Etale cohomology theory /:
Etale cohomology is an important branch in arithmetic geometry. This book covers the main materials in SGA 1, SGA 4, SGA 4 1/2 and SGA 5 on etale cohomology theory, which includes decent theory, etale fundamental groups, Galois cohomology, etale cohomology, derived categories, base change theorems,...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey :
World Scientific,
©2011.
|
Schriftenreihe: | Nankai tracts in mathematics ;
v. 13. |
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | Etale cohomology is an important branch in arithmetic geometry. This book covers the main materials in SGA 1, SGA 4, SGA 4 1/2 and SGA 5 on etale cohomology theory, which includes decent theory, etale fundamental groups, Galois cohomology, etale cohomology, derived categories, base change theorems, duality, and l-adic cohomology. The prerequisites for reading this book are basic algebraic geometry and advanced commutative algebra. |
Beschreibung: | 1 online resource (ix, 611 pages) |
Bibliographie: | Includes bibliographical references (pages 607-608) and index. |
ISBN: | 9789814307734 9814307734 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn733048130 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr mnu---unuuu | ||
008 | 110627s2011 nju ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d EBLCP |d E7B |d MHW |d OSU |d OCLCQ |d DEBSZ |d YDXCP |d OCLCQ |d OCLCF |d OCLCQ |d AZK |d LOA |d JBG |d AGLDB |d MOR |d PIFAG |d ZCU |d MERUC |d OCLCQ |d NJR |d U3W |d OCLCQ |d UUM |d STF |d WRM |d OCLCQ |d VTS |d NRAMU |d ICG |d INT |d VT2 |d AU@ |d OCLCQ |d WYU |d TKN |d OCLCQ |d LEAUB |d DKC |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL |d SXB |d OCLCQ | ||
019 | |a 961498367 |a 962610083 |a 1058104461 | ||
020 | |a 9789814307734 |q (electronic bk.) | ||
020 | |a 9814307734 |q (electronic bk.) | ||
020 | |z 9789814307727 | ||
020 | |z 9814307726 | ||
035 | |a (OCoLC)733048130 |z (OCoLC)961498367 |z (OCoLC)962610083 |z (OCoLC)1058104461 | ||
050 | 4 | |a QA612.3 |b .F8 2011eb | |
072 | 7 | |a MAT |x 038000 |2 bisacsh | |
082 | 7 | |a 514.23 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Fu, Lei. | |
245 | 1 | 0 | |a Etale cohomology theory / |c Lei Fu. |
260 | |a New Jersey : |b World Scientific, |c ©2011. | ||
300 | |a 1 online resource (ix, 611 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Nankai tracts in mathematics ; |v v. 13 | |
520 | |a Etale cohomology is an important branch in arithmetic geometry. This book covers the main materials in SGA 1, SGA 4, SGA 4 1/2 and SGA 5 on etale cohomology theory, which includes decent theory, etale fundamental groups, Galois cohomology, etale cohomology, derived categories, base change theorems, duality, and l-adic cohomology. The prerequisites for reading this book are basic algebraic geometry and advanced commutative algebra. | ||
504 | |a Includes bibliographical references (pages 607-608) and index. | ||
505 | 0 | |a Descent theory -- Etale morphisms and smooth morphisms -- Etale fundamental groups -- Group cohomology and Galois cohomology -- Etale cohomology -- Derived categories and derived functors -- Base change theorems -- Duality -- Finiteness theorems -- l-adic cohomology. | |
588 | 0 | |a Print version record. | |
650 | 0 | |a Homology theory. |0 http://id.loc.gov/authorities/subjects/sh85061770 | |
650 | 6 | |a Homologie. | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 7 | |a Homology theory |2 fast | |
758 | |i has work: |a Etale cohomology theory (Text) |1 https://id.oclc.org/worldcat/entity/E39PCYVymThtCK93fkrWYQqQmd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Fu, Lei. |t Etale cohomology theory. |d Singapore ; Hackensack, N.J. : World Scientific, ©2011 |z 9789814307727 |w (OCoLC)587124404 |
830 | 0 | |a Nankai tracts in mathematics ; |v v. 13. |0 http://id.loc.gov/authorities/names/n2001000055 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=373229 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=373229 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL737625 | ||
938 | |a ebrary |b EBRY |n ebr10480065 | ||
938 | |a EBSCOhost |b EBSC |n 373229 | ||
938 | |a YBP Library Services |b YANK |n 6958476 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn733048130 |
---|---|
_version_ | 1826941658163314688 |
adam_text | |
any_adam_object | |
author | Fu, Lei |
author_facet | Fu, Lei |
author_role | |
author_sort | Fu, Lei |
author_variant | l f lf |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA612 |
callnumber-raw | QA612.3 .F8 2011eb |
callnumber-search | QA612.3 .F8 2011eb |
callnumber-sort | QA 3612.3 F8 42011EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Descent theory -- Etale morphisms and smooth morphisms -- Etale fundamental groups -- Group cohomology and Galois cohomology -- Etale cohomology -- Derived categories and derived functors -- Base change theorems -- Duality -- Finiteness theorems -- l-adic cohomology. |
ctrlnum | (OCoLC)733048130 |
dewey-full | 514.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.23 |
dewey-search | 514.23 |
dewey-sort | 3514.23 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03085cam a2200529 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn733048130</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mnu---unuuu</controlfield><controlfield tag="008">110627s2011 nju ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">E7B</subfield><subfield code="d">MHW</subfield><subfield code="d">OSU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">JBG</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NJR</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UUM</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">961498367</subfield><subfield code="a">962610083</subfield><subfield code="a">1058104461</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814307734</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814307734</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814307727</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814307726</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)733048130</subfield><subfield code="z">(OCoLC)961498367</subfield><subfield code="z">(OCoLC)962610083</subfield><subfield code="z">(OCoLC)1058104461</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA612.3</subfield><subfield code="b">.F8 2011eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">514.23</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fu, Lei.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Etale cohomology theory /</subfield><subfield code="c">Lei Fu.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New Jersey :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 611 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Nankai tracts in mathematics ;</subfield><subfield code="v">v. 13</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Etale cohomology is an important branch in arithmetic geometry. This book covers the main materials in SGA 1, SGA 4, SGA 4 1/2 and SGA 5 on etale cohomology theory, which includes decent theory, etale fundamental groups, Galois cohomology, etale cohomology, derived categories, base change theorems, duality, and l-adic cohomology. The prerequisites for reading this book are basic algebraic geometry and advanced commutative algebra.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 607-608) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Descent theory -- Etale morphisms and smooth morphisms -- Etale fundamental groups -- Group cohomology and Galois cohomology -- Etale cohomology -- Derived categories and derived functors -- Base change theorems -- Duality -- Finiteness theorems -- l-adic cohomology.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Homology theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85061770</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Homologie.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Topology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homology theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Etale cohomology theory (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCYVymThtCK93fkrWYQqQmd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Fu, Lei.</subfield><subfield code="t">Etale cohomology theory.</subfield><subfield code="d">Singapore ; Hackensack, N.J. : World Scientific, ©2011</subfield><subfield code="z">9789814307727</subfield><subfield code="w">(OCoLC)587124404</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Nankai tracts in mathematics ;</subfield><subfield code="v">v. 13.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2001000055</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=373229</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=373229</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL737625</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10480065</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">373229</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">6958476</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn733048130 |
illustrated | Not Illustrated |
indexdate | 2025-03-18T14:15:36Z |
institution | BVB |
isbn | 9789814307734 9814307734 |
language | English |
oclc_num | 733048130 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (ix, 611 pages) |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | World Scientific, |
record_format | marc |
series | Nankai tracts in mathematics ; |
series2 | Nankai tracts in mathematics ; |
spelling | Fu, Lei. Etale cohomology theory / Lei Fu. New Jersey : World Scientific, ©2011. 1 online resource (ix, 611 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Nankai tracts in mathematics ; v. 13 Etale cohomology is an important branch in arithmetic geometry. This book covers the main materials in SGA 1, SGA 4, SGA 4 1/2 and SGA 5 on etale cohomology theory, which includes decent theory, etale fundamental groups, Galois cohomology, etale cohomology, derived categories, base change theorems, duality, and l-adic cohomology. The prerequisites for reading this book are basic algebraic geometry and advanced commutative algebra. Includes bibliographical references (pages 607-608) and index. Descent theory -- Etale morphisms and smooth morphisms -- Etale fundamental groups -- Group cohomology and Galois cohomology -- Etale cohomology -- Derived categories and derived functors -- Base change theorems -- Duality -- Finiteness theorems -- l-adic cohomology. Print version record. Homology theory. http://id.loc.gov/authorities/subjects/sh85061770 Homologie. MATHEMATICS Topology. bisacsh Homology theory fast has work: Etale cohomology theory (Text) https://id.oclc.org/worldcat/entity/E39PCYVymThtCK93fkrWYQqQmd https://id.oclc.org/worldcat/ontology/hasWork Print version: Fu, Lei. Etale cohomology theory. Singapore ; Hackensack, N.J. : World Scientific, ©2011 9789814307727 (OCoLC)587124404 Nankai tracts in mathematics ; v. 13. http://id.loc.gov/authorities/names/n2001000055 |
spellingShingle | Fu, Lei Etale cohomology theory / Nankai tracts in mathematics ; Descent theory -- Etale morphisms and smooth morphisms -- Etale fundamental groups -- Group cohomology and Galois cohomology -- Etale cohomology -- Derived categories and derived functors -- Base change theorems -- Duality -- Finiteness theorems -- l-adic cohomology. Homology theory. http://id.loc.gov/authorities/subjects/sh85061770 Homologie. MATHEMATICS Topology. bisacsh Homology theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85061770 |
title | Etale cohomology theory / |
title_auth | Etale cohomology theory / |
title_exact_search | Etale cohomology theory / |
title_full | Etale cohomology theory / Lei Fu. |
title_fullStr | Etale cohomology theory / Lei Fu. |
title_full_unstemmed | Etale cohomology theory / Lei Fu. |
title_short | Etale cohomology theory / |
title_sort | etale cohomology theory |
topic | Homology theory. http://id.loc.gov/authorities/subjects/sh85061770 Homologie. MATHEMATICS Topology. bisacsh Homology theory fast |
topic_facet | Homology theory. Homologie. MATHEMATICS Topology. Homology theory |
work_keys_str_mv | AT fulei etalecohomologytheory |