Towards a mathematical theory of complex biological systems /:
This monograph has the ambitious aim of developing a mathematical theory of complex biological systems with special attention to the phenomena of ageing, degeneration and repair of biological tissues under individual self-repair actions that may have good potential in medical therapy. The approach t...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, NJ :
World Scientific,
©2011.
|
Schriftenreihe: | Series in mathematical biology and medicine ;
v. 11. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This monograph has the ambitious aim of developing a mathematical theory of complex biological systems with special attention to the phenomena of ageing, degeneration and repair of biological tissues under individual self-repair actions that may have good potential in medical therapy. The approach to mathematically modeling biological systems needs to tackle the additional difficulties generated by the peculiarities of living matter. These include the lack of invariance principles, abilities to express strategies for individual fitness, heterogeneous behaviors, competition up to proliferative and/or destructive actions, mutations, learning ability, evolution and many others. Applied mathematicians in the field of living systems, especially biological systems, will appreciate the special class of integro-differential equations offered here for modeling at the molecular, cellular and tissue scales. A unique perspective is also presented with a number of case studies in biological modeling. |
Beschreibung: | 1 online resource (xvii, 208 pages :) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9789814340540 9814340545 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn733048104 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 110627s2011 si a ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d EBLCP |d E7B |d YDXCP |d COD |d OCLCQ |d I9W |d OCLCQ |d DEBSZ |d OCLCQ |d OCLCO |d OCLCF |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d AGLDB |d ZCU |d MERUC |d OCLCQ |d NJR |d U3W |d OCLCQ |d VTS |d ICG |d YDX |d OCLCO |d INT |d VT2 |d OCLCQ |d WYU |d OCLCA |d JBG |d OCLCO |d OCLCA |d OCLCQ |d STF |d OCLCO |d DKC |d OCLCQ |d OCLCO |d UKAHL |d OCLCQ |d OCLCA |d LEAUB |d AU@ |d OCLCA |d AJS |d OCLCQ |d OCLCO |d OCL |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
016 | 7 | |a 101563037 |2 DNLM | |
019 | |a 1049611454 |a 1055404862 |a 1058885004 |a 1062886512 |a 1081297192 |a 1086500337 |a 1228531106 | ||
020 | |a 9789814340540 |q (electronic bk.) | ||
020 | |a 9814340545 |q (electronic bk.) | ||
020 | |z 9789814340533 | ||
020 | |z 9814340537 | ||
024 | 8 | |a 3609947 | |
035 | |a (OCoLC)733048104 |z (OCoLC)1049611454 |z (OCoLC)1055404862 |z (OCoLC)1058885004 |z (OCoLC)1062886512 |z (OCoLC)1081297192 |z (OCoLC)1086500337 |z (OCoLC)1228531106 | ||
050 | 4 | |a QH323.5 |b .B4533 2011eb | |
060 | 4 | |a W1 |b SE718K v.11 2011 | |
060 | 4 | |a QW 504 | |
072 | 7 | |a NAT |x 027000 |2 bisacsh | |
072 | 7 | |a SCI |x 086000 |2 bisacsh | |
072 | 7 | |a SCI |x 008000 |2 bisacsh | |
082 | 7 | |a 570.15/118 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Bianca, C. |q (Carlo) |1 https://id.oclc.org/worldcat/entity/E39PBJkp6H33R8wfyvkD3DyGHC |0 http://id.loc.gov/authorities/names/n2010076928 | |
245 | 1 | 0 | |a Towards a mathematical theory of complex biological systems / |c C. Bianca, N. Bellomo. |
260 | |a Singapore ; |a Hackensack, NJ : |b World Scientific, |c ©2011. | ||
300 | |a 1 online resource (xvii, 208 pages :) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Series in mathematical biology and medicine ; |v v. 11 | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a 1. Looking for a mathematical theory of biological systems. 1.1. Introduction. 1.2. On the concept of mathematical theory. 1.3. Plan of the monograph -- 2. On the complexity of biological systems. 2.1. Ten common features of living systems. 2.2. Some introductory concepts of systems biology. 2.3. Reducing complexity -- 3. The immune system : A phenomenological overview. 3.1. Introduction. 3.2. Bacteria and viruses. 3.3. The immune system components. 3.4. The immune response. 3.5. Immune system diseases. 3.6. Critical analysis -- 4. Wound healing process and organ repair. 4.1. Introduction. 4.2. Genes and mutations. 4.3. The phases of wound healing. 4.4. The fibrosis disease. 4.5. Critical analysis -- 5. From levels of biological organization to system biology. 5.1. Introduction. 5.2. From scaling to mathematical structures. 5.3. Guidelines to the modeling approach -- 6. Mathematical tools and structures. 6.1. Introduction. 6.2. Mathematical frameworks of the kinetic theory of active particles. 6.3. Guidelines towards modeling at the molecular and cellular scales. 6.4. Additional analysis looking at the immune competition. 6.5. Critical analysis -- 7. Multiscale modeling : Linking molecular, cellular, and tissues scales. 7.1. Introduction. 7.2. On the phenomenological derivation of macroscopic tissue models. 7.3. Cellular-tissue scale modeling of closed systems. 7.4. Cellular-tissue scale modeling of open systems. 7.5. On the molecular-cellular scale modeling. 7.6. Critical analysis -- 8. A model for Malign Keloid Formation and immune system competition. 8.1. Introduction. 8.2. The mathematical model. 8.3. Simulations and emerging behaviors. 8.4. Critical analysis and perspectives -- 9. Macroscopic models of chemotaxis by KTAP asymptotic methods. 9.1. Introduction. 9.2. Linear turning kernels : Relaxation models. 9.3. Cellular-tissue scale models of chemotaxis. 9.4. Critical analysis -- 10. Looking ahead. 10.1. Introduction. 10.2. Some challenges for applied mathematicians and biologists. 10.3. How far is the mathematical theory for biological systems. 10.4. Closure. | |
520 | |a This monograph has the ambitious aim of developing a mathematical theory of complex biological systems with special attention to the phenomena of ageing, degeneration and repair of biological tissues under individual self-repair actions that may have good potential in medical therapy. The approach to mathematically modeling biological systems needs to tackle the additional difficulties generated by the peculiarities of living matter. These include the lack of invariance principles, abilities to express strategies for individual fitness, heterogeneous behaviors, competition up to proliferative and/or destructive actions, mutations, learning ability, evolution and many others. Applied mathematicians in the field of living systems, especially biological systems, will appreciate the special class of integro-differential equations offered here for modeling at the molecular, cellular and tissue scales. A unique perspective is also presented with a number of case studies in biological modeling. | ||
650 | 0 | |a Biomathematics. |0 http://id.loc.gov/authorities/subjects/sh85014235 | |
650 | 0 | |a Biological systems |x Mathematical models. | |
650 | 0 | |a Mathematical models. |0 http://id.loc.gov/authorities/subjects/sh85082124 | |
650 | 1 | 2 | |a Immune System |x physiology |
650 | 2 | 2 | |a Wound Healing |x physiology |
650 | 2 | 2 | |a Models, Theoretical |
650 | 2 | 2 | |a Computational Biology |
650 | 6 | |a Biomathématiques. | |
650 | 6 | |a Systèmes biologiques |x Modèles mathématiques. | |
650 | 6 | |a Modèles mathématiques. | |
650 | 6 | |a Bio-informatique. | |
650 | 7 | |a mathematical models. |2 aat | |
650 | 7 | |a NATURE |x Reference. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Life Sciences |x General. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Life Sciences |x Biology. |2 bisacsh | |
650 | 7 | |a Mathematical models |2 fast | |
650 | 7 | |a Biological systems |x Mathematical models |2 fast | |
650 | 7 | |a Biomathematics |2 fast | |
700 | 1 | |a Bellomo, N. | |
758 | |i has work: |a Towards a mathematical theory of complex biological systems (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGqB7Xgv3vjrc9t3PjXTpP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Bianca, Concetta. |t Towards a mathematical theory of complex biological systems. |d Singapore ; Hackensack, NJ : World Scientific, ©2011 |z 9789814340533 |w (DLC) 2010043493 |w (OCoLC)678534348 |
830 | 0 | |a Series in mathematical biology and medicine ; |v v. 11. |0 http://id.loc.gov/authorities/names/n96018845 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=373224 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=373224 |3 Volltext | |
938 | |a Askews and Holts Library Services |b ASKH |n AH25565321 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL737605 | ||
938 | |a ebrary |b EBRY |n ebr10479807 | ||
938 | |a EBSCOhost |b EBSC |n 373224 | ||
938 | |a YBP Library Services |b YANK |n 6958483 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn733048104 |
---|---|
_version_ | 1813903404963987456 |
adam_text | |
any_adam_object | |
author | Bianca, C. (Carlo) |
author2 | Bellomo, N. |
author2_role | |
author2_variant | n b nb |
author_GND | http://id.loc.gov/authorities/names/n2010076928 |
author_facet | Bianca, C. (Carlo) Bellomo, N. |
author_role | |
author_sort | Bianca, C. |
author_variant | c b cb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QH323 |
callnumber-raw | QH323.5 .B4533 2011eb |
callnumber-search | QH323.5 .B4533 2011eb |
callnumber-sort | QH 3323.5 B4533 42011EB |
callnumber-subject | QH - Natural History and Biology |
collection | ZDB-4-EBA |
contents | 1. Looking for a mathematical theory of biological systems. 1.1. Introduction. 1.2. On the concept of mathematical theory. 1.3. Plan of the monograph -- 2. On the complexity of biological systems. 2.1. Ten common features of living systems. 2.2. Some introductory concepts of systems biology. 2.3. Reducing complexity -- 3. The immune system : A phenomenological overview. 3.1. Introduction. 3.2. Bacteria and viruses. 3.3. The immune system components. 3.4. The immune response. 3.5. Immune system diseases. 3.6. Critical analysis -- 4. Wound healing process and organ repair. 4.1. Introduction. 4.2. Genes and mutations. 4.3. The phases of wound healing. 4.4. The fibrosis disease. 4.5. Critical analysis -- 5. From levels of biological organization to system biology. 5.1. Introduction. 5.2. From scaling to mathematical structures. 5.3. Guidelines to the modeling approach -- 6. Mathematical tools and structures. 6.1. Introduction. 6.2. Mathematical frameworks of the kinetic theory of active particles. 6.3. Guidelines towards modeling at the molecular and cellular scales. 6.4. Additional analysis looking at the immune competition. 6.5. Critical analysis -- 7. Multiscale modeling : Linking molecular, cellular, and tissues scales. 7.1. Introduction. 7.2. On the phenomenological derivation of macroscopic tissue models. 7.3. Cellular-tissue scale modeling of closed systems. 7.4. Cellular-tissue scale modeling of open systems. 7.5. On the molecular-cellular scale modeling. 7.6. Critical analysis -- 8. A model for Malign Keloid Formation and immune system competition. 8.1. Introduction. 8.2. The mathematical model. 8.3. Simulations and emerging behaviors. 8.4. Critical analysis and perspectives -- 9. Macroscopic models of chemotaxis by KTAP asymptotic methods. 9.1. Introduction. 9.2. Linear turning kernels : Relaxation models. 9.3. Cellular-tissue scale models of chemotaxis. 9.4. Critical analysis -- 10. Looking ahead. 10.1. Introduction. 10.2. Some challenges for applied mathematicians and biologists. 10.3. How far is the mathematical theory for biological systems. 10.4. Closure. |
ctrlnum | (OCoLC)733048104 |
dewey-full | 570.15/118 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 570 - Biology |
dewey-raw | 570.15/118 |
dewey-search | 570.15/118 |
dewey-sort | 3570.15 3118 |
dewey-tens | 570 - Biology |
discipline | Biologie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06991cam a2200793 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn733048104</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">110627s2011 si a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">E7B</subfield><subfield code="d">YDXCP</subfield><subfield code="d">COD</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">I9W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AGLDB</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NJR</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCA</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">LEAUB</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCA</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">101563037</subfield><subfield code="2">DNLM</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1049611454</subfield><subfield code="a">1055404862</subfield><subfield code="a">1058885004</subfield><subfield code="a">1062886512</subfield><subfield code="a">1081297192</subfield><subfield code="a">1086500337</subfield><subfield code="a">1228531106</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814340540</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814340545</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814340533</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814340537</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">3609947</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)733048104</subfield><subfield code="z">(OCoLC)1049611454</subfield><subfield code="z">(OCoLC)1055404862</subfield><subfield code="z">(OCoLC)1058885004</subfield><subfield code="z">(OCoLC)1062886512</subfield><subfield code="z">(OCoLC)1081297192</subfield><subfield code="z">(OCoLC)1086500337</subfield><subfield code="z">(OCoLC)1228531106</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QH323.5</subfield><subfield code="b">.B4533 2011eb</subfield></datafield><datafield tag="060" ind1=" " ind2="4"><subfield code="a">W1</subfield><subfield code="b">SE718K v.11 2011</subfield></datafield><datafield tag="060" ind1=" " ind2="4"><subfield code="a">QW 504</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">NAT</subfield><subfield code="x">027000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">086000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">008000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">570.15/118</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bianca, C.</subfield><subfield code="q">(Carlo)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJkp6H33R8wfyvkD3DyGHC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2010076928</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Towards a mathematical theory of complex biological systems /</subfield><subfield code="c">C. Bianca, N. Bellomo.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvii, 208 pages :)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series in mathematical biology and medicine ;</subfield><subfield code="v">v. 11</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Looking for a mathematical theory of biological systems. 1.1. Introduction. 1.2. On the concept of mathematical theory. 1.3. Plan of the monograph -- 2. On the complexity of biological systems. 2.1. Ten common features of living systems. 2.2. Some introductory concepts of systems biology. 2.3. Reducing complexity -- 3. The immune system : A phenomenological overview. 3.1. Introduction. 3.2. Bacteria and viruses. 3.3. The immune system components. 3.4. The immune response. 3.5. Immune system diseases. 3.6. Critical analysis -- 4. Wound healing process and organ repair. 4.1. Introduction. 4.2. Genes and mutations. 4.3. The phases of wound healing. 4.4. The fibrosis disease. 4.5. Critical analysis -- 5. From levels of biological organization to system biology. 5.1. Introduction. 5.2. From scaling to mathematical structures. 5.3. Guidelines to the modeling approach -- 6. Mathematical tools and structures. 6.1. Introduction. 6.2. Mathematical frameworks of the kinetic theory of active particles. 6.3. Guidelines towards modeling at the molecular and cellular scales. 6.4. Additional analysis looking at the immune competition. 6.5. Critical analysis -- 7. Multiscale modeling : Linking molecular, cellular, and tissues scales. 7.1. Introduction. 7.2. On the phenomenological derivation of macroscopic tissue models. 7.3. Cellular-tissue scale modeling of closed systems. 7.4. Cellular-tissue scale modeling of open systems. 7.5. On the molecular-cellular scale modeling. 7.6. Critical analysis -- 8. A model for Malign Keloid Formation and immune system competition. 8.1. Introduction. 8.2. The mathematical model. 8.3. Simulations and emerging behaviors. 8.4. Critical analysis and perspectives -- 9. Macroscopic models of chemotaxis by KTAP asymptotic methods. 9.1. Introduction. 9.2. Linear turning kernels : Relaxation models. 9.3. Cellular-tissue scale models of chemotaxis. 9.4. Critical analysis -- 10. Looking ahead. 10.1. Introduction. 10.2. Some challenges for applied mathematicians and biologists. 10.3. How far is the mathematical theory for biological systems. 10.4. Closure.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This monograph has the ambitious aim of developing a mathematical theory of complex biological systems with special attention to the phenomena of ageing, degeneration and repair of biological tissues under individual self-repair actions that may have good potential in medical therapy. The approach to mathematically modeling biological systems needs to tackle the additional difficulties generated by the peculiarities of living matter. These include the lack of invariance principles, abilities to express strategies for individual fitness, heterogeneous behaviors, competition up to proliferative and/or destructive actions, mutations, learning ability, evolution and many others. Applied mathematicians in the field of living systems, especially biological systems, will appreciate the special class of integro-differential equations offered here for modeling at the molecular, cellular and tissue scales. A unique perspective is also presented with a number of case studies in biological modeling.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Biomathematics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85014235</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Biological systems</subfield><subfield code="x">Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical models.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082124</subfield></datafield><datafield tag="650" ind1="1" ind2="2"><subfield code="a">Immune System</subfield><subfield code="x">physiology</subfield></datafield><datafield tag="650" ind1="2" ind2="2"><subfield code="a">Wound Healing</subfield><subfield code="x">physiology</subfield></datafield><datafield tag="650" ind1="2" ind2="2"><subfield code="a">Models, Theoretical</subfield></datafield><datafield tag="650" ind1="2" ind2="2"><subfield code="a">Computational Biology</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Biomathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Systèmes biologiques</subfield><subfield code="x">Modèles mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Modèles mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Bio-informatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">mathematical models.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NATURE</subfield><subfield code="x">Reference.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Life Sciences</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Life Sciences</subfield><subfield code="x">Biology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biological systems</subfield><subfield code="x">Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biomathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bellomo, N.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Towards a mathematical theory of complex biological systems (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGqB7Xgv3vjrc9t3PjXTpP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Bianca, Concetta.</subfield><subfield code="t">Towards a mathematical theory of complex biological systems.</subfield><subfield code="d">Singapore ; Hackensack, NJ : World Scientific, ©2011</subfield><subfield code="z">9789814340533</subfield><subfield code="w">(DLC) 2010043493</subfield><subfield code="w">(OCoLC)678534348</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Series in mathematical biology and medicine ;</subfield><subfield code="v">v. 11.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n96018845</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=373224</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=373224</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25565321</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL737605</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10479807</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">373224</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">6958483</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn733048104 |
illustrated | Illustrated |
indexdate | 2024-10-25T16:18:09Z |
institution | BVB |
isbn | 9789814340540 9814340545 |
language | English |
oclc_num | 733048104 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (xvii, 208 pages :) |
psigel | ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | World Scientific, |
record_format | marc |
series | Series in mathematical biology and medicine ; |
series2 | Series in mathematical biology and medicine ; |
spelling | Bianca, C. (Carlo) https://id.oclc.org/worldcat/entity/E39PBJkp6H33R8wfyvkD3DyGHC http://id.loc.gov/authorities/names/n2010076928 Towards a mathematical theory of complex biological systems / C. Bianca, N. Bellomo. Singapore ; Hackensack, NJ : World Scientific, ©2011. 1 online resource (xvii, 208 pages :) text txt rdacontent computer c rdamedia online resource cr rdacarrier Series in mathematical biology and medicine ; v. 11 Includes bibliographical references and index. Print version record. 1. Looking for a mathematical theory of biological systems. 1.1. Introduction. 1.2. On the concept of mathematical theory. 1.3. Plan of the monograph -- 2. On the complexity of biological systems. 2.1. Ten common features of living systems. 2.2. Some introductory concepts of systems biology. 2.3. Reducing complexity -- 3. The immune system : A phenomenological overview. 3.1. Introduction. 3.2. Bacteria and viruses. 3.3. The immune system components. 3.4. The immune response. 3.5. Immune system diseases. 3.6. Critical analysis -- 4. Wound healing process and organ repair. 4.1. Introduction. 4.2. Genes and mutations. 4.3. The phases of wound healing. 4.4. The fibrosis disease. 4.5. Critical analysis -- 5. From levels of biological organization to system biology. 5.1. Introduction. 5.2. From scaling to mathematical structures. 5.3. Guidelines to the modeling approach -- 6. Mathematical tools and structures. 6.1. Introduction. 6.2. Mathematical frameworks of the kinetic theory of active particles. 6.3. Guidelines towards modeling at the molecular and cellular scales. 6.4. Additional analysis looking at the immune competition. 6.5. Critical analysis -- 7. Multiscale modeling : Linking molecular, cellular, and tissues scales. 7.1. Introduction. 7.2. On the phenomenological derivation of macroscopic tissue models. 7.3. Cellular-tissue scale modeling of closed systems. 7.4. Cellular-tissue scale modeling of open systems. 7.5. On the molecular-cellular scale modeling. 7.6. Critical analysis -- 8. A model for Malign Keloid Formation and immune system competition. 8.1. Introduction. 8.2. The mathematical model. 8.3. Simulations and emerging behaviors. 8.4. Critical analysis and perspectives -- 9. Macroscopic models of chemotaxis by KTAP asymptotic methods. 9.1. Introduction. 9.2. Linear turning kernels : Relaxation models. 9.3. Cellular-tissue scale models of chemotaxis. 9.4. Critical analysis -- 10. Looking ahead. 10.1. Introduction. 10.2. Some challenges for applied mathematicians and biologists. 10.3. How far is the mathematical theory for biological systems. 10.4. Closure. This monograph has the ambitious aim of developing a mathematical theory of complex biological systems with special attention to the phenomena of ageing, degeneration and repair of biological tissues under individual self-repair actions that may have good potential in medical therapy. The approach to mathematically modeling biological systems needs to tackle the additional difficulties generated by the peculiarities of living matter. These include the lack of invariance principles, abilities to express strategies for individual fitness, heterogeneous behaviors, competition up to proliferative and/or destructive actions, mutations, learning ability, evolution and many others. Applied mathematicians in the field of living systems, especially biological systems, will appreciate the special class of integro-differential equations offered here for modeling at the molecular, cellular and tissue scales. A unique perspective is also presented with a number of case studies in biological modeling. Biomathematics. http://id.loc.gov/authorities/subjects/sh85014235 Biological systems Mathematical models. Mathematical models. http://id.loc.gov/authorities/subjects/sh85082124 Immune System physiology Wound Healing physiology Models, Theoretical Computational Biology Biomathématiques. Systèmes biologiques Modèles mathématiques. Modèles mathématiques. Bio-informatique. mathematical models. aat NATURE Reference. bisacsh SCIENCE Life Sciences General. bisacsh SCIENCE Life Sciences Biology. bisacsh Mathematical models fast Biological systems Mathematical models fast Biomathematics fast Bellomo, N. has work: Towards a mathematical theory of complex biological systems (Text) https://id.oclc.org/worldcat/entity/E39PCGqB7Xgv3vjrc9t3PjXTpP https://id.oclc.org/worldcat/ontology/hasWork Print version: Bianca, Concetta. Towards a mathematical theory of complex biological systems. Singapore ; Hackensack, NJ : World Scientific, ©2011 9789814340533 (DLC) 2010043493 (OCoLC)678534348 Series in mathematical biology and medicine ; v. 11. http://id.loc.gov/authorities/names/n96018845 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=373224 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=373224 Volltext |
spellingShingle | Bianca, C. (Carlo) Towards a mathematical theory of complex biological systems / Series in mathematical biology and medicine ; 1. Looking for a mathematical theory of biological systems. 1.1. Introduction. 1.2. On the concept of mathematical theory. 1.3. Plan of the monograph -- 2. On the complexity of biological systems. 2.1. Ten common features of living systems. 2.2. Some introductory concepts of systems biology. 2.3. Reducing complexity -- 3. The immune system : A phenomenological overview. 3.1. Introduction. 3.2. Bacteria and viruses. 3.3. The immune system components. 3.4. The immune response. 3.5. Immune system diseases. 3.6. Critical analysis -- 4. Wound healing process and organ repair. 4.1. Introduction. 4.2. Genes and mutations. 4.3. The phases of wound healing. 4.4. The fibrosis disease. 4.5. Critical analysis -- 5. From levels of biological organization to system biology. 5.1. Introduction. 5.2. From scaling to mathematical structures. 5.3. Guidelines to the modeling approach -- 6. Mathematical tools and structures. 6.1. Introduction. 6.2. Mathematical frameworks of the kinetic theory of active particles. 6.3. Guidelines towards modeling at the molecular and cellular scales. 6.4. Additional analysis looking at the immune competition. 6.5. Critical analysis -- 7. Multiscale modeling : Linking molecular, cellular, and tissues scales. 7.1. Introduction. 7.2. On the phenomenological derivation of macroscopic tissue models. 7.3. Cellular-tissue scale modeling of closed systems. 7.4. Cellular-tissue scale modeling of open systems. 7.5. On the molecular-cellular scale modeling. 7.6. Critical analysis -- 8. A model for Malign Keloid Formation and immune system competition. 8.1. Introduction. 8.2. The mathematical model. 8.3. Simulations and emerging behaviors. 8.4. Critical analysis and perspectives -- 9. Macroscopic models of chemotaxis by KTAP asymptotic methods. 9.1. Introduction. 9.2. Linear turning kernels : Relaxation models. 9.3. Cellular-tissue scale models of chemotaxis. 9.4. Critical analysis -- 10. Looking ahead. 10.1. Introduction. 10.2. Some challenges for applied mathematicians and biologists. 10.3. How far is the mathematical theory for biological systems. 10.4. Closure. Biomathematics. http://id.loc.gov/authorities/subjects/sh85014235 Biological systems Mathematical models. Mathematical models. http://id.loc.gov/authorities/subjects/sh85082124 Immune System physiology Wound Healing physiology Models, Theoretical Computational Biology Biomathématiques. Systèmes biologiques Modèles mathématiques. Modèles mathématiques. Bio-informatique. mathematical models. aat NATURE Reference. bisacsh SCIENCE Life Sciences General. bisacsh SCIENCE Life Sciences Biology. bisacsh Mathematical models fast Biological systems Mathematical models fast Biomathematics fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85014235 http://id.loc.gov/authorities/subjects/sh85082124 |
title | Towards a mathematical theory of complex biological systems / |
title_auth | Towards a mathematical theory of complex biological systems / |
title_exact_search | Towards a mathematical theory of complex biological systems / |
title_full | Towards a mathematical theory of complex biological systems / C. Bianca, N. Bellomo. |
title_fullStr | Towards a mathematical theory of complex biological systems / C. Bianca, N. Bellomo. |
title_full_unstemmed | Towards a mathematical theory of complex biological systems / C. Bianca, N. Bellomo. |
title_short | Towards a mathematical theory of complex biological systems / |
title_sort | towards a mathematical theory of complex biological systems |
topic | Biomathematics. http://id.loc.gov/authorities/subjects/sh85014235 Biological systems Mathematical models. Mathematical models. http://id.loc.gov/authorities/subjects/sh85082124 Immune System physiology Wound Healing physiology Models, Theoretical Computational Biology Biomathématiques. Systèmes biologiques Modèles mathématiques. Modèles mathématiques. Bio-informatique. mathematical models. aat NATURE Reference. bisacsh SCIENCE Life Sciences General. bisacsh SCIENCE Life Sciences Biology. bisacsh Mathematical models fast Biological systems Mathematical models fast Biomathematics fast |
topic_facet | Biomathematics. Biological systems Mathematical models. Mathematical models. Immune System physiology Wound Healing physiology Models, Theoretical Computational Biology Biomathématiques. Systèmes biologiques Modèles mathématiques. Modèles mathématiques. Bio-informatique. mathematical models. NATURE Reference. SCIENCE Life Sciences General. SCIENCE Life Sciences Biology. Mathematical models Biological systems Mathematical models Biomathematics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=373224 |
work_keys_str_mv | AT biancac towardsamathematicaltheoryofcomplexbiologicalsystems AT bellomon towardsamathematicaltheoryofcomplexbiologicalsystems |