 -- 7 Theory of admissible (g, K8) modules for GL(2, R) -- 7.1 Admissible (g, K8)-modules. 7.2 Ramified versus unramified -- 7.3 Jacquet's local Whittaker function -- 7.4 Principal series representations -- 7.5 Classification of irreducible admissible (g, K8)-modules -- Exercises for Chapter 7 -- 8 The contragredient representation for GL(2) -- 8.1 The contragredient representation for GL(2, Qp) -- 8.2 The contragredient representation of a principal series representation of GL(2, Qp) -- 8.3 Contragredient of a special representation of GL(2, Qp) -- 8.4 Contragredient of a supercuspidal representation -- 8.5 The contragredient representation for GL(2, R) -- 8.6 The contragredient representation of a principal series representation of GL(2, R) -- 8.7 Global contragredients for GL(2, AQ) -- 8.8 Integration on GL(2, AQ) -- 8.9 The contragredient representation of a cuspidal automorphic representation of GL(2, AQ) -- 8.10 Growth of matrix coefficients -- 8.11 Asymptotics of matrix coefficients of (g, K8)-modules -- 8.12 Matrix coefficients of GL(2, Qp) via the Jacquet module -- Exercises for Chapter 8 -- 9 Unitary representations of GL (2) -- 9.1 Unitary representations of GL(2, Qp) -- 9.2 Unitary principal series representations of GL(2, Qp) -- 9.3 Unitary and irreducible special or supercuspidal representations of GL(2, Qp) -- 9.4 Unitary (g, K8)-modules -- 9.5 Unitary (g, K8) × GL(2,Afinite)-modules -- Exercises for Chapter 9 -- 10 Tensor products of local representations -- 10.1 Euler products -- 10.2 Tensor product of (g, K8)-modules and representations -- 10.3 Infinite tensor products of local representations -- 10.4 The factorization of unramified irreducible admissible cuspidal automorphic representations -- 10.5 Decomposition of representations of locally compact groups into finite tensor products -- 10.6 The spherical Hecke algebra for GL(2, Qp) -- 10.7 Initial decomposition of admissible (g, K8) × GL(2,Afinite)-modules. 10.8 The tensor product theorem -- 10.9 The Ramanujan and Selberg conjectures for GL(2, AQ) -- Exercises for Chapter 10 -- 11 The Godement-Jacquet L-function for GL(2, AQ) -- 11.1 Historical remarks -- 11.2 The Poisson summation formula for GL(2, AQ) -- 11.3 Haar measure -- 11.4 The global zeta integral for GL(2, AQ) -- 11.5 Factorization of the global zeta integral -- 11.6 The local functional equation -- 11.7 The local L-function for GL(2, Qp) (unramified case) -- 11.8 The local L-function for irreducible supercuspidal representations of GL(2, Qp) -- 11.9 The local L-function for irreducible principal series representations of GL(2, Qp) -- 11.10 Local L-function for unitary special representations of GL(2, Qp) -- 11.11 Proof of the local functional equation for principal series representations of GL(2, Qp) -- 11.12 The local functional equation for the unitary special representations of GL(2, Qp) -- 11.13 Proof of the local functional equation for the supercuspidal representations of GL(2, Qp) -- 11.14 The local L-function for irreducible principal series representations of GL(2, R) -- 11.15 Proof of the local functional equation for principal series representations of GL(2, R) -- 11.16 The local L-function for irreducible discrete series representations of GL(2, R) -- Exercises for Chapter 11 -- Solutions to Selected Exercises -- References -- Symbols Index -- Index. Automorphic forms. http://id.loc.gov/authorities/subjects/sh85010451 L-functions. http://id.loc.gov/authorities/subjects/sh85073592 Representations of groups. http://id.loc.gov/authorities/subjects/sh85112944 Formes automorphes. Fonctions L. Représentations de groupes. MATHEMATICS Complex Analysis. bisacsh Automorphic forms fast L-functions fast Representations of groups fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85010451 http://id.loc.gov/authorities/subjects/sh85073592 http://id.loc.gov/authorities/subjects/sh85112944 |
title | Automorphic representations and L-functions for the general linear group. |
title_auth | Automorphic representations and L-functions for the general linear group. |
title_exact_search | Automorphic representations and L-functions for the general linear group. |
title_full | Automorphic representations and L-functions for the general linear group. Volume I / Dorian Goldfeld, Joseph Hundley ; with exercises by Xander Faber. |
title_fullStr | Automorphic representations and L-functions for the general linear group. Volume I / Dorian Goldfeld, Joseph Hundley ; with exercises by Xander Faber. |
title_full_unstemmed | Automorphic representations and L-functions for the general linear group. Volume I / Dorian Goldfeld, Joseph Hundley ; with exercises by Xander Faber. |
title_short | Automorphic representations and L-functions for the general linear group. |
title_sort | automorphic representations and l functions for the general linear group |
topic | Automorphic forms. http://id.loc.gov/authorities/subjects/sh85010451 L-functions. http://id.loc.gov/authorities/subjects/sh85073592 Representations of groups. http://id.loc.gov/authorities/subjects/sh85112944 Formes automorphes. Fonctions L. Représentations de groupes. MATHEMATICS Complex Analysis. bisacsh Automorphic forms fast L-functions fast Representations of groups fast |
topic_facet | Automorphic forms. L-functions. Representations of groups. Formes automorphes. Fonctions L. Représentations de groupes. MATHEMATICS Complex Analysis. Automorphic forms L-functions Representations of groups |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=366233 |
work_keys_str_mv | AT goldfeldd automorphicrepresentationsandlfunctionsforthegenerallineargroupvolumei AT hundleyjoseph automorphicrepresentationsandlfunctionsforthegenerallineargroupvolumei |