Random sequential packing of cubes /:
In this volume very simplified models are introduced to understand the random sequential packing models mathematically. The 1-dimensional model is sometimes called the Parking Problem, which is known by the pioneering works by Flory (1939), Renyi (1958), Dvoretzky and Robbins (1962). To obtain a 1-d...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey :
World Scientific,
©2011.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | In this volume very simplified models are introduced to understand the random sequential packing models mathematically. The 1-dimensional model is sometimes called the Parking Problem, which is known by the pioneering works by Flory (1939), Renyi (1958), Dvoretzky and Robbins (1962). To obtain a 1-dimensional packing density, distribution of the minimum of gaps, etc., the classical analysis has to be studied. The packing density of the general multi-dimensional random sequential packing of cubes (hypercubes) makes a well-known unsolved problem. The experimental analysis is usually applied to ... |
Beschreibung: | 1 online resource (xiii, 240 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9789814307840 981430784X |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn733047773 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr mnu---unuuu | ||
008 | 110627s2011 njua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d EBLCP |d E7B |d MHW |d YDXCP |d OSU |d OCLCQ |d MERUC |d OCLCQ |d DEBSZ |d OCLCQ |d OCLCF |d OCLCQ |d AGLDB |d ZCU |d OCLCQ |d NJR |d U3W |d OCLCQ |d VTS |d ICG |d INT |d OCLCQ |d STF |d DKC |d OCLCQ |d M8D |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d OCLCL |d SXB |d OCLCQ |d OCLCO | ||
020 | |a 9789814307840 |q (electronic bk.) | ||
020 | |a 981430784X |q (electronic bk.) | ||
020 | |z 9789814307833 |q (hardcover ; |q alk. paper) | ||
020 | |z 9814307831 |q (hardcover ; |q alk. paper) | ||
035 | |a (OCoLC)733047773 | ||
050 | 4 | |a QA166.7 |b .D88 2011eb | |
072 | 7 | |a MAT |x 036000 |2 bisacsh | |
082 | 7 | |a 511/.6 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Dutour Sikirić, Mathieu. |1 https://id.oclc.org/worldcat/entity/E39PCjCKTJG6w6gwgf7vBFDXV3 |0 http://id.loc.gov/authorities/names/nb2008013894 | |
245 | 1 | 0 | |a Random sequential packing of cubes / |c Mathieu Dutour Sikirić, Yoshiaki Itoh. |
260 | |a New Jersey : |b World Scientific, |c ©2011. | ||
300 | |a 1 online resource (xiii, 240 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
520 | |a In this volume very simplified models are introduced to understand the random sequential packing models mathematically. The 1-dimensional model is sometimes called the Parking Problem, which is known by the pioneering works by Flory (1939), Renyi (1958), Dvoretzky and Robbins (1962). To obtain a 1-dimensional packing density, distribution of the minimum of gaps, etc., the classical analysis has to be studied. The packing density of the general multi-dimensional random sequential packing of cubes (hypercubes) makes a well-known unsolved problem. The experimental analysis is usually applied to ... | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Preface; Contents; 1. Introduction; 2. The Flory model; 3. Random interval packing; 4. On the minimum of gaps generated by 1-dimensional random packing; 5. Integral equation method for the 1-dimensional random packing; 6. Random sequential bisection and its associated binary tree; 7. The unified Kakutani Renyi model; 8. Parking cars with spin but no length; 9. Random sequential packing simulations; 10. Discrete cube packings in the cube; 11. Discrete cube packings in the torus; 12. Continuous random cube packings in cube and torus; Appendix A Combinatorial Enumeration; Bibliography; Index. | |
650 | 0 | |a Combinatorial packing and covering. |0 http://id.loc.gov/authorities/subjects/sh85028810 | |
650 | 0 | |a Sphere packings. |0 http://id.loc.gov/authorities/subjects/sh2001008315 | |
650 | 6 | |a Pavage et remplissage (Géométrie combinatoire) | |
650 | 6 | |a Empilements de sphères. | |
650 | 7 | |a MATHEMATICS |x Combinatorics. |2 bisacsh | |
650 | 7 | |a Combinatorial packing and covering |2 fast | |
650 | 7 | |a Sphere packings |2 fast | |
700 | 1 | |a Itoh, Yoshiaki, |d 1943- |1 https://id.oclc.org/worldcat/entity/E39PCjDrJwxkmmGCkb8Pm6Mc6C |0 http://id.loc.gov/authorities/names/n2010046053 | |
758 | |i has work: |a Random sequential packing of cubes (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGPhkvxTCG9KpYYyXfDCkP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Dutour Sikirić, Mathieu. |t Random sequential packing of cubes. |d Singapore ; Hackensack, NJ : World Scientific, ©2011 |z 9789814307833 |w (DLC) 2010027617 |w (OCoLC)587219915 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=373227 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL737608 | ||
938 | |a ebrary |b EBRY |n ebr10480246 | ||
938 | |a EBSCOhost |b EBSC |n 373227 | ||
938 | |a YBP Library Services |b YANK |n 6958477 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn733047773 |
---|---|
_version_ | 1816881763269476353 |
adam_text | |
any_adam_object | |
author | Dutour Sikirić, Mathieu |
author2 | Itoh, Yoshiaki, 1943- |
author2_role | |
author2_variant | y i yi |
author_GND | http://id.loc.gov/authorities/names/nb2008013894 http://id.loc.gov/authorities/names/n2010046053 |
author_facet | Dutour Sikirić, Mathieu Itoh, Yoshiaki, 1943- |
author_role | |
author_sort | Dutour Sikirić, Mathieu |
author_variant | s m d sm smd |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA166 |
callnumber-raw | QA166.7 .D88 2011eb |
callnumber-search | QA166.7 .D88 2011eb |
callnumber-sort | QA 3166.7 D88 42011EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Preface; Contents; 1. Introduction; 2. The Flory model; 3. Random interval packing; 4. On the minimum of gaps generated by 1-dimensional random packing; 5. Integral equation method for the 1-dimensional random packing; 6. Random sequential bisection and its associated binary tree; 7. The unified Kakutani Renyi model; 8. Parking cars with spin but no length; 9. Random sequential packing simulations; 10. Discrete cube packings in the cube; 11. Discrete cube packings in the torus; 12. Continuous random cube packings in cube and torus; Appendix A Combinatorial Enumeration; Bibliography; Index. |
ctrlnum | (OCoLC)733047773 |
dewey-full | 511/.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.6 |
dewey-search | 511/.6 |
dewey-sort | 3511 16 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03960cam a2200541 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn733047773</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mnu---unuuu</controlfield><controlfield tag="008">110627s2011 njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">E7B</subfield><subfield code="d">MHW</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OSU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NJR</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814307840</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981430784X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814307833</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814307831</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)733047773</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA166.7</subfield><subfield code="b">.D88 2011eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">036000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511/.6</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dutour Sikirić, Mathieu.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjCKTJG6w6gwgf7vBFDXV3</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2008013894</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Random sequential packing of cubes /</subfield><subfield code="c">Mathieu Dutour Sikirić, Yoshiaki Itoh.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New Jersey :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 240 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this volume very simplified models are introduced to understand the random sequential packing models mathematically. The 1-dimensional model is sometimes called the Parking Problem, which is known by the pioneering works by Flory (1939), Renyi (1958), Dvoretzky and Robbins (1962). To obtain a 1-dimensional packing density, distribution of the minimum of gaps, etc., the classical analysis has to be studied. The packing density of the general multi-dimensional random sequential packing of cubes (hypercubes) makes a well-known unsolved problem. The experimental analysis is usually applied to ...</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface; Contents; 1. Introduction; 2. The Flory model; 3. Random interval packing; 4. On the minimum of gaps generated by 1-dimensional random packing; 5. Integral equation method for the 1-dimensional random packing; 6. Random sequential bisection and its associated binary tree; 7. The unified Kakutani Renyi model; 8. Parking cars with spin but no length; 9. Random sequential packing simulations; 10. Discrete cube packings in the cube; 11. Discrete cube packings in the torus; 12. Continuous random cube packings in cube and torus; Appendix A Combinatorial Enumeration; Bibliography; Index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Combinatorial packing and covering.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85028810</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Sphere packings.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2001008315</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Pavage et remplissage (Géométrie combinatoire)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Empilements de sphères.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Combinatorics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combinatorial packing and covering</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sphere packings</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Itoh, Yoshiaki,</subfield><subfield code="d">1943-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjDrJwxkmmGCkb8Pm6Mc6C</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2010046053</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Random sequential packing of cubes (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGPhkvxTCG9KpYYyXfDCkP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Dutour Sikirić, Mathieu.</subfield><subfield code="t">Random sequential packing of cubes.</subfield><subfield code="d">Singapore ; Hackensack, NJ : World Scientific, ©2011</subfield><subfield code="z">9789814307833</subfield><subfield code="w">(DLC) 2010027617</subfield><subfield code="w">(OCoLC)587219915</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=373227</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL737608</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10480246</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">373227</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">6958477</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn733047773 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:53Z |
institution | BVB |
isbn | 9789814307840 981430784X |
language | English |
oclc_num | 733047773 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiii, 240 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | World Scientific, |
record_format | marc |
spelling | Dutour Sikirić, Mathieu. https://id.oclc.org/worldcat/entity/E39PCjCKTJG6w6gwgf7vBFDXV3 http://id.loc.gov/authorities/names/nb2008013894 Random sequential packing of cubes / Mathieu Dutour Sikirić, Yoshiaki Itoh. New Jersey : World Scientific, ©2011. 1 online resource (xiii, 240 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier In this volume very simplified models are introduced to understand the random sequential packing models mathematically. The 1-dimensional model is sometimes called the Parking Problem, which is known by the pioneering works by Flory (1939), Renyi (1958), Dvoretzky and Robbins (1962). To obtain a 1-dimensional packing density, distribution of the minimum of gaps, etc., the classical analysis has to be studied. The packing density of the general multi-dimensional random sequential packing of cubes (hypercubes) makes a well-known unsolved problem. The experimental analysis is usually applied to ... Includes bibliographical references and index. Print version record. Preface; Contents; 1. Introduction; 2. The Flory model; 3. Random interval packing; 4. On the minimum of gaps generated by 1-dimensional random packing; 5. Integral equation method for the 1-dimensional random packing; 6. Random sequential bisection and its associated binary tree; 7. The unified Kakutani Renyi model; 8. Parking cars with spin but no length; 9. Random sequential packing simulations; 10. Discrete cube packings in the cube; 11. Discrete cube packings in the torus; 12. Continuous random cube packings in cube and torus; Appendix A Combinatorial Enumeration; Bibliography; Index. Combinatorial packing and covering. http://id.loc.gov/authorities/subjects/sh85028810 Sphere packings. http://id.loc.gov/authorities/subjects/sh2001008315 Pavage et remplissage (Géométrie combinatoire) Empilements de sphères. MATHEMATICS Combinatorics. bisacsh Combinatorial packing and covering fast Sphere packings fast Itoh, Yoshiaki, 1943- https://id.oclc.org/worldcat/entity/E39PCjDrJwxkmmGCkb8Pm6Mc6C http://id.loc.gov/authorities/names/n2010046053 has work: Random sequential packing of cubes (Text) https://id.oclc.org/worldcat/entity/E39PCGPhkvxTCG9KpYYyXfDCkP https://id.oclc.org/worldcat/ontology/hasWork Print version: Dutour Sikirić, Mathieu. Random sequential packing of cubes. Singapore ; Hackensack, NJ : World Scientific, ©2011 9789814307833 (DLC) 2010027617 (OCoLC)587219915 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=373227 Volltext |
spellingShingle | Dutour Sikirić, Mathieu Random sequential packing of cubes / Preface; Contents; 1. Introduction; 2. The Flory model; 3. Random interval packing; 4. On the minimum of gaps generated by 1-dimensional random packing; 5. Integral equation method for the 1-dimensional random packing; 6. Random sequential bisection and its associated binary tree; 7. The unified Kakutani Renyi model; 8. Parking cars with spin but no length; 9. Random sequential packing simulations; 10. Discrete cube packings in the cube; 11. Discrete cube packings in the torus; 12. Continuous random cube packings in cube and torus; Appendix A Combinatorial Enumeration; Bibliography; Index. Combinatorial packing and covering. http://id.loc.gov/authorities/subjects/sh85028810 Sphere packings. http://id.loc.gov/authorities/subjects/sh2001008315 Pavage et remplissage (Géométrie combinatoire) Empilements de sphères. MATHEMATICS Combinatorics. bisacsh Combinatorial packing and covering fast Sphere packings fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85028810 http://id.loc.gov/authorities/subjects/sh2001008315 |
title | Random sequential packing of cubes / |
title_auth | Random sequential packing of cubes / |
title_exact_search | Random sequential packing of cubes / |
title_full | Random sequential packing of cubes / Mathieu Dutour Sikirić, Yoshiaki Itoh. |
title_fullStr | Random sequential packing of cubes / Mathieu Dutour Sikirić, Yoshiaki Itoh. |
title_full_unstemmed | Random sequential packing of cubes / Mathieu Dutour Sikirić, Yoshiaki Itoh. |
title_short | Random sequential packing of cubes / |
title_sort | random sequential packing of cubes |
topic | Combinatorial packing and covering. http://id.loc.gov/authorities/subjects/sh85028810 Sphere packings. http://id.loc.gov/authorities/subjects/sh2001008315 Pavage et remplissage (Géométrie combinatoire) Empilements de sphères. MATHEMATICS Combinatorics. bisacsh Combinatorial packing and covering fast Sphere packings fast |
topic_facet | Combinatorial packing and covering. Sphere packings. Pavage et remplissage (Géométrie combinatoire) Empilements de sphères. MATHEMATICS Combinatorics. Combinatorial packing and covering Sphere packings |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=373227 |
work_keys_str_mv | AT dutoursikiricmathieu randomsequentialpackingofcubes AT itohyoshiaki randomsequentialpackingofcubes |