Bayesian nonparametrics /:
"Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent b...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, UK ; New York :
Cambridge University Press,
2010.
|
Schriftenreihe: | Cambridge series on statistical and probabilistic mathematics ;
28. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics"--Provided by publisher |
Beschreibung: | 1 online resource (viii, 299 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 290-291) and indexes. |
ISBN: | 9780511675362 0511675364 9780511802478 0511802471 9780511673382 0511673388 1107206073 9781107206076 9786613067968 6613067962 0511674171 9780511674174 0511670834 9780511670831 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn719370012 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 110502s2010 enka ob 001 0 eng d | ||
010 | |z 2009037744 | ||
040 | |a N$T |b eng |e pn |c N$T |d CDX |d E7B |d OCLCQ |d REDDC |d OCLCQ |d UIU |d OCLCO |d OCLCQ |d DEBSZ |d OCLCQ |d YDXCP |d OCLCQ |d OCLCF |d OCLCQ |d LOA |d OCLCQ |d COCUF |d LIP |d PIFAG |d OCLCQ |d UAB |d STF |d WRM |d OCLCQ |d VT2 |d AU@ |d OCLCQ |d WYU |d OCLCQ |d A6Q |d UKCRE |d LUN |d OCLCQ |d OCLCO |d OCLCQ |d TUHNV |d QGK |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 960202889 |a 960838335 |a 960995965 |a 961502885 |a 962674833 |a 965432231 |a 991965831 |a 1037912182 |a 1038661264 |a 1055356662 |a 1059046763 |a 1066404261 |a 1096237175 |a 1153546493 |a 1170424921 |a 1173091451 |a 1228559127 |a 1243574133 |a 1259205480 | ||
020 | |a 9780511675362 |q (electronic bk.) | ||
020 | |a 0511675364 |q (electronic bk.) | ||
020 | |a 9780511802478 |q (electronic bk.) | ||
020 | |a 0511802471 |q (electronic bk.) | ||
020 | |a 9780511673382 | ||
020 | |a 0511673388 | ||
020 | |z 9780521513463 | ||
020 | |z 0521513464 | ||
020 | |a 1107206073 | ||
020 | |a 9781107206076 | ||
020 | |a 9786613067968 | ||
020 | |a 6613067962 | ||
020 | |a 0511674171 | ||
020 | |a 9780511674174 | ||
020 | |a 0511670834 | ||
020 | |a 9780511670831 | ||
035 | |a (OCoLC)719370012 |z (OCoLC)960202889 |z (OCoLC)960838335 |z (OCoLC)960995965 |z (OCoLC)961502885 |z (OCoLC)962674833 |z (OCoLC)965432231 |z (OCoLC)991965831 |z (OCoLC)1037912182 |z (OCoLC)1038661264 |z (OCoLC)1055356662 |z (OCoLC)1059046763 |z (OCoLC)1066404261 |z (OCoLC)1096237175 |z (OCoLC)1153546493 |z (OCoLC)1170424921 |z (OCoLC)1173091451 |z (OCoLC)1228559127 |z (OCoLC)1243574133 |z (OCoLC)1259205480 | ||
050 | 4 | |a QA278.8 |b .B39 2010eb | |
072 | 7 | |a MAT |x 029010 |2 bisacsh | |
082 | 7 | |a 519.5/42 |2 22 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Bayesian nonparametrics / |c edited by Nils Lid Hjort [and others]. |
260 | |a Cambridge, UK ; |a New York : |b Cambridge University Press, |c 2010. | ||
300 | |a 1 online resource (viii, 299 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
490 | 1 | |a Cambridge series in statistical and probabilistic mathematics ; |v 28 | |
504 | |a Includes bibliographical references (pages 290-291) and indexes. | ||
520 | |a "Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics"--Provided by publisher | ||
505 | 0 | |a An invitation to Bayesian nonparametrics / Nils Lid Hjort, Chris Holmes, Peter Müller and Stephen G. Walker -- 1. Bayesian nonparametric methods: motivation and ideas / Stephen G. Walker -- 2. The Dirichlet process, related priors, and posterior asymptotics / Subhashis Ghosal -- 3. Models beyond the Dirichlet process / Antonio Lijoi and Igor Prünster -- 4. Further models and applications / Nils Lid Hjort -- 5. Hierarchical Bayesian nonparametric models with applications / Yee Whye Teh and Michael I. Jordan -- 6. Computational issues arising in Bayesian nonparametric hierarchical models / Jim Griffin and Chris Holmes -- 7. Nonparametric Bayes applications to biostatistics / David B. Dunson -- 8. More nonparametric Bayesian models for biostatistics / Peter Müller and Fernando Quintana -- Author index -- Subject index. | |
588 | 0 | |a Print version record. | |
546 | |a English. | ||
650 | 0 | |a Nonparametric statistics. |0 http://id.loc.gov/authorities/subjects/sh85092349 | |
650 | 0 | |a Bayesian statistical decision theory. |0 http://id.loc.gov/authorities/subjects/sh85012506 | |
650 | 2 | |a Statistics, Nonparametric |0 https://id.nlm.nih.gov/mesh/D018709 | |
650 | 6 | |a Statistique non paramétrique. | |
650 | 6 | |a Théorie de la décision bayésienne. | |
650 | 7 | |a MATHEMATICS |x Probability & Statistics |x Bayesian Analysis. |2 bisacsh | |
650 | 7 | |a Bayesian statistical decision theory |2 fast | |
650 | 7 | |a Nonparametric statistics |2 fast | |
700 | 1 | |a Hjort, Nils Lid. | |
758 | |i has work: |a Bayesian nonparametrics (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGCDrjKpyXcQMKPqckfpRq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Bayesian nonparametrics. |d Cambridge, UK ; New York : Cambridge University Press, 2010 |z 9780521513463 |w (DLC) 2009037744 |w (OCoLC)441945339 |
830 | 0 | |a Cambridge series on statistical and probabilistic mathematics ; |v 28. |0 http://id.loc.gov/authorities/names/n96064948 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=312516 |3 Volltext |
938 | |a Coutts Information Services |b COUT |n 17768164 | ||
938 | |a ebrary |b EBRY |n ebr10466312 | ||
938 | |a EBSCOhost |b EBSC |n 312516 | ||
938 | |a YBP Library Services |b YANK |n 4121601 | ||
938 | |a YBP Library Services |b YANK |n 5048447 | ||
938 | |a YBP Library Services |b YANK |n 5559195 | ||
938 | |a YBP Library Services |b YANK |n 6943790 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn719370012 |
---|---|
_version_ | 1816881758033936384 |
adam_text | |
any_adam_object | |
author2 | Hjort, Nils Lid |
author2_role | |
author2_variant | n l h nl nlh |
author_facet | Hjort, Nils Lid |
author_sort | Hjort, Nils Lid |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA278 |
callnumber-raw | QA278.8 .B39 2010eb |
callnumber-search | QA278.8 .B39 2010eb |
callnumber-sort | QA 3278.8 B39 42010EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | An invitation to Bayesian nonparametrics / Nils Lid Hjort, Chris Holmes, Peter Müller and Stephen G. Walker -- 1. Bayesian nonparametric methods: motivation and ideas / Stephen G. Walker -- 2. The Dirichlet process, related priors, and posterior asymptotics / Subhashis Ghosal -- 3. Models beyond the Dirichlet process / Antonio Lijoi and Igor Prünster -- 4. Further models and applications / Nils Lid Hjort -- 5. Hierarchical Bayesian nonparametric models with applications / Yee Whye Teh and Michael I. Jordan -- 6. Computational issues arising in Bayesian nonparametric hierarchical models / Jim Griffin and Chris Holmes -- 7. Nonparametric Bayes applications to biostatistics / David B. Dunson -- 8. More nonparametric Bayesian models for biostatistics / Peter Müller and Fernando Quintana -- Author index -- Subject index. |
ctrlnum | (OCoLC)719370012 |
dewey-full | 519.5/42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5/42 |
dewey-search | 519.5/42 |
dewey-sort | 3519.5 242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05914cam a2200793 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn719370012</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">110502s2010 enka ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2009037744</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">CDX</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UIU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">LIP</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">A6Q</subfield><subfield code="d">UKCRE</subfield><subfield code="d">LUN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TUHNV</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">960202889</subfield><subfield code="a">960838335</subfield><subfield code="a">960995965</subfield><subfield code="a">961502885</subfield><subfield code="a">962674833</subfield><subfield code="a">965432231</subfield><subfield code="a">991965831</subfield><subfield code="a">1037912182</subfield><subfield code="a">1038661264</subfield><subfield code="a">1055356662</subfield><subfield code="a">1059046763</subfield><subfield code="a">1066404261</subfield><subfield code="a">1096237175</subfield><subfield code="a">1153546493</subfield><subfield code="a">1170424921</subfield><subfield code="a">1173091451</subfield><subfield code="a">1228559127</subfield><subfield code="a">1243574133</subfield><subfield code="a">1259205480</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511675362</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511675364</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511802478</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511802471</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511673382</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511673388</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521513463</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521513464</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107206073</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107206076</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786613067968</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6613067962</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511674171</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511674174</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511670834</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511670831</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)719370012</subfield><subfield code="z">(OCoLC)960202889</subfield><subfield code="z">(OCoLC)960838335</subfield><subfield code="z">(OCoLC)960995965</subfield><subfield code="z">(OCoLC)961502885</subfield><subfield code="z">(OCoLC)962674833</subfield><subfield code="z">(OCoLC)965432231</subfield><subfield code="z">(OCoLC)991965831</subfield><subfield code="z">(OCoLC)1037912182</subfield><subfield code="z">(OCoLC)1038661264</subfield><subfield code="z">(OCoLC)1055356662</subfield><subfield code="z">(OCoLC)1059046763</subfield><subfield code="z">(OCoLC)1066404261</subfield><subfield code="z">(OCoLC)1096237175</subfield><subfield code="z">(OCoLC)1153546493</subfield><subfield code="z">(OCoLC)1170424921</subfield><subfield code="z">(OCoLC)1173091451</subfield><subfield code="z">(OCoLC)1228559127</subfield><subfield code="z">(OCoLC)1243574133</subfield><subfield code="z">(OCoLC)1259205480</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA278.8</subfield><subfield code="b">.B39 2010eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">029010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.5/42</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Bayesian nonparametrics /</subfield><subfield code="c">edited by Nils Lid Hjort [and others].</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, UK ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2010.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 299 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge series in statistical and probabilistic mathematics ;</subfield><subfield code="v">28</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 290-291) and indexes.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics"--Provided by publisher</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">An invitation to Bayesian nonparametrics / Nils Lid Hjort, Chris Holmes, Peter Müller and Stephen G. Walker -- 1. Bayesian nonparametric methods: motivation and ideas / Stephen G. Walker -- 2. The Dirichlet process, related priors, and posterior asymptotics / Subhashis Ghosal -- 3. Models beyond the Dirichlet process / Antonio Lijoi and Igor Prünster -- 4. Further models and applications / Nils Lid Hjort -- 5. Hierarchical Bayesian nonparametric models with applications / Yee Whye Teh and Michael I. Jordan -- 6. Computational issues arising in Bayesian nonparametric hierarchical models / Jim Griffin and Chris Holmes -- 7. Nonparametric Bayes applications to biostatistics / David B. Dunson -- 8. More nonparametric Bayesian models for biostatistics / Peter Müller and Fernando Quintana -- Author index -- Subject index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Nonparametric statistics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85092349</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Bayesian statistical decision theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85012506</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Statistics, Nonparametric</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D018709</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Statistique non paramétrique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie de la décision bayésienne.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Probability & Statistics</subfield><subfield code="x">Bayesian Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bayesian statistical decision theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonparametric statistics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hjort, Nils Lid.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Bayesian nonparametrics (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGCDrjKpyXcQMKPqckfpRq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Bayesian nonparametrics.</subfield><subfield code="d">Cambridge, UK ; New York : Cambridge University Press, 2010</subfield><subfield code="z">9780521513463</subfield><subfield code="w">(DLC) 2009037744</subfield><subfield code="w">(OCoLC)441945339</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge series on statistical and probabilistic mathematics ;</subfield><subfield code="v">28.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n96064948</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=312516</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">17768164</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10466312</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">312516</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">4121601</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">5048447</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">5559195</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">6943790</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn719370012 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:48Z |
institution | BVB |
isbn | 9780511675362 0511675364 9780511802478 0511802471 9780511673382 0511673388 1107206073 9781107206076 9786613067968 6613067962 0511674171 9780511674174 0511670834 9780511670831 |
language | English |
oclc_num | 719370012 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (viii, 299 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge University Press, |
record_format | marc |
series | Cambridge series on statistical and probabilistic mathematics ; |
series2 | Cambridge series in statistical and probabilistic mathematics ; |
spelling | Bayesian nonparametrics / edited by Nils Lid Hjort [and others]. Cambridge, UK ; New York : Cambridge University Press, 2010. 1 online resource (viii, 299 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda Cambridge series in statistical and probabilistic mathematics ; 28 Includes bibliographical references (pages 290-291) and indexes. "Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics"--Provided by publisher An invitation to Bayesian nonparametrics / Nils Lid Hjort, Chris Holmes, Peter Müller and Stephen G. Walker -- 1. Bayesian nonparametric methods: motivation and ideas / Stephen G. Walker -- 2. The Dirichlet process, related priors, and posterior asymptotics / Subhashis Ghosal -- 3. Models beyond the Dirichlet process / Antonio Lijoi and Igor Prünster -- 4. Further models and applications / Nils Lid Hjort -- 5. Hierarchical Bayesian nonparametric models with applications / Yee Whye Teh and Michael I. Jordan -- 6. Computational issues arising in Bayesian nonparametric hierarchical models / Jim Griffin and Chris Holmes -- 7. Nonparametric Bayes applications to biostatistics / David B. Dunson -- 8. More nonparametric Bayesian models for biostatistics / Peter Müller and Fernando Quintana -- Author index -- Subject index. Print version record. English. Nonparametric statistics. http://id.loc.gov/authorities/subjects/sh85092349 Bayesian statistical decision theory. http://id.loc.gov/authorities/subjects/sh85012506 Statistics, Nonparametric https://id.nlm.nih.gov/mesh/D018709 Statistique non paramétrique. Théorie de la décision bayésienne. MATHEMATICS Probability & Statistics Bayesian Analysis. bisacsh Bayesian statistical decision theory fast Nonparametric statistics fast Hjort, Nils Lid. has work: Bayesian nonparametrics (Text) https://id.oclc.org/worldcat/entity/E39PCGCDrjKpyXcQMKPqckfpRq https://id.oclc.org/worldcat/ontology/hasWork Print version: Bayesian nonparametrics. Cambridge, UK ; New York : Cambridge University Press, 2010 9780521513463 (DLC) 2009037744 (OCoLC)441945339 Cambridge series on statistical and probabilistic mathematics ; 28. http://id.loc.gov/authorities/names/n96064948 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=312516 Volltext |
spellingShingle | Bayesian nonparametrics / Cambridge series on statistical and probabilistic mathematics ; An invitation to Bayesian nonparametrics / Nils Lid Hjort, Chris Holmes, Peter Müller and Stephen G. Walker -- 1. Bayesian nonparametric methods: motivation and ideas / Stephen G. Walker -- 2. The Dirichlet process, related priors, and posterior asymptotics / Subhashis Ghosal -- 3. Models beyond the Dirichlet process / Antonio Lijoi and Igor Prünster -- 4. Further models and applications / Nils Lid Hjort -- 5. Hierarchical Bayesian nonparametric models with applications / Yee Whye Teh and Michael I. Jordan -- 6. Computational issues arising in Bayesian nonparametric hierarchical models / Jim Griffin and Chris Holmes -- 7. Nonparametric Bayes applications to biostatistics / David B. Dunson -- 8. More nonparametric Bayesian models for biostatistics / Peter Müller and Fernando Quintana -- Author index -- Subject index. Nonparametric statistics. http://id.loc.gov/authorities/subjects/sh85092349 Bayesian statistical decision theory. http://id.loc.gov/authorities/subjects/sh85012506 Statistics, Nonparametric https://id.nlm.nih.gov/mesh/D018709 Statistique non paramétrique. Théorie de la décision bayésienne. MATHEMATICS Probability & Statistics Bayesian Analysis. bisacsh Bayesian statistical decision theory fast Nonparametric statistics fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85092349 http://id.loc.gov/authorities/subjects/sh85012506 https://id.nlm.nih.gov/mesh/D018709 |
title | Bayesian nonparametrics / |
title_auth | Bayesian nonparametrics / |
title_exact_search | Bayesian nonparametrics / |
title_full | Bayesian nonparametrics / edited by Nils Lid Hjort [and others]. |
title_fullStr | Bayesian nonparametrics / edited by Nils Lid Hjort [and others]. |
title_full_unstemmed | Bayesian nonparametrics / edited by Nils Lid Hjort [and others]. |
title_short | Bayesian nonparametrics / |
title_sort | bayesian nonparametrics |
topic | Nonparametric statistics. http://id.loc.gov/authorities/subjects/sh85092349 Bayesian statistical decision theory. http://id.loc.gov/authorities/subjects/sh85012506 Statistics, Nonparametric https://id.nlm.nih.gov/mesh/D018709 Statistique non paramétrique. Théorie de la décision bayésienne. MATHEMATICS Probability & Statistics Bayesian Analysis. bisacsh Bayesian statistical decision theory fast Nonparametric statistics fast |
topic_facet | Nonparametric statistics. Bayesian statistical decision theory. Statistics, Nonparametric Statistique non paramétrique. Théorie de la décision bayésienne. MATHEMATICS Probability & Statistics Bayesian Analysis. Bayesian statistical decision theory Nonparametric statistics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=312516 |
work_keys_str_mv | AT hjortnilslid bayesiannonparametrics |